

Course 16

Geometric Data Structures for Computer Graphics

Voronoi Diagrams

Dr. Elmar Langetepe

Institut für Informatik I Universität Bonn

Definition Voronoi Diagram

Classical Voronoi Diagram in 2-D

- Set of sites S in the Euclidean plane
- Subdivision into regions of the same neighborship
- Well-known concept Biology, Economics, CS, ... Voro Glide

Abstract definition

p 🖕

B(p,q)

• Bisector: $B(p,q) = \{x \mid d(p,x) = d(q,x)\}$

- Halfplane: $D(p,q) = \{x \mid d(p,x) < d(q,x)\}$
- Voronoi Region: $VR(p, S) = \bigcap_{q \in S, q \neq p} D(p, q)$
- Voronoi Diagram: $V(S) = \bigcup_{p,q \in S, p \neq q} \overline{\mathsf{VR}(p,S)} \cap \overline{\mathsf{VR}(q,S)}$

Properties

- Voronoi Diagram
 - Graph
 - Complexity: *O*(*n*) egdes and vertices,
 Region: 6 boundary edges in the average
 (Application of Euler-Formula)
 - Data Structure: DCEL, Adjacency List
 - Simple linear structure, represents a decomposition of the plane in cells
 - Implementations: LEDA, CGAL, Qhull, ...

Simple Applications

Voronoi Diagram of a set of points is given

- 1. All Nearest Neighbors: O(n) time
- 2. Closest Pair: O(n) time
- 3. Post Office Problem/Locus Approach: Query time: $O(\log n)$
 - Simple preprocessing: $O(n^2)$ time and space More complex: O(n) (Edelsbrunner)

Delaunay Triangulation: The Dual SIGGRAPH 2003

- The dual graph $D_T(S)$
- Triangulation of S, (n-1) triangles
- Charaterizations
 - Triangle: Circumcircle contains no other site
 - Edge: Circle contains no other site
- Maximizes the minimum angle

Computation

- Lower bound: $\Omega(n \log n)$
 - Reduction to the Convex Hull (Shamos)
 - Reduction to ϵ -closeness (Zhu and Mirzaian)
- Construction: $O(n \log n)$
 - Incremental
 - Divide and Conquer
 - Sweep
 - Delaunay Triangulation

Simple Incremental Construction

r

- Works on the Delaunay Triangulation
- Easy to implement/generalize
- Using *edge flips* I
- Assume that $DT(\{p_1, p_2, \dots, p_{i-1}\})$ was constructed

p

- Insert p_i |
- Conflicts with Delaunay triangles

Simple Incremental Construction

Insert p_i

- Determine triangle
- Sucessively remove conflicts by Edge-flips

More Applications

Assume that the diagram is given:

- k-th nearest neighbor of point $x \notin S$: $O(k \log^2 n)$ expected time
- Minimum Spanning Tree, **T**SP-Heuristic: $O(n \log n)$
- Largest empty circle in area A: O(n)
- Smallest enclosing circle/square: O(n)
- Localization problems (Hamacher)
- Clustering of objects (Dehne, Noltemeier)

Set of points in the Euclidean 3D Space

- Bisector: Hyperplane
- Region: Intersection of halfspaces bounded by bisectors, I
 3D convex polyhedron I
- Boundary of region: Facets, edges, vertices
- Decomposition of the space into 3D convex cells

- Delaunay triangulation
 - Tetrahedron for every vertex
 - Triangle for every edge
 - Edge for every facet
 - Delaunay Tetrahedon: Circumsphere of four points is empty
- Unfortunately no demo software :-((

- Complexity:
- $-\Theta(n^2)$
 - Uniformly distributed: O(n)
- Construction:
 - Similar incremental approach: **BD** edge flips in $\Theta(n^2)$

Two-into-three tetrahedra flip for five sites

Application:

- Generalizations of 2-D applications
- For example: Post Office Problem, Smallest enclosing ball,
 All nearest neighbors, etc.

Other generalizations

Other metrics

- L_1 -Metric (L_{∞} -Metric)
- Convex distance functions

More generalizations: weights, other objective (z.B. farthest points), colors, ...