
Course 16
Geometric Data Structures for Computer Graphics

Generic Dynamization

Dr. Elmar Langetepe

Institut für Informatik I

Universität Bonn

Geometric Data Structures for CG July 27 th Generic Dynamization San Diego ’03 1

Motivation

• Some geometric data structures were considered

• So far we assumed that the structure is static

• Fixed set of objects

• Objects may changes over time, Delete, Insert

• Need special update techniques for Insert and Delete for every

data structure

• Now: One Delete/Insert techniques suitable for many data

structures

• Generic dynamization

Geometric Data Structures for CG July 27 th Generic Dynamization San Diego ’03 2

Motivation

• Consider Static geometric data structure for n fixed objects

• Assume: Static version is easy to implement

• Assume: Efficient Range Queries on fixed set

• Assume: Objects changes over time, Delete, Insert

Dynamic

Operations(query, ...)

Insert andDelete
+

Dynamize

Arbitrary static

Operations(query, ...)

Import Export

Implement Delete/Insert only once

For many data structures (no special dynamization)

Geometric Data Structures for CG July 27 th Generic Dynamization San Diego ’03 3

Model: V ∈ TStat

V is a static geometric data structure of Type TStat

With object set D

Operations:

build(V,D): Build the structure V of type TStat

with all data objects in the set D.

query(V, q): Gives the answer (objects of D) to

a query to V with query object q.

extract(V,D): Collects all data objects D of V in

a single set and returns a pointer to it.

Geometric Data Structures for CG July 27 th Generic Dynamization San Diego ’03 4

Example: Balanced k-d-tree

5

10

5

10

a

b

e

c

h

d

f

i

g

j

k

x<5 x>5x=5

y=4
y>4y<4

y=5
y<5 y>5

x=2
x>2x<2

a

x=3
x<3 x>3

b d

x=8
x<8 x>8

j

x=7
x<7 x>7

gy=3
y<3 y>3

ce

y=2
y<2 y>2

fh

y=6
y<6 y>6

ik

Balanced k-d-tree of set D:

build: O(n log n)
query, orthogonal range: O(

√
n+ a)

Geometric Data Structures for CG July 27 th Generic Dynamization San Diego ’03 5

Dynamic structure W ∈ TDyn

Operations:

Build(W,D): Build the structure W of type

TDyn with data objects in the set D.

Query(W, q): Gives the answer (objects of D) to

a query to W with query object q.

Extract(W,D): Collects all data objects D of W

in a single set and returns a pointer to it.

Insert(W,d): Insert object d into W .

Delete(W,d): Delete d out of W .

Geometric Data Structures for CG July 27 th Generic Dynamization San Diego ’03 6

Model of the dynamization

Dynamize

TStat TDyn

Delete(W,d)
Insert(W,d)

Extract(W,D)

Query(W,D)
Build(W,D)

extract(V,D)

build(V,D)
query(V,q)

Time:Time:
B (n)

Q (n)

E (n)

I (n)

D (n)

B (n)

E (n)

W

W

W

W

W

V

Q (n)
V

V

Import Export

Geometric Data Structures for CG July 27 th Generic Dynamization San Diego ’03 7

Simple Throw-Away solution

Insert(W,d) : extract(W,D); build(W,D ∪ {d})

Delete(W,d) : extract(W,D); build(W,D \ {d}).

Ineffective, approach must cope with small changes

Geometric Data Structures for CG July 27 th Generic Dynamization San Diego ’03 8

Requirements

• Query operation: Decomposable

– V = V1 ∪ V2 ∪ · · · ∪ Vj ⇒ (query(Vi, d)⇒ query(V, d))
– Almost all geometric DS, Example: k-d tree

• Time-Functions increase monotonically in n

– Functions like: n, n log n, n2, 2n,
√
n

– Example: k-d tree,

BV (n) = O(n log n), EV (n) = O(n), QV (n) = O(
√
n+ a)

• A few others, normally fulfilled

Geometric Data Structures for CG July 27 th Generic Dynamization San Diego ’03 9

Amortized Insert: Binary structure

• Set D of objects, |D| = n

• Decompose D into sets Di

• Binary representation of n:

– n = al2l + al−12l−1 + . . .+ a12 + a0 mit ai ∈ {0, 1}
– Binary representation: alal−1 . . . a1a0

• ai = 1 ⇒ build static structure Vi with 2i elements of D.

Geometric Data Structures for CG July 27 th Generic Dynamization San Diego ’03 10

Amortized Insert: Binary structure

Set D of objects, |D| = n

|D| = n = 11 = 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20

20
0V

1V21

22

23
3V

Binary structure Wn, consists of some static structures Vi

Geometric Data Structures for CG July 27 th Generic Dynamization San Diego ’03 11

k-d tree Binary structure

11 = 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20

5

10

5

10

a

b

e

c

h

d

f

i

g

k

j

gk

x=6

h ia be f

V
3

V
1 x=3.5

dc
j

V
0

Geometric Data Structures for CG July 27 th Generic Dynamization San Diego ’03 12

Binary structure: Operations cost

20
0V

1V21

22

23
3V

Build(W,D): BW (n) ∈ O(BV (n)) (k-d-tree: O(n log n))

Extract(W,D): EW (n) ≤ log n EV (n) (k-d-tree: O(n log n))

Query(W,D): QW (n) ≤ log n Qv(n) (k-d-tree: O(log n(
√
n+ a))

Geometric Data Structures for CG July 27 th Generic Dynamization San Diego ’03 13

Amortized Insert

Insert new element d: Structural changes of the binary representation

20
0V

Example:

20

1V21 21

2V22 22

23 23 3V3V

12W

11W

11W 12W

To Do:
extract(V0, D0); extract(V1, D1);
D := D0 ∪D1 ∪ {d}; build(V2, D);

Next insert without changes of old parts!

Reconstruction partially!

Geometric Data Structures for CG July 27 th Generic Dynamization San Diego ’03 14

Example: k-d tree Binary structure

|D| = 11 = 1 · 23 + 0 · 22 + 1 · 21 + 1 · 20

|D ∪ {l}| = 12 = 1 · 23 + 1·22 + 0 · 21 + 0 · 20

5

10

5

10

a

b

e
h

f

i

g

k

j

gk i

x=6

ha be f

V
3

V
1 x=3.5

dc j

V
0

l

l jl ldc

Geometric Data Structures for CG July 27 th Generic Dynamization San Diego ’03 15

Amortized Insert: Costs
Amortized time: Start with empty structure

Sequence S of |S| = s operations, k Insert operations

S = (Insert, op2, op1, Insert, Insert, Insert, op1, . . .)

tot. cost of k Insert oper.

k
≤ I(s)

Means: Insert in I(s) amortized time.

One can show:

IW (s) ∈ O
(

log s
s
BV (s)

)
.

(k-d-tree: O(log2 s))

Geometric Data Structures for CG July 27 th Generic Dynamization San Diego ’03 16

Amortized Delete

• First: Stand alone, without generic Insert(Bin. Str.)

• Weak-Delete operation on static structure

• Example: k-d-tree

– Mark point as deleted

– Proceed as before

– Occasional reconstruct

Geometric Data Structures for CG July 27 th Generic Dynamization San Diego ’03 17

Weak Delete: k-d-tree

5

10

5

10

a

b

e

c

h

d

f

i

g

j

k

|D|=7

|V|=O(11)
x<5 x>5x=5

y=4
y>4y<4

y=5
y<5 y>5

x=2
x>2x<2

a

x=3
x<3 x>3

b d

x=8
x<8 x>8

j

x=7
x<7 x>7

gy=3
y<3 y>3

ce

y=2
y<2 y>2

fh

y=6
y<6 y>6

ik

Reconstruct completely IFF D has only the half-size of V

Geometric Data Structures for CG July 27 th Generic Dynamization San Diego ’03 18

Amortized Delete: Results

• Requires Static structure with weak.Delete(V, d) operation
• Cost function: WDV (n) (k-d-tree: O(log n))
• r size of the actual data set, s length of operation sequence
• Dynamization by Occasional reconstruction

BW (r) = BV (r)(k-d-tree: O(r log r))
EW (r) ∈ O (EV (r)) (k-d-tree: O(r))
QW (r) ∈ O (QV (r)) (k-d-tree: O(

√
r + a))

S = (Insert, op1, Insert, op2, Delete, op2, Delete, op1, . . .)
Start with empty structure

Amortized Delete: |S| = s

DW (s) ∈ O
(
WDV (s) +

BV (s)
s

)
(k-d-tree: O(log s))

Geometric Data Structures for CG July 27 th Generic Dynamization San Diego ’03 19

Combine: Amortized Insert/Delete

5

10

5

10

a

b

e

c

h

d

f

i

g

k

j

l

V
2

V
3

c d l

a e b f k

x=6

h g i

j

Weak.Delete(W,d): Find the structure Vi of binary structure W

Implemented by a searchtree T for all elements

Geometric Data Structures for CG July 27 th Generic Dynamization San Diego ’03 20

Results: Amortized Insert/Delete

r size of the actual data set, s length of operation sequence

S = (Insert, op2, Insert,Delete, op2, Delete, Insert, op1, . . .)
Amortized time for insertion:

IW (s) ∈ O
(

log s
BV (s)
s

)
(k-d-tree: O(log2 s)),

Amortized time for deletion:

DW (s) ∈ O
(

log s+WDV (s) +
BV (s)
s

)
(k-d-tree: O(log s)).

Other operations:

BW (r) = BV (r)(k-d-tree: O(r log r))
EW (r) ∈ O (log r EV (r)) (k-d-tree: O(r log r))
QW (r) ∈ O (log r QV (r)) (k-d-tree: O(log r (

√
r + a)))

Geometric Data Structures for CG July 27 th Generic Dynamization San Diego ’03 21

Conclusion

• Simple generic dynamization techniques

• Easy to implement: Binary structure/Occasional reconstruction

• Amortized Delete and Insert

• Applicable for many geometric data structures

• Efficient: log factor

• Does not waste storage

• Worst-Case sensitive: Amortize the reconstruction itself

Geometric Data Structures for CG July 27 th Generic Dynamization San Diego ’03 22

