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Motivation

� Assembly simulation:
� One of the most important applications in virtual prototyping
� One of the biggest challenges for VR technology

Introduction
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Simulation of virtual environments

Simulation
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Requirements

� Event-based
� No programming
� Easy to learn for non-programmers
� Description independent from scene graph

Simulation
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Other VR Systems

� Academic:
� DIVE
� Minimal Reality

� Commercial:
� Division
� Sense8

Simulation
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AEIO framework

Actions

Events
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Three layers of description

� Layered software architecture

Application-specific configuration

AEIO framework

API (scene graph, devices, ...) trGetTranslation( ... );
trSetMatrix( ... );

Simulation
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Interaction in Virtual Environments
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Natural object manipulation

� Types of grasping:
� Precision grasping
� 3-point pinch grasping
� Power grasping

Interaction
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Natural grasping algorithm

� Kinematic chain induces dependency among joints
� Position of fingers determined by (M,F)
� Iterative interpolation
� Invisible hand for collision detection
� Analysis of contact for grasping

Interaction



7

Introduction         Simulation Interaction            Collision Detection         Conclusion

Sliding

� Frequent task: collision-free assembly path
� Sliding simulation
� Problem: no force-feedback
� Different grasping metaphor: "rubber-band"
� Algorithm = FSM (concurrent)
� Approximate contact point
� Calculate new velocities

Interaction
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Sliding algorithm

1. Approximate
exact contact point

1. init
2. approximate

2. Classify contact
3. Calculate contact 

normals
4. Calculate new 

velocities
5. Check stop conditions

follow init approximation

approximate

classify &
 calculate
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Sliding Video

Interaction
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Collision Detection
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Requirements

� Large class of input geometry
� Real-time
� Additional data structures:

� Small footprint
� Construction at startup

Collision Detection
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Issues with collision detection

1. Reduction of polygon-polygon tests
2. Reduction of object-object tests
3. Integration in VR system

Collision Detection
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Hierarchical collision detection

� Strategy:
Divide & Conquer

� Data structure:
Bounding volume hierarchy

� General scheme:
simultaneous traversal

Collision Detection
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Boxtree

� Bounding volumes = boxes
� Re-alignment during traversal
� Properties:

� Split along one axis
� Re-use computations

� Costs:
� Node overlap test faster than any other hierarchy
� Less memory per node than any other hierarchy

Collision Detection
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Construction of BV hierarchies

� Speed of collision detection ~ quality of BV hierarchy
� Criteria:

� Balance depth & number of polygons
� Minimize volume of overlap
� Minimize individual volume of BVs

� Strategies:
� Insertion
� Bottom-up
� Top-down

Collision Detection
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Constructing Boxtrees

� Algorithm:
1. Decision: bisection or splitting off empty bbox
2. Find optimal splitting axis
3. Distribute polygons

� Performance:
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DOP-trees

� Generalization of bounding boxes
� Definition:

� Representation:
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Overlap test of DOPs

� Algorithm for "tumbled" DOPs:
� Object motion (M,o) 
� Affine transformation:

� Correspondence jil identical for all DOPs of a DOP-tree
� Cost: O(k), previously O(k2)

−

−

   
   
   = + =
   
   
   

1 1

2 2

3 3

1

1'          ,          

i i

i i

i i

j j

i i i j ij j

j j

d

d d

d

b

B b B o b B M

b

Collision Detection



13

Introduction         Simulation Interaction            Collision Detection         Conclusion

Comparison
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Convex polytopes

� Useful in the collision detection pipeline
� Linear separability
� Algorithm:

� Perceptron learning rule
� Simulated annealing
� Hill climbing
� Incremental
� Probabilistic (biased towards "collision")

Collision Detection
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Separating planes

� Linear separability:

� Algorithm:
� Perceptron learning rule
� Simulated annealing
� Hill climbing
� Incremental
� Probabilistic (biased towards "collision")
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Results

� ~2x faster than Lin-Canny
� Sub-linear in the number of polygons
� Less dependency on rotational speed
� Numerically

more robust
than Lin-Canny

� Less memory
requirements
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The object level

� Multi-body problem: n2/2 BV tests
� Space-indexing is more efficient if

� Grid and octree:
� Incremental
� Optimal number of cells
� Grids are more efficient
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Collision detection pipeline

App.
Sim.

Object
handler

Front end Collision
interest
matrix
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hulls
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Bbox-
Pipeline
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Parallelization

� Types:
� Coarse-grain (object level)
� Fine-grain (polygon level)
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Collision detection results

� Incremental algorithm for convex objects:
10,000 polygons ≈ 12 microseconds

� Enclosing DOPs in O(k), previously O(k2)
� Hierarchical algorithms:

50,000 polygons ≈ 1 millisecond
� Collision detection pipeline,

parallelized and concurrent
� Integrated in Virtual Design 2

Collision Detection
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Conclusions

� Framework for simulation of virtual environments
� Interaction:

� Natural grasping
� Sliding simulation

� Collision detection:
� New hierarchical and convex algorithms
� Collision pipeline
� Parallelization

� Virtual assembly simulation application

Conclusions
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Future Work

� Collision detection:
� Increasing demands on collision detection
� Collision detection for flexible objects
� Local criterion for global optimization?
� Incremental algos for polygon soups
� Estimation of penetration depth?
� Collision detection with max. allowed penetration depth
� Combination of C-Space and DOP-trees?
� CD in hardware
� Subdivision surfaces
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Future work

� Natural grasping:
� Simulation of finger tissue for precise manipulation
� Complex manipulations ("twiddling")
� Deformable hand
� Sliding of hand

� VR without Devices
� Virtual dataglove
� Computer-vision based head-tracking
� Body tracking

Conclusions
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Future work

� Interaction in VR
� Selection (dense and crowded environments)
� Navigation and interaction in virtual cities

� Experimentation in VR
� Relativistic VR
� Non-physical laws (r2 instead of r3)
� Non-euclidian geometry
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Thanx.

Conclusions


