
1

Virtual Reality
in Assembly Simulation

Collision Detection,
Simulation Algorithms, and
Interaction Techniques

Introduction Simulation Interaction Collision Detection Conclusion

Contents

1. Motivation
2. Simulation and description of virtual environments
3. Interaction with virtual environments
4. Collision detection
5. Conclusions

Introduction

2

Introduction Simulation Interaction Collision Detection Conclusion

Motivation

� Assembly simulation:
� One of the most important applications in virtual prototyping
� One of the biggest challenges for VR technology

Introduction

Introduction Simulation Interaction Collision Detection Conclusion

Overview

Renderer I/O

Object handler

InteractionCollision
detection

Simulation of virtual environments

Applications (virtual assembly sim.)

Introduction

3

Introduction Simulation Interaction Collision Detection Conclusion

Simulation of virtual environments

Simulation

Introduction Simulation Interaction Collision Detection Conclusion

Requirements

� Event-based
� No programming
� Easy to learn for non-programmers
� Description independent from scene graph

Simulation

4

Introduction Simulation Interaction Collision Detection Conclusion

Other VR Systems

� Academic:
� DIVE
� Minimal Reality

� Commercial:
� Division
� Sense8

Simulation

Introduction Simulation Interaction Collision Detection Conclusion

AEIO framework

Actions

Events

Inputs

Objects

User
Simulation

5

Introduction Simulation Interaction Collision Detection Conclusion

Three layers of description

� Layered software architecture

Application-specific configuration

AEIO framework

API (scene graph, devices, ...) trGetTranslation(...);
trSetMatrix(...);

Simulation

Introduction Simulation Interaction Collision Detection Conclusion

Interaction in Virtual Environments

Renderer I/O

Object handler

InteractionCollision
detection

Simulation of virtual environments

Applications (virtual assembly sim.)

Natural grasping
Sliding

Interaction

6

Introduction Simulation Interaction Collision Detection Conclusion

Natural object manipulation

� Types of grasping:
� Precision grasping
� 3-point pinch grasping
� Power grasping

Interaction

Introduction Simulation Interaction Collision Detection Conclusion

Natural grasping algorithm

� Kinematic chain induces dependency among joints
� Position of fingers determined by (M,F)
� Iterative interpolation
� Invisible hand for collision detection
� Analysis of contact for grasping

Interaction

7

Introduction Simulation Interaction Collision Detection Conclusion

Sliding

� Frequent task: collision-free assembly path
� Sliding simulation
� Problem: no force-feedback
� Different grasping metaphor: "rubber-band"
� Algorithm = FSM (concurrent)
� Approximate contact point
� Calculate new velocities

Interaction

Introduction Simulation Interaction Collision Detection Conclusion

Sliding algorithm

1. Approximate
exact contact point

1. init
2. approximate

2. Classify contact
3. Calculate contact

normals
4. Calculate new

velocities
5. Check stop conditions

follow init approximation

approximate

classify &
 calculate

Interaction

8

Introduction Simulation Interaction Collision Detection Conclusion

Sliding Video

Interaction

Introduction Simulation Interaction Collision Detection Conclusion

Collision Detection

Renderer I/O

Object handler

InteractionCollision
detection

Simulation of virtual environments

Applications (virtual assembly sim.)

Collision Detection

9

Introduction Simulation Interaction Collision Detection Conclusion

Requirements

� Large class of input geometry
� Real-time
� Additional data structures:

� Small footprint
� Construction at startup

Collision Detection

Introduction Simulation Interaction Collision Detection Conclusion

Issues with collision detection

1. Reduction of polygon-polygon tests
2. Reduction of object-object tests
3. Integration in VR system

Collision Detection

10

Introduction Simulation Interaction Collision Detection Conclusion

Hierarchical collision detection

� Strategy:
Divide & Conquer

� Data structure:
Bounding volume hierarchy

� General scheme:
simultaneous traversal

Collision Detection

Introduction Simulation Interaction Collision Detection Conclusion

Boxtree

� Bounding volumes = boxes
� Re-alignment during traversal
� Properties:

� Split along one axis
� Re-use computations

� Costs:
� Node overlap test faster than any other hierarchy
� Less memory per node than any other hierarchy

Collision Detection

11

Introduction Simulation Interaction Collision Detection Conclusion

Construction of BV hierarchies

� Speed of collision detection ~ quality of BV hierarchy
� Criteria:

� Balance depth & number of polygons
� Minimize volume of overlap
� Minimize individual volume of BVs

� Strategies:
� Insertion
� Bottom-up
� Top-down

Collision Detection

Introduction Simulation Interaction Collision Detection Conclusion

Constructing Boxtrees

� Algorithm:
1. Decision: bisection or splitting off empty bbox
2. Find optimal splitting axis
3. Distribute polygons

� Performance:

0

500

1000

1500

2000

0 10000 20000 polygons

m
ill
is

ec

sphere

0

500

1000

1500

2000

0 10000 20000 polygons

m
ill
is

ec

hyperboloid

Collision Detection

12

Introduction Simulation Interaction Collision Detection Conclusion

DOP-trees

� Generalization of bounding boxes
� Definition:

� Representation:

{ }
+

= ∈ =…

3
1

/ 2

, , , R , 1, fixed

, antiparallel
k i i

i i k

B BB B B B

B B

=

= ⋅ − ≤∩
1

DOP , : 0
k

i i i i
i

D H H dB x

()= ∈… �1 , , k
kD d d

B1

B2B3

B4

B5 B6

slab

Collision Detection

Introduction Simulation Interaction Collision Detection Conclusion

Overlap test of DOPs

� Algorithm for "tumbled" DOPs:
� Object motion (M,o)
� Affine transformation:

� Correspondence jil identical for all DOPs of a DOP-tree
� Cost: O(k), previously O(k2)

−

−

   
   
   = + =
   
   
   

1 1

2 2

3 3

1

1' ,

i i

i i

i i

j j

i i i j ij j

j j

d

d d

d

b

B b B o b B M

b

Collision Detection

13

Introduction Simulation Interaction Collision Detection Conclusion

Comparison

0.2

0.6

1

1.4

1.8

2.2

0 20 40 60
0

1

2

3

4

5

0 20 40 60 80

1000
pgons

Box-tree
DOP-tree
QuickCD
Rapid

Collision Detection

0

0.5

1

1.5

2

2.5

0 20 40 60

m
ill

is
ec

Introduction Simulation Interaction Collision Detection Conclusion

Convex polytopes

� Useful in the collision detection pipeline
� Linear separability
� Algorithm:

� Perceptron learning rule
� Simulated annealing
� Hill climbing
� Incremental
� Probabilistic (biased towards "collision")

Collision Detection

14

Introduction Simulation Interaction Collision Detection Conclusion

Separating planes

� Linear separability:

� Algorithm:
� Perceptron learning rule
� Simulated annealing
� Hill climbing
� Incremental
� Probabilistic (biased towards "collision")

⇔
∃ ∈ ∈ ∀ ⋅ − > ∀ ⋅ − <� �

3
0 0 0

, linearly separable

, : : 0, : 0i j

P Q
w w i p w w j q w w

∈ ∈ − ⋅ > − ⋅ >∃ ∀ ∀� �
3

0 0 0, : : (, 1) (,) 0, : (,1) (,) 0i jw w i p w w j q w w

Collision Detection

Introduction Simulation Interaction Collision Detection Conclusion

Results

� ~2x faster than Lin-Canny
� Sub-linear in the number of polygons
� Less dependency on rotational speed
� Numerically

more robust
than Lin-Canny

� Less memory
requirements

0
10
20
30
40
50
60
70

0 5000 10000 polygons

m
ic

ro
se

c

sep_pl (1)
l_c (1)
sep_pl(20)
l_c (20)

Collision Detection

15

Introduction Simulation Interaction Collision Detection Conclusion

The object level

� Multi-body problem: n2/2 BV tests
� Space-indexing is more efficient if

� Grid and octree:
� Incremental
� Optimal number of cells
� Grids are more efficient

< −
2 ()

()
2

s
s

b

T nnP n
T

Collision Detection

Introduction Simulation Interaction Collision Detection Conclusion

Collision detection pipeline

App.
Sim.

Object
handler

Front end Collision
interest
matrix

Grid Convex
hulls

DOP-
tree

Bbox-
Pipeline

Collision Detection

16

Introduction Simulation Interaction Collision Detection Conclusion

Parallelization

� Types:
� Coarse-grain (object level)
� Fine-grain (polygon level)

0

1

2

3

4

1 3 5

#proc.

sp
ee

du
p

coarse-
grain

fine-grain

0

1

2

3

4

1 3 5
#proc.

sp
ee

du
p

132
462
992
2652
10302

Collision Detection

Introduction Simulation Interaction Collision Detection Conclusion

Collision detection results

� Incremental algorithm for convex objects:
10,000 polygons ≈ 12 microseconds

� Enclosing DOPs in O(k), previously O(k2)
� Hierarchical algorithms:

50,000 polygons ≈ 1 millisecond
� Collision detection pipeline,

parallelized and concurrent
� Integrated in Virtual Design 2

Collision Detection

17

Introduction Simulation Interaction Collision Detection Conclusion

Conclusions

� Framework for simulation of virtual environments
� Interaction:

� Natural grasping
� Sliding simulation

� Collision detection:
� New hierarchical and convex algorithms
� Collision pipeline
� Parallelization

� Virtual assembly simulation application

Conclusions

Introduction Simulation Interaction Collision Detection Conclusion

Future Work

� Collision detection:
� Increasing demands on collision detection
� Collision detection for flexible objects
� Local criterion for global optimization?
� Incremental algos for polygon soups
� Estimation of penetration depth?
� Collision detection with max. allowed penetration depth
� Combination of C-Space and DOP-trees?
� CD in hardware
� Subdivision surfaces

18

Introduction Simulation Interaction Collision Detection Conclusion

Future work

� Natural grasping:
� Simulation of finger tissue for precise manipulation
� Complex manipulations ("twiddling")
� Deformable hand
� Sliding of hand

� VR without Devices
� Virtual dataglove
� Computer-vision based head-tracking
� Body tracking

Conclusions

Introduction Simulation Interaction Collision Detection Conclusion

Future work

� Interaction in VR
� Selection (dense and crowded environments)
� Navigation and interaction in virtual cities

� Experimentation in VR
� Relativistic VR
� Non-physical laws (r2 instead of r3)
� Non-euclidian geometry

19

Introduction Simulation Interaction Collision Detection Conclusion

Thanx.

Conclusions

