Geometric Data Structures
q for Computer Graphics

Dr. Gabriel Zachmann
Dr. Elmar Langetepe

University Bonn
Germany
{zach, langetep}@cs.uni-bonn._de

e ntroduction

m What this tutorial is about
m What it is not about

Introduction

& Overview

Introduction

i Terrain Visualization

= Problem
= Given: height values on regular 2D grid
= Task: render with 60 Hz

m Brute-force solution ol
u Render ~ 500 Mio tris ,?,T";T;-!'
and™ | |
e

m Better solution

= view-dependent dyn. LOD,
stripes, cache locality

m |dea: Quadtrees

Quarees

$ Avoiding Cracks

m Cannot render quadrangles
= Probably not planar

m Cracks because of T-vertices

= Must render triangles

Quadrees

$ Subdivision Scheme

® Quadtree induces 4-8 mesh

= Induces DAG
= "vertex j is child of i" < » i

j is created by splitting at i -

= Denote this by an edge (i,j)

Quaditrees

m Graph-theoretic condition

Let M° be the complete DAG,
let M be a sub-graph of M°.

Bermie Fredin

M yields a crack-free terrain <
NjeM:(i,))eM = (,f)eM

= Rendering condition:
= Find criterion for vertices that has the "nesting property":
criterion(j) = “render it" =
V parents i: criterion(i) = "render it"

Quadtrees

submesh(i.j)

if error(i) < = then

return

if B; outside view then

return
submesh(j,c,)
V+=p,
submesh(j,c,)

Quadtrees

= Don't use pointers
= Find numbering scheme with little "dead numbers"
m Observation: subdivision scheme induces 2 quadtrees

green

level

black

Quadrees

m Storing the "green" quadtree in the "black" one:

green

Quarees

Movies

Quadrees

Quaditrees

= Problem
= Given: scalar field F:R®* > R

m Task: find polygonal repr. of f(x) =¢

= Discrete: curvilinear grid / regular grid k
= Space: physical / computational space

= Task (discrete): find all cells with a computational

space

node <t and a node >t

m Simple algo ("marching cubes")
1. Compute sign for all nodes (& = >t);
2. Triangulate all cells according to LUT

Quadtrees

Octrees over Volume Data
m Leaf: ptr to lower left node
® Inner node: ptr to first child

m All nodes v store v, and vy,

o
o
o

o o o o o AN

o o
o o -
o o

O

N 2
ROR

Quadtrees

m |sosurface intersects volume assoc. with node v
S Viin < < Viyax
= Algo (obvious)
= Start with root
® Recurse into nodes satisfying condition
= Improvement
m Observation: edges are visited exactly 4 times
m Keep hash table of edges

Quadrees

Movie

Quarees

m Applications: ray tracing,
radiosity, volume visualization,
terrain following, etc.

m Simplest solution: grid

= 3D octree

= Bottom-up
= Top-down

Quadrees

5D Octree for Rays

m What is a ray?
m Point + direction = 5-dim. Object
= QOctree over rays
= "Direction cube"
= One-to-one mapping for dir's:
5% > D =[-1,+1P x {tx,ty,+z}
= All rays in universe ¢ =[0,1]
R=UxD
m Node of 5D octree = beam in 3D

s\l

|-d

Quaditrees

= Construction

= Start with root node =¢/ x [-1, +1]
and all objects associated

= Partition node iff
1. Too many objects, and
2. Cell too large.
= Partition set of objcets
® Shooting rays
1. Convert ray to 5D point
2. Find leaf of octree
3. Intersect ray with associated objects

m Optimizations ...

Texture Synthesis

m Properties of textures
= Stationary under moving window
= Locality of dependency

= Algorithm
for all p e new image do e)
find p; € old image so that
V(o) - N(p) =min
setp:=p P

t new image

random border

Quadtrees

Nearest Neighbor Apps

m Better independence from size of N(p)

= Examples

Nearest Neighbor Apps

Td 19

=7 I
== § =

N(p) «————————— N(p)

#E/ \ \
: =
] \
T 10
BSP Trees

m Generalization of k-d trees
m Definition (recursive)
=S = set of objects,
S(v) = objects assoc. with node v,
T(S) = BSP for set S
. Case |S|<1:
T = leaf v storing S(v) =S
. Case |S|>1:
T = tree with root v storing h, and S(v),
Swy={xeS|xch}
children for sets S*(v) and S™(v) ,
S'v)y={xnh'|xeS}

-

N

Autopartitions

® Properties
= Each h, = plane of one polygon
= Each S(v) = that polygon
= Complexity
O(nlogn)
= |n 2D: proven

= In 3D: experience for “well-
behaved" geometry

=

BSP Trees

BSP Trees

BSPs for Object Representation

m Difference to orig. definition:
stop only when |S|=0
m |eaves
= Homogenous convex cells
= Either inside or outside
= Construction
= Guided by heuristic

1

/ \
/2\ e 3\
5 4 6

N /N /N
in out 7 out in out
/N
in out

out

Boolean Operations

BSP Trees

® Operations: n U \ © c’»

@Qa

m Algorithm o
1. Split BSP by plane
2. Merge two BSPs
3. Compute operation on cells

]

BSP Trees

Subalgorithm 1

m Split BSP T by plane H,
polygon p at root of T
® QOutput two new BSPs

® Cases:
1. Tis leaf:
trivial ...
2. pcH:
return children
3. H completely on one side of p:
split one child, combine with other child
4. H crosses p:
split both children, recombine across p

T

Subalgorithm 2

BSP Trees

®m Merge T, and T,

m Output T with leaf cells ¢ such that
C={clc=c,nc,c eC,c,eC,}

= Algorithm

1. T, or T, is leaf: perform operation on cell
2. Else:

split merge merge

=B85
v P

combine
BSP Trees

Subalgorithm 3

m The Cell Operation

Op T, Result
in T,
)
out T,
in T,
a)
out T,
in T,°
\ 2
out T,
o) in T,C

out T,

Demos

BSP Trees

Boolen Operations Painter's Algorithm

Stan Melax

Paton J. Lewis

BSP Trees

Bounding Volume Hierarchies

m Definition (informal): = Applications
= Tree, nodes carry BV = Ray shooting
= Leaves carry one (or more) “primitives" = Nearest-neighbor
= BV of node contains BVs of all children ® Frustum and occlusion culling

. . = Geographical data bases
m Leaf BV contains primitive

= Collision detection
= Many variables

= Construction

= Bounding Volumes

= Strategies 2
= Bottom-up -g
000 >00a0 i
= Top-down = "
) H ["t' , p———pr—! =t
. L]
m Tightness euristic!

Interactive hierarchy construction

Bounding Volume Hierarchies

Bounding Volume Hierarchies

Collision Detection

®m Simultaneous traversal:

traverse(A,B)
if A,B do not overlap then — -8,
return \
if A and B are leaves then
check primitives
else A
forall children A;, B; do
traverse(A;, B;)

m The recursion tree (what the algo really does):

Bounding Volume Hierarchies

Bounding Volume Hierarchies

Movies Thanks Folks

Remaining primitives A simple application

Bounding Volume Hierarchies

$ A Continl_J______q__rp of Data Structures

o N F

Quadtree K-d tree BSP tree BV hierarchy

