
1

Geometric Data Structures
for Computer Graphics

Dr. Gabriel Zachmann

Dr. Elmar Langetepe
University Bonn

Germany
{zach,langetep}@cs.uni-bonn.de

Introduction Quadtrees Nearest Neighbor Apps BSP Trees Bounding Volume Hierarchies

Introduction

! What this tutorial is about

! What it is not about

Introduction

Introduction Quadtrees Nearest Neighbor Apps BSP Trees Bounding Volume Hierarchies

Overview

Introduction Introduction Quadtrees Nearest Neighbor Apps BSP Trees Bounding Volume Hierarchies

Terrain Visualization

! Problem
! Given: height values on regular 2D grid

! Task: render with 60 Hz

! Brute-force solution
! Render ~ 500 Mio tris

! Better solution
! view-dependent dyn. LOD,

stripes, cache locality

! Idea: Quadtrees

Quadtrees

Introduction Quadtrees Nearest Neighbor Apps BSP Trees Bounding Volume Hierarchies

Avoiding Cracks

! Cannot render quadrangles
! Probably not planar

! Cracks because of T-vertices

! Must render triangles

T-vertices!

Quadtrees Introduction Quadtrees Nearest Neighbor Apps BSP Trees Bounding Volume Hierarchies

Subdivision Scheme

! Quadtree induces 4-8 mesh

! Induces DAG
! "vertex j is child of i" ⇔

j is created by splitting at i

! Denote this by an edge (i,j)

8 4new

j
i

Quadtrees

2

Introduction Quadtrees Nearest Neighbor Apps BSP Trees Bounding Volume Hierarchies

Dependency among Triangles

! Graph-theoretic condition
Let M0 be the complete DAG,
let M be a sub-graph of M0.

M yields a crack-free terrain ⇔

! Rendering condition:
! Find criterion for vertices that has the "nesting property":

criterion(j) = "render it" ⇒
∀ parents i: criterion(i) = "render it"

∀ ∈ ∈ ⇒ ∈0: (,) (,)j M i j M i j M

Be
rn

ie
 F

re
id

in

Quadtrees Introduction Quadtrees Nearest Neighbor Apps BSP Trees Bounding Volume Hierarchies

Procedure for Rendering

submesh(i,j)

if error(i) < τ then

return

if Bi outside view then

return

submesh(j,cl)

V += pi

submesh(j,cr)

i

cl

cr

Quadtrees

j

Introduction Quadtrees Nearest Neighbor Apps BSP Trees Bounding Volume Hierarchies

Storing the Quadtree

! Don't use pointers

! Find numbering scheme with little "dead numbers"

! Observation: subdivision scheme induces 2 quadtrees

level

green

black

0 1 2 3 4

Quadtrees

…

…

Introduction Quadtrees Nearest Neighbor Apps BSP Trees Bounding Volume Hierarchies

! Storing the "green" quadtree in the "black" one:

black
green

Quadtrees

Introduction Quadtrees Nearest Neighbor Apps BSP Trees Bounding Volume Hierarchies

Movies

Quadtrees Introduction Quadtrees Nearest Neighbor Apps BSP Trees Bounding Volume Hierarchies

NASA

Quadtrees

3

Introduction Quadtrees Nearest Neighbor Apps BSP Trees Bounding Volume Hierarchies

Isosurface Generation

! Problem
! Given: scalar field

! Task: find polygonal repr. of

! Discrete: curvilinear grid / regular grid

! Space: physical / computational space

! Task (discrete): find all cells with a
node < t and a node > t

! Simple algo ("marching cubes")
1. Compute sign for all nodes (⊕ = >t);

2. Triangulate all cells according to LUT

→! !3:f
=()f tx

physical
space

cellnode

space
computational

⊕

⊕

⊕ ⊕

⊕

⊕

⊕

⊕

⊕

?

Quadtrees Introduction Quadtrees Nearest Neighbor Apps BSP Trees Bounding Volume Hierarchies

Octrees over Volume Data

! Leaf: ptr to lower left node

! Inner node: ptr to first child

! All nodes ν store νmin and νmax

Quadtrees

Introduction Quadtrees Nearest Neighbor Apps BSP Trees Bounding Volume Hierarchies

Isosurface Generation with Octree

! Isosurface intersects volume assoc. with node ν
⇔ νmin < t < νmax

! Algo (obvious)
! Start with root

! Recurse into nodes satisfying condition

! Improvement
! Observation: edges are visited exactly 4 times

! Keep hash table of edges

Quadtrees Introduction Quadtrees Nearest Neighbor Apps BSP Trees Bounding Volume Hierarchies

Movie

Quadtrees

Introduction Quadtrees Nearest Neighbor Apps BSP Trees Bounding Volume Hierarchies

Ray Shooting

! Applications: ray tracing,
radiosity, volume visualization,
terrain following, etc.

! Simplest solution: grid

! 3D octree
! Bottom-up

! Top-down

Quadtrees Introduction Quadtrees Nearest Neighbor Apps BSP Trees Bounding Volume Hierarchies

5D Octree for Rays

! What is a ray?
! Point + direction = 5-dim. Object

! Octree over rays
! "Direction cube"

! One-to-one mapping for dir's:

! All rays in universe

! Node of 5D octree = beam in 3D

u
v

u

v

d

2 2: [1, 1] { , , }S D x y z↔ = − + × ± ± ±
3[0,1]U =

R U D= × =+

Quadtrees

4

Introduction Quadtrees Nearest Neighbor Apps BSP Trees Bounding Volume Hierarchies

! Construction
! Start with root node =

and all objects associated
! Partition node iff

1. Too many objects, and
2. Cell too large.

! Partition set of objcets

! Shooting rays
1. Convert ray to 5D point

2. Find leaf of octree

3. Intersect ray with associated objects

! Optimizations …

2[1, 1]U × − +

Quadtrees Introduction Quadtrees Nearest Neighbor Apps BSP Trees Bounding Volume Hierarchies

Texture Synthesis

! Properties of textures
! Stationary under moving window

! Locality of dependency

! Algorithm
for all p ∈ new image do

find pi ∈ old image so that

set p := pi

2
() () miniN p N p− =

random border

new image

p

N(p)

old image

Nearest Neighbor Apps

Introduction Quadtrees Nearest Neighbor Apps BSP Trees Bounding Volume Hierarchies

! Better independence from size of N(p)

T0

N(p) N(pi)

Td Id

I0

Nearest Neighbor Apps Introduction Quadtrees Nearest Neighbor Apps BSP Trees Bounding Volume Hierarchies

! Examples

Nearest Neighbor Apps

W
ei

&
Le

vo
y

Introduction Quadtrees Nearest Neighbor Apps BSP Trees Bounding Volume Hierarchies

BSP Trees

! Generalization of k-d trees

! Definition (recursive)
! S = set of objects,

S(ν) = objects assoc. with node ν,
T(S) = BSP for set S

1. Case |S|≤1:
T = leaf ν storing

2. Case |S|≥1:
T = tree with root ν storing hν and ,

children for sets and ,
() : { | }S x S x hνν = ∈ ⊆

() : { | }S x h x Sνν+ += ∩ ∈

()S ν

()S ν+ ()S ν−

() :S Sν =
h3

h4

h2

h1

h4

h2

h1

h3

BSP Trees Introduction Quadtrees Nearest Neighbor Apps BSP Trees Bounding Volume Hierarchies

Autopartitions

! Properties
! Each hν = plane of one polygon

! Each S(ν) = that polygon

! Complexity

! In 2D: proven

! In 3D: experience for "well-
behaved" geometry

(log)O n n

BSP Trees

5

Introduction Quadtrees Nearest Neighbor Apps BSP Trees Bounding Volume Hierarchies

BSPs for Object Representation

! Difference to orig. definition:
stop only when |S|=0

! Leaves
! Homogenous convex cells

! Either inside or outside

! Construction
! Guided by heuristic 2 3

1

6

in out

out5 4

7in out out

in out

1

3

out

out

out

out

out

inin

6

7
4 2

in

5

BSP Trees Introduction Quadtrees Nearest Neighbor Apps BSP Trees Bounding Volume Hierarchies

Boolean Operations

! Operations: ∩ ∪ \

! Algorithm
1. Split BSP by plane

2. Merge two BSPs

3. Compute operation on cells

A B

∩∪ \

H T

→

BSP Trees

Introduction Quadtrees Nearest Neighbor Apps BSP Trees Bounding Volume Hierarchies

Subalgorithm 1

! Split BSP T by plane H,
polygon p at root of T

! Output two new BSPs

! Cases:
1. T is leaf:

trivial …
2. p ⊂ H:

return children
3. H completely on one side of p:

split one child, combine with other child
4. H crosses p:

split both children, recombine across p

H

pT

pT

H

H

pT

BSP Trees Introduction Quadtrees Nearest Neighbor Apps BSP Trees Bounding Volume Hierarchies

Subalgorithm 2

! Merge T1 and T2

! Output T with leaf cells such that

! Algorithm
1. T1 or T2 is leaf: perform operation on cell

2. Else:

C

1 2 1 1 2 2{ | , , }C c c c c c C c C= = ∩ ∈ ∈

→ →

→+

↓ ↓
T1 T2

split merge merge

combine

BSP Trees

Introduction Quadtrees Nearest Neighbor Apps BSP Trees Bounding Volume Hierarchies

Subalgorithm 3

! The Cell Operation

T2
C

T2

in
out

\

∩

∪

Op

in
out

in
out

in
out

T1

T2
C

T1

T2

T1

T1

T2

Result

BSP Trees Introduction Quadtrees Nearest Neighbor Apps BSP Trees Bounding Volume Hierarchies

Demos

Boolen Operations Painter's Algorithm

Stan Melax Paton J. Lewis

BSP Trees

6

Introduction Quadtrees Nearest Neighbor Apps BSP Trees Bounding Volume Hierarchies

Bounding Volume Hierarchies

! Definition (informal):
! Tree, nodes carry BV

! Leaves carry one (or more) "primitives"

! BV of node contains BVs of all children

! Leaf BV contains primitive

! Many variables

! Bounding Volumes

! Tightness

Bounding Volume Hierarchies Introduction Quadtrees Nearest Neighbor Apps BSP Trees Bounding Volume Hierarchies

! Applications
! Ray shooting

! Nearest-neighbor

! Frustum and occlusion culling

! Geographical data bases

! Collision detection

! Construction
! Strategies

! Bottom-up

! Insertion

! Top-down

! Heuristic!
Interactive hierarchy construction

Br
ab

ec

Bounding Volume Hierarchies

Introduction Quadtrees Nearest Neighbor Apps BSP Trees Bounding Volume Hierarchies

Collision Detection

! Simultaneous traversal:

traverse(A,B)
if A,B do not overlap then

return
if A and B are leaves then

check primitives
else

forall children Ai, Bj do
traverse(Ai, Bj)

B

A

B1

B2

A1

A2

Bounding Volume Hierarchies Introduction Quadtrees Nearest Neighbor Apps BSP Trees Bounding Volume Hierarchies

! The recursion tree (what the algo really does):

F5 G4 G5F4

F7 G6 G7F6

D7 E6 E7D6

E4D4 D5 E5E F GD

CB

A

5 6 74

2 3

1A1

B2 B3 C2 C3

Bounding Volume Hierarchies

Introduction Quadtrees Nearest Neighbor Apps BSP Trees Bounding Volume Hierarchies

Movies

Remaining primitives A simple application

Bounding Volume Hierarchies Introduction Quadtrees Nearest Neighbor Apps BSP Trees Bounding Volume Hierarchies

Thanks Folks

7

Introduction Quadtrees Nearest Neighbor Apps BSP Trees Bounding Volume Hierarchies

A Continuum of Data Structures

Quadtree K-d tree BSP tree BV hierarchy

