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Abstract
The goal of this tutorial is to present a wide range of geometric data structures, algorithms and techniques
from computational geometry to computer graphics practitioners. To achieve this goal we introduce several
data structures, discuss their complexity, point out construction schemes and the corresponding performance
and present standard applications in two and three dimensions.

Categories and Subject Descriptors (according to ACM CCS): Categories and Subject Descriptors: I.3.3 [Data
Structures]: Computer Graphics

1 Introduction
In recent years, methods from computational geometry
have been widely adopted by the computer graphics com-
munity. Many solutions draw their elegance and efficiency
from the mutually enriching combination of such geomet-
rical data structures with computer graphics algorithms.

With this tutorial we try to familiarize practitioners in
the computer graphics field with several geometric data
structures, algorithms and techniques from computational
geometry. This should enable the attendants to select the
most suitable data structure when developing computer
graphics algorithms. In particular, we want to enable them
to readily recognize a sub-problem if it can be solved by
some method known in computational geometry.

The general concept throughout the tutorial is to
present each geometric data structure as follows: the data
structure will be defined and described in detail; its com-
plexity and some of its fundamental properties will be dis-
cussed; construction algorithms and their time bounds are
given; one or more simple computational geometry algo-
rithms based upon the data structure will be presented;
finally, a number of recent representative and practically
relevant algorithms from computer graphics will be de-
scribed in detail.

Our selection of data structures and algorithms con-
sists of well-known concepts, which are both, powerful
and easy to implement. However, we do not try to pro-
vide a survey over any of the topics touched upon here
— this would be far beyond the scope of this tutorial. For
the same reason, this tutorial does not provide a compre-
hensive overview of all techniques and algorithms from
computational geometry that might be of interest to com-
puter graphics researchers and developers. However, we do
feel that the techniques we present here should be working
knowledge of anybody in this field.

The tutorial is organized as follows. The classical
quadtrees and k-d-trees are the topics of Section 2. In Sec-
tion 5 we discuss the concept of Voronoi diagrams and
Delaunay triangulations. Furthermore, BSP-trees are pre-
sented in Section 3. Section 4 is about volume hierarchies,
and finally, in Section 6 we present a method for generic
dynamization.

2 Quadtrees and K-d-Trees
Within this section we will present some fundamental ge-
ometric data structures.

In section Section 2.1, we introduce the quadtree struc-
ture, its definition and complexity, the recursive construc-
tion scheme and a standard application are presented. It
has applications in mesh generation as shown in Sec-
tion 2.3, 2.4, 2.5.

A natural generalization of the one-dimensional search
tree to k dimensions is shown in Section 2.2. The k-d-tree
is efficient for axis-parallel rectangular range queries.

The quadtree description was adapted from de Berg
et al.13 and the k-d-tree introduction was taken from
Klein.38

2.1 Quadtrees and Octrees

2.1.1 Definition

A quadtree is a rooted tree so that every internal node
has four children. Every node in the tree correspond to
a square. If a node v has children, their corresponding
squares are the four quadrants, see Figure 1 for an exam-
ple.

Quadtrees can store many kind of data, we describe the
variant that stores a set of points. For the definition a sim-
ple recursive splitting of squares is continued until there is
only one point in a square. Let P be a set of points.

The definition of a quadtree for a set of points in a
square Q = [x1Q : x2Q]× [y1Q : y2Q] is as follows:

• If |P| ≤ 1 then the quadtree is a single leaf where Q and
P are stored.

• Otherwise let QNE, QNW , QSW and QSE denote the
four quadrants. Let xmid := (x1Q + x2Q)/2 and
ymid := (y1Q + y2Q)/2, and define

PNE := {p ∈ P : px > xmid and py > ymid},
PNW := {p ∈ P : px ≤ xmid and py > ymid},
PSW := {p ∈ P : px ≤ xmid and py ≤ ymid} and
PSE := {p ∈ P : px > xmid and py ≤ ymid}.

The quadtree consists of a root node v, Q is stored at
v. In the following, let Q(v) denote the square stored
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SESWNWNE

Figure 1: An example of a quadtree.

at v. Furthermore v has four children: The X-child
is the root of the quadtree of the set PX for X ∈
{NE, NW, SW, SE}.

2.1.2 Complexity and Construction

The recursive definition implies a recursive construction
algorithm. Only the starting square has to be chosen ad-
equately. If the split operation cannot be performed well
the quadtree is unbalanced. Despite this effect, the depth
of the tree is related to the distance between the points.

Theorem 1
The depth of a quadtree for a set P of points in the plane
is at most log(s/c) + 3

2 , where c is the smallest distance
between any to points in P and s is the side length of the
initial square.

The cost of the recursive construction and the complex-
ity of the quadtree depends on the depth of the tree.

Theorem 2
A quadtree of depth d which stores a set of n points has
O((d + 1)n) nodes and can be constructed in O((d + 1)n)
time.

Proof Due to the degree 4 of internal nodes, the total num-
ber of leaves is one plus three times the number of internal

nodes. Hence it suffices to bound the number of internal
nodes.
Any internal node v has one or more points inside Q(v).
The squares of the node of a single depth cover the initial
square. So at every depth we have at most n internal nodes
which gives the node bound.
The most time-consuming task in one step of the recursive
approach is the distribution of the points. The amount of
time spent is only linear in the number of points and the
O((d + 1)n) time bound holds.

The 3D equivalent of quadtrees are octrees. The
quadtree construction can be easily extended to octrees in
3D. The internal nodes of octrees have eight sons and the
sons correspond to boxes instead of squares.

2.1.3 Neighbor Finding

A simple application of the quadtree of a point set is neigh-
bor finding, i.e., given a node v and a direction, north, east,
south or west, find a node v′ so that Q(v) is adjacent to
Q(v′). Normally, v is a leaf and v′ should be a leaf as well.
The task is equivalent to finding an adjacent square of a
given square in the quadtree subdivision.

Obviously one square may have many such neighbors,
see Figure 2.

q

Figure 2: The square q has many west neighbors.

For convenience, we extend the neighbor search. The
given node can also be internal, i.e., v and v′ should be
adjacent corresponding to the given direction and should
also have the same depth. If there is no such node, we want
to find the deepest node whose square is adjacent.

The algorithm works as follows. Suppose we want to
find the north neighbor of v. If v happens to be the SE-
or SW-child of its parent, then its north neighbor is easy
to find, it is the NE- or NW-child of its parent, respec-
tively. If v itself is the NE- or NW-child of its parent, then
we proceed as follows. Recursively find the north neighbor
of µ of the parent of v. If µ is an internal node, then the
north neighbor of v is a child of µ; if µ is a leaf, the north
neighbor we seek for is µ itself.

This simple procedure runs in time O(d + 1).

© The Eurographics Association 2002.
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Theorem 3
Let T be quadtree of depth d. The neighbor of a given node
v in T a given direction, as defined above, can be found in
O(d + 1) time.

Furthermore, there is also a simple procedure that con-
structs a balanced quadtree out of a given quadtree T, this
can be done in time O(d + 1)m and O(m) space if T has m
nodes. For details see Berg et al.13

Similar results hold for octrees as well.
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Figure 3: A k-d-tree for k = 2 and a rectangular range
query. The nodes correspond to split lines.

2.2 K-d-Trees

The k-d-tree is a natural generalization of the one-
dimensional search tree.

Let D be a set of n points in Rk. For convenience let
k = 2 and let us assume that all X- and Y-coordinates
are different. First, we search for a split-value s of the X-
coordinates. Then we split D by the split-line X = s into
subsets

D<s = {(x, y) ∈ D; x < s} = D ∩ {X < s}
D>s = {(x, y) ∈ D; x > s} = D ∩ {X > s}.

For both sets we proceed with the Y-coordinate and

split-lines Y = t1 and Y = t2. We repeat the process re-
cursively with the constructed subsets. Thus, we obtain a
binary tree, namely the 2-d-tree of the point set D, see
Figure 3. Each internal node of the tree corresponds to a
split-line. For every node v of the 2-d-tree we define the
rectangle R(v), which is the intersection of halfplanes cor-
responding to the path from the root to v. For the root r,
R(r) is the plane itself; for the sons of r, say le f t and right,
we produce to halfplanes R(le f t) and R(right) and so on.
The set of rectangles {R(l) : l is a leaf} gives a partition of
the plane into rectangles. Every R(l) has exactly one point
of D inside.

This structure supports range queries of axis-parallel
rectangles, i.e., if Q is an axis-parallel rectangle, the set
of sites v ∈ D with v ∈ Q can be computed efficiently. We
simply have to compute all nodes v with

R(v) ∩Q 6= ∅.

Additionally we have to test whether the points inside
the subtree of v are inside Q.

The efficiency of the k-d-tree with respect to range
queries depends on the depth of the tree. A balanced k-d-
tree can be easily constructed. We sort the X- and Y-
coordinates. With this order we recursively split the set
into subsets of equal size in time O(log n). The construc-
tion runs in time O(n log n). Altogether the following
theorem holds:

Theorem 4
A balanced k-d-tree for n points in the plane can be con-
structed in O(n log n) and needs O(n) space. A range
query with an axis-parallel rectangle can be answered in
time O(

√
n + a), where a denotes the size of the answer.

2.3 Height Field Visualization

A special area in 3D visualization is the rendering of large
terrains, or, more generally, of height fields. A height field
is usually given as a uniformly-gridded square array h :
[0, N − 1]2 → R, N ∈ I, of height values, where N is
typically in the order of 16,384 or more (see Figure 4). In
practice, such a raw height field is often stored in some im-
age file format, such as GIF. A regular grid is, for instance,
one of the standard forms in which the US Geological Sur-
vey publishes their data, known as the Digital Elevation
Model (DEM).22

Alternatively, height fields can be stored as triangular
irregular networks (TINs) (see Figure 5). They can adapt
much better to the detail and features (or lack thereof) in
the height field, so they can approximate any surface at
any desired level of accuracy with fewer polygons than any
other representation.44 However, due to their much more
complex structure, TINs do not lend themselves as well as
more regular representations to interactive visualization.

© The Eurographics Association 2002.
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Figure 4: A height field approximated by a grid.11 Figure 5: The same heigt field approximated by a TIN.

T-vertices!

4 8

Figure 6: In order to use quadtres for defining a height
field mesh, it should be balanced.

Figure 7: A quadtree defines a recursive subdivision
scheme yielding a 4-8 mesh. The dots denote the newly
added vertices. Some vertices have degree 4, some 8
(hence the name).

The problem in terrain visualization is that if the user
looks at it from a low viewpoint directed at the horizon,
then there are a few parts of the terrain that are very close,
while the majority of the visible terrain is at a larger dis-
tance. Close parts of the terrain should be rendered with
high detail, while distant parts should be rendered with
very little detail in order to maintain a high frame rate.

In order to solve this problem, a data structure is needed
that allows to quickly determine the desired level of de-
tail in each part of the terrain. Quadtrees are such a data
structure, in particular, since they seem to be a good com-
promise between the simplicity of non-hierarchical grids
and the good adaptivity of TINs. The general idea is to
construct a quadtree over the grid, and then traverse this
quadtree top-down in order to render it. At each node,
we decide whether the detail offered by rendering it is
enough, or if we have to go down further.

One problem with quadtrees (and quadrangle-based
data structures in general) is that nodes are not quite in-
dependent of each other. Assume we have constructed a
quadtree over some terrain as depicted in Figure 6. If we
render that as-is, then there will be a gap (a.k.a. crack ) be-
tween the top left square and the fine detail squares inside
the top right square. The vertices causing this problem are
called T-vertices. Triangulating them would help in theory,
but in practice this leads to long and thin triangles which
have problems on their own. The solution is, of course, to
triangulate each node.

Thus, a quadtree offers a recursive subdivision scheme
to define a triangulated regular grid (see Figure 7): start
with a square subdivided into two right-angle triangles;
with each recursion step, subdivide the longest side of all
triangles (the hypothenuse) yielding two new right-angle
triangles each45 (hence this scheme is sometimes referred
to as “longest edge bisection”). This yields a mesh where
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Figure 8: The 4-8 subdivision can be generated by two
interleaved quadtrees. The solid lines connect siblings
that share a common father.

Figure 9: The red quadtree can be stored in the unused
“ghost” nodes of the blue quadtree.

all vertices have degree 4 or 8 (except the border vertices),
which is why such a mesh is often called a 4-8 mesh.

This subdivision scheme induces a directed acyclic graph
(DAG) on the set of vertices: vertex j is a child of i if it is
created by a split of a right angle at vertex i. This will be
denoted by an edge (i, j). Note that almost all vertices are
created twice (see Figure 7), so all nodes in the graph have
4 children and 2 parents (except the border vertices).

During rendering, we will choose cells of the subdivi-
sion at different levels. Let M0 be the fully subdivided
mesh (which corresponds to the original grid) and M
be the current, incompletely subdivided mesh. M corre-
sponds to a subset of the DAG of M0. The condition of be-
ing crack-free can be reformulated in terms of the DAGs
associated with M0 and M:

M is crack-free ⇔
M does not have any T-vertices ⇔
∀j ∈ M : (i, j) ∈ M0 ⇒ (i, j) ∈ M (1)

In other words: you cannot subdivide one triangle alone,
you also have to subdivide the one on the other side. Dur-
ing rendering, this means that if you render a vertex, then
you also have to render all its ancestors (remember: a ver-
tex has 2 parents).

Rendering such a mesh generates (conceptually) a sin-
gle, long list of vertices that are then fed into the graphics
pipeline as a single triangle strip. The pseudo-code for the
algorithm looks like this (simplified):

submesh(i,j)
if error(i) < τ then

return
end if
if Bi outside viewing frustum then

return

end if
submesh( j, cl )
V += pi
submesh( j, cr )

where error(i) is some error measure for vertex i, and Bi
is the sphere around vertex i that completely encloses all
descendant triangles.

Note that this algorithm can produce the same ver-
tex multiple times consecutively; this is easy to check, of
course. In order to produce one strip, the algorithm has to
copy older vertices to the current front of the list at places
where it makes a “turn”; again, this is easy to detect, and
the interested reader is referred to.45

One can speed up the culling a bit by noticing that if Bi
is completely inside the frustum, then we do not need to
test the child vertices any more.

We still need to think about the way we store our terrain
subdivision mesh. Eventually, we will want to store it as a
single linear array for two reasons:

1. The tree is complete, so it really would not make sense
to store it using pointers.

2. We want to map the file that holds the tree into mem-
ory as-is (for instance, with Unix’ mmap function), so
pointers would not work at all.

We should keep in mind, however, that with current ar-
chitectures, every memory access that can not be satisfied
by the cache is extremely expensive (this is even more so
with disk accesses, of course).

The simplest way to organize the terrain vertices is a
matrix layout. The disadvantage is that there is no cache
locality at all across the major index. In order to improve
this, people often introduce some kind of blocking, where
each block is stored in matrix and all blocks are arranged in

© The Eurographics Association 2002.
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Figure 10: A scalar field is often given in the form of a
curvilinear grid. By doing all calculations in computa-
tional space, we can usually save a lot of computational
effort.

Figure 11: Cells straddling the isosurface are triangulated
accoring to a lookup table. In some cases, several tri-
angulations are possible, which must be resolved by
heuristics.

matrix order, too. Unfortunately, Lindstrom and Pascucci45

report that this is, at least for terrain visualization, worse
than the simple matrix layout by a factor 10!

Enter quadtrees. They offer the advantage that vertices
on the same level are stored fairly close in memory. The
4-8 subdivision scheme can be viewed as two quadtrees
which are interleaved (see Figure 8): we start with the
first level of the “red” quadtree that contains just the one
vertex in the middle of the grid, which is the one that is
generated by the 4-8 subdivision with the first step. Next
comes the first level of the “blue” quadtree that contains
4 vertices, which are the vertices generated by the second
step of the 4-8 subdivision scheme. Etc. Note that the blue
quadtree is exactly like the red one, except it is rotated by
45°. When you overlay the red and the blue quadtree you
get exactly the 4-8 mesh.

Notice that the blue quadtree contains nodes that are
outside the terrain grid; we will call these nodes “ghost
nodes”. The nice thing about them is that we can store the
red quadtree in place of these ghost nodes (see Figure 9).
This reduces the number of unused elements in the final
linear array down to 33%.

During rendering we need to calculate the indices of the
child vertices, given the three vertices of a triangle. It turns
out that by cleverly choosing the indices of the top-level
vertices this can be done as efficiently as with a matrix
layout.

The interested reader can find more about this
topic in Lindstrom et al.44, Lindstrom and Pascucci45,
Balmelli et al.6, Balmelli et al.5, and many others.

2.4 Isosurface Generation

One technique (among many others) of visualizing a 3-
dimensional volume is to extract isosurfaces and render
those as a regular polygonal surface. It can be used to ex-
tract the surfaces of bones or organs in medical scans, such
as MRI or CT.

Assume for the moment that we are given a scalar field
f : R3 → R. Then the task of finding an isosurface would
“just” be to find all solutions (i.e., all roots) of the equation
f (~x) = t.

Since we live in a discrete world (at least in computer
graphics), the scalar field is given usually in the form of a
curvilinear grid : the vertices of the cells are called nodes,
and we have one scalar and a 3D point stored at each node
(see Figure 10). Such a curvilinear grid is usually stored
as a 3D array, which can be conceived as a regular 3D grid
(here, the cells are often called voxels).

The task of finding an isosurface for a given value t in
a curvilinear grid amounts to finding all cells of which at
least one node (i.e., corner) has a value less than t and one
node has a value greater than t. Such cells are then trian-
gulated according to a lookup table (see Figure 11). So, a
simple algorithm works as follows:46 compute the sign for
all nodes (⊕ , > t , ª , < t); then consider each cell in
turn, use the eight signs as an index into the lookup table,
and triangulate it (if at all).

Notice that in this algorithm we have only used the 3D
array — we have not made use at all of the information
exactly where in space the nodes are (except when actually
producing the triangles). We have, in fact, made a transi-
tion from computational space (i.e., the curvilinear grid) to
computational space (i.e., the 3D array). So in the follow-
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Figure 12: Octrees offer a simple way to compute isosur-
faces efficiently.

Figure 13: Volume data layout should match the order of
traversal of the octree.

ing, we can, without loss of generality, restrict ourselves
to consider only regular grids, i.e., 3D arrays.

The question is, how we can improve the exhaustive al-
gorithm. One problem is that we must not miss any lit-
tle part of the isosurface. So we need a data structure that
allows us to discard large parts of the volume where the
isosurface is guaranteed to not be. This calls for octrees.

The idea is to construct a complete octree over the cells
of the grid 65 (for the sake of simplicity, we will assume
that the grid’s size is a power of two). The leaves point to
the lower left node of their associated cell (see Figure 12).
Each leaf ν stores the minimum νmin and the maximum
νmax of the 8 nodes of the cell. Similarly, each inner node
of the octree stores the min/max of its 8 children.

Observe that an isosurface intersects the volume asso-
ciated with a node ν (inner or leaf node) if and only if
νmin ≤ t ≤ νmax. This already suggests how the algo-
rithm works: start with the root and visit recursively all
the children where the condition holds. At the leaves, con-
struct the triangles as usual.

This can be accelerated further by noticing that if the
isosurface crosses an edge of a cell, then that edge will
be visited exactly four times during the complete proce-
dure. Therefore, when we visit an edge for the first time,
we compute the vertex of the isosurface on that edge, and
store the edge together with the vertex in a hash table. So
whenever we need a vertex on an edge, we first try to look
up that edge in the hash table. Our observation also allows
us to keep the size of the hash table fairly low: when an
edge has been visited for the fourth time, then we know
that it cannot be visited any more; therefore, we remove it
from the hash table.

2.5 Ray Shooting

Ray shooting is an elementary task that frequently arises
in ray tracing, volume visualization, and in games for col-
lision detection or terrain following. The task is, basically,

to find the earliest hit of a given ray when following that
ray through a scene composed of polygons or other objects.

A simple idea to avoid checking the ray against all ob-
jects is to partition the universe into a regular grid (see
Figure 14). With each cell we store a list of objects that oc-
cupy that cell (at least partially). Then, we just walk along
the ray from cell to cell, and check the ray against all those
objects that are stored with that cell.

In this scheme (and others), we need a technique called
mailboxes that prevents us from checking the ray twice
against the same object:27 every ray gets a unique ID (we
just increment a global variable holding that ID whenever
we start with a new ray); during traversal, we store the
ray’s ID with the object whenever we have performed an
intersection test with it. But before doing an intersection
test with an object, we look into its mailbox whether or not
the current ray’s ID is already there; if so, then we know
that we have already performed the intersection test in an
earlier cell.

In the following, we will present two methods which
both utilize octrees to further reduce the number of objects
considered.

2.5.1 3D Octree

A canonical way to improve any grid-based method is to
construct an octree (see Figure 15). Here, the octree leaves
store lists of objects (or, rather, pointers to objects). Since
we are dealing now with polygons and other graphical ob-
jects, the leaf rule for the octree construction process must
be changed slightly:

1. maximum depth reached; or,
2. only one polygon/object occupies the cell.

We can try to better approximate the geometry of the
scene by changing the rule to stop only when there are
no objects in the cell (or the maximum depth is reached).

How do we traverse an octree along a given ray? Like
in the case of a grid, we have to make “horizontal”
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Figure 14: Ray shooting can be implemented efficiently
with an octree.

Figure 15: The same scenario utilizing an octree.

steps, which actually advance along the ray. With octrees,
though, we also need to make “vertical” steps, which tra-
verse the octree up or down.

All algorithms for ray shooting with octrees can be clas-
sified into two classes:

• Bottom-up: this method starts at that leaf in the octree
that contains the origin of the ray; from there it tries to
find that neighbor cell that is stabbed next by the ray,
etc.

• Top-down: this method starts at the root of the octree,
and tries to recurse down into exactly those nodes and
leaves that are stabbed by the ray.

Here, we will describe a top-down method.56 The idea
is to work only with the ray parameter in order to decide
which children of a node must be visited.

Let the ray be given by

~x = ~p + t~d

and a voxel v by

[xl , xh]× [yl , yh]× [zl , zh]

In the following, we will describe the algorithm assum-
ing that all di > 0; later, we will show that the algorithm
works also for all other cases.

First of all, observe that if we already have the line pa-
rameters of the intersection of the ray with the borders of
a cell, then it is trivial to compute the line intervals half-
way in between (see Figure 16):

tm
α =

1
2
(tl

α + th
α) , α ∈ {x, y, z} (2)

So, for 8 children of a cell, we need to compute only three
new line parameters. Clearly, the line intersects a cell if
and only if max{tl

i} < min{th
j }.

The algorithm can be outlined as follows:

traverse( v, tl , th )
compute tm

determine order in which sub-cells are hit by the ray
for all sub-cells vi that are hit do

traverse( vi , tl |tm, tm |th )
end for

where tl |tm means that we construct the lower boundary
for the respective cell by passing the appropriate compo-
nents from tl and tm.

In order to determine the order in which sub-cells
should be traversed, we first need to determine which sub-
cell is being hit first by the ray. In 2D, this is accomplished
by two comparisons (see Figure 17). Then, the comparison
of tm

x with tm
y tells us which cell is next.

In 3D, this takes a little bit more work, but is essentially
the same. First, we determine on which side the ray has
been entering the current cell by the following table:

max{tl
i} Side

tl
x YZ

tl
y XZ

tl
z XY

Next, we determine the first sub-cell to be visited by this
table (see Figure 18 for the numbering scheme):

Side condition index bits

XY
tm
z < tl

x 0
tm
y < tl

x 1

XZ
tm
x < tl

y 0
tm
z < tl

y 2

YZ
tm
y < tl

x 1
tm
z < tl

x 2
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y

tm
x
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y

th
y
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y > tl

x

tm
y < tl

x

Figure 16: Line parameters are trivial to compute for chil-
dren of a node.

Figure 17: The sub-cell that must be traversed first can
be found by simple comparisons. Here, only the case
tl
x > tl

y is depicted.

The first column is the entering side determined in the first
step. The third column yields the index of the first sub-cell
to be visited: start with an index of zero; if one or both of
the conditions of the second column hold, then the corre-
sponding bit in the index as indicated by the third column
should be set. Finally, we can traverse all sub-cells accord-
ing to the following table:

current exit side
sub-cell YZ XZ XY

0 4 2 1
1 5 3 ex
2 6 ex 3
3 7 ex ex
4 ex 6 5
5 ex 7 ex
6 ex ex 7
7 ex ex ex

where “exit side” means the exit side of the ray for the
current sub-cell.

If the ray direction contains a negative component(s),
then we just have to mirror all tables along the respec-
tive axis (axes) conceptually. This can be implemented ef-
ficiently by an XOR operation.

2.5.2 5D Octree

In the previous, simple algorithm, we still walk along a
ray every time we shoot it into the scene. However, rays
are essentially static objects, just like the geometry of the
scene! This is the basic observation behind the following
algorithm.1, 4 Again, it makes use of octrees to adaptively
decompose the problem.

The underlying technique is a discretization of rays,
which are 5-dimensional objects. Consider a cube enclos-
ing the unit sphere of all directions. We can identify any
ray’s direction with a point on that cube, hence it is called
direction cube (see Figure 19). The nice thing about it

0 4

6

3 7

5

2

x

y

z

Figure 18: Sub-cells are numbered according to this
scheme.

is that we can now perform any hierarchical partitioning
scheme that works in the plane, such as an octree: we just
apply the scheme individually on each side.

Using the direction cube, we can establish a one-to-one
mapping between direction vectors and points on all 6 sides
of the cube, i.e.,

S2 ↔ [−1, +1]2 × {+x,−x, +y,−y, +z,−z}
We will denote the coordinates on the cube’s side by u and
v.

Within a given universe B = [0, 1]3 (we assume it is a
box), we can represent all possibly occurring rays by points
in

R = B× [−1, +1]2 × {+x,−x, +y,−y, +z,−z} (3)

which can be implemented conveniently by 6 copies of 5-
dimensional boxes.

Returning to our goal, we now build six 5-dimensional
octrees as follows. Associate (conceptually) all objects with
the root. Partition a node in the octree, if

1. there are too many objects associated with it; and
2. the node’s cell is too large.
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u
v

u

v

~d

=+

Figure 19: With the direction cube, we can discretize di-
rections, and organize them with any hierarchical parti-
tioning scheme.

Figure 20: A uv interval on the direction cube plus a xyz
interval in 3-space yield a beam.

If a node is partitioned, we must also partition its set of
objects and assign each subset to one of the children.

Observe that each node in the 5D octree defines a beam
in 3-space: the xyz-interval of the first three coordinates
of the cell define a box in 3-space, and the remaining two
uv-intervals define a cone in 3-space. Together (more pre-
cisely, their Minkowski sum) they define a beam in 3-space
that starts at the cell’s box and extends in the general di-
rection of the cone (see Figure 20).

Since we have now defined what a 5D cell of the octree
represents, it is almost trivial to define how objects are as-
signed to sub-cells: we just compare the bounding volume
of each object against the sub-cells 3D beam. Note that
an object can be assigned to several sub-cells (just like in
regular 3D octrees). The test whether or not an object in-
tersects a beam could be simplified further by enclosing a
beam with a cone, and then checking the objects bounding
sphere against that cone. This just increases the number of
false positives a little bit.

Having computed the six 5D octrees for a given scene,
ray tracing through that octree is almost trivial: map the
ray onto a 5D point via the direction cube; start with the
root of that octree which is associated to the side of the
direction cube onto which the ray was mapped; find the
leaf in that octree that contains the 5D point (i.e., the ray);
check the ray against all objects associated with that leaf.

By locating a leaf in one of the six 5D octrees, we have
discarded all objects that do not lie in the general direction
of the ray. But we can optimize the algorithm even further.

First of all, we sort all objects associated with a leaf along
the dominant axis of the beam by their minimum (see
Figure 21). If the minimum coordinate of an object along
the dominant axis is greater than the current intersection
point, then we can stop — all other possible intersection
points are farther away.

Second, we can utilize ray coherence as follows. We
maintain a cache for each level in the ray tree that stores

the leaves of the 5D octrees that were visited last time.
When following a new ray, we first look into the octree
leaf in the cache whether it is contained therein, before we
start searching for it from the root.

Another trick (that works with other ray acceleration
schemes as well) is to exploit the fact that we do not need
to know the first occluder between a point on a surface and
a light source. Any occluder suffices to assert that the point
is in shadow. So we also keep a cache with each light source
which stores that object (or a small set) which has been an
occluder last time.

Finally, we would like to mention a memory optimiza-
tion technique for 5D octrees, because they can occupy a
lot of memory. It is based on the observation that within a
beam defined by a leaf of the octree the objects at the back
(almost) never intersect with a ray emanating from that
cell (see Figure 22). So we store objects with a cell only if
they are within a certain distance. Should a ray not hit any
object, then we start a new intersection query with another
ray that has the same direction and a starting point just be-
hind that maximum distance. Obviously, we have to make
a trade-off between space and speed here, but when cho-
sen properly, the cut-off distance should not reduce per-
formance too much while still saving a significant amount
of memory.

3 BSP Trees
BSP trees (short for binary space partitioning trees) can
be viewed as a generalization of k-d trees. like k-d trees,
BSP trees are binary trees, but now the orientation and
position of a splitting plane can be chosen arbitrarily. To
get a feeling for a BSP tree, Figure 23 shows an example
for a set of objects.

The definition of a BSP (short for BSP tree) is fairly
straight-forward. Here, we will present a recursive defi-
nition. Let h denote a plane in Rd, h+ and h− denote the
positive and negative half-space, resp.
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1 2 3 4

Figure 21: By sorting objects with in each 5D leaf, we
can often stop checking ray intersection quite early.

Figure 22: By truncating the beam (or rather, the list of
objects) we can save a lot of memory usage of a 5D
octree, while reducing performance only insignificantly.

Definition 1 (BSP tree)
Let S be a set of objects (points, polygons, groups of poly-
gons, or other spatial objects), and let S(ν) denote the set
of objects associated with a node ν. Then the BSP T(S) is
defined by

1. If |S| ≤ 1, then T is a leaf ν which stores S(ν) := S.
2. If |S| > 1, then the root of T is a node ν; ν stores a

plane hν and a set S(ν) := {x ∈ S|x ⊆ hν} (this is
the set of objects that lie completely inside hν; in 3D,
these can only be polygons, edges, or points). ν also has
two children T− and T+; T− is the BSP for the set of
objects S− := {x ∩ h−ν |x ∈ S}, and T+ is the BSP for
the set of objects S+ := {x ∩ h+

ν |x ∈ S}.

This can readily be turned into a general algorithm for
constructing BSPs. Note that a splitting step (i.e., the con-
struction of an inner node) requires us to split each ob-
ject into two disjoint fragments if it straddles the splitting
plane of that node. In some applications though (such as
ray shooting), this is not really necessary; instead, we can
just put those objects into both subsets.

Note that with each node of the BSP a convex cell is
associated (which is possibly unbounded): the “cell” asso-
ciated with the root is the whole space, which is convex;
splitting a convex region into two parts yields two con-
vex regions. In Figure 23, the convex region of one of the
leaves has been highlighted as an example.

With BSPs, we have much more freedom to place the
splitting planes than with k-d trees. However, this also
makes that decision much harder (as almost always in life).
If our input is a set of polygons, then a very common ap-
proach is to choose one of the polygons from the input set

h3

h4

h2

h1

h4

h2

h1

h3

Figure 23: An example BSP tree for a set of objects.

Figure 24: Left: an auto-partition. Right: an example
configuration of which any auto-partition must have
quadratic size.

and use this as the splitting plane. This is called an auto-
partition (see Figure 24).

While an auto-partition can have Ω(n2) fragments, it is
possible to show the following in 2D.13, 53

Lemma 1
Given a set S of n line segments in the plane, the ex-
pected number of fragments in an auto-partition T(S) is
in O(n log n); it can be constructed in time O(n2 log n).

In higher dimensions, it is not possible to show a similar
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near
polygons

far
polygons

Figure 25: BSP trees are an efficient data structure encod-
ing visibility order of a set of polygons.

result. In fact, one can construct sets of polygons such that
any BSP tree (not just auto-partitions) must have Ω(n2)
many fragments (see Figure 24 for a “bad” example for
auto-partitions).

However, all of these examples producing quadratic
BSPs violate the principle of locality : polygons are small
compared to the extent of the whole set. In practice,
no BSPs have been observed that exhibit the worst-case
quadratic behavior.49

3.1 Rendering Without a Z-Buffer

BSP trees were introduced to computer graphics by
Fuchs et al.25 At the time, hidden-surface removal was still
a major obstacle towards interactive computer graphics,
because a z-buffer was just too costly in terms of mem-
ory.

In this section, we will describe how to solve this prob-
lem, not so much because the application itself is relevant
today, but because it nicely exhibits one of the fundamen-
tal “features” of BSP trees: they enable efficient enumer-
ation of all polygons in visibility order from any point in
any direction. (Actually, the first version of Doom used ex-
actly this algorithm to achieve its fantastic frame rate (at
the time) on PCs even without any graphics accelerator.)

A simple algorithm to render a set of polygons with cor-
rect hidden-surface removal, and without a z-buffer, is the
painter’s algorithm : render the scene from back to front as
seen from the current viewpoint. Front polygons will just
overwrite the contents of the frame buffer, thus effectively
hiding the polygons in the back. There are polygon config-
urations where this kind of sorting is not always possible,
but we will deal with that later.

How can we efficiently obtain such a visibility order
of all polygons? Using BSP trees, this is almost trivial:
starting from the root, first traverse the branch that does
not contain the viewpoint, then render the polygon stored
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out
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Figure 26: Each leaf cell of BSP representation of an ob-
ject is completely inside or completely outside.

with the node, then traverse the other branch containing
the viewpoint (see Figure 25).

For sake of completeness, we would like to mention a
few strategies to optimize this algorithm. First of all, we
should make use of the viewing direction by skipping BSP
branches that lie completely behind the viewpoint.

Furthermore, we can perform back-face culling as usual
(which does not cause any extra costs). We can also per-
form view-frustum culling by testing all vertices of the
frustum against the plane of a BSP node.

Another problem with the simple algorithm is that a
pixel is potentially written to many times (this is exactly
the pixel complexity), although only the last write “sur-
vives”. To remedy this, we must traverse the BSP from
front to back. But in order to actually save work, we also
need to maintain a 2D BSP for the screen that allows us
to quickly discard those parts of a polygon that fall onto a
screen area that is already occupied. In that 2D screen BSP,
we mark all cells either “free” or “occupied”. Initially, it
consists only of a “free” root node. When a new polygon
is to be rendered, it is first run through the screen BSP,
splitting it into smaller and smaller convex parts until it
reaches the leaves. If a part reaches a leaf that is already
occupied, nothing happens; if it reaches a free leaf, then it
is inserted beneath that leaf, and this part is drawn on the
screen.

3.2 Representing Objects with BSPs

BSPs offer a nice way to represent volumetric polygonal
objects, which are objects consisting of polygons that are
closed, i.e., they have an “inside” and an “outside”. Such
a BSP representation of an object is just like an ordinary
BSP for the set of polygons (we can, for instance, build
an auto-partition), except that here we stop the construc-
tion process (see Definition 1) only when the set is empty.
These leaves represent homogeneous convex cells of the
space partition, i.e., they are completely “in” our “out”.
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A B

∩∪ \ ª

Figure 27: Using BSPs, we can efficiently compute these
boolean operations on solids.

T
H

Figure 28: The fundamental step of the construction is
this simple operation, which merges a BSP and a plane.

Figure 26 shows an example for such a BSP represen-
tation. In this section, we will follow the convention that
normals point to the “outside”, and that the right child
of a BSP node lies in the positive half-space and the left
child in the negative half-space. So, in a real implemen-
tation that adheres to these conventions, we can still stop
the construction when only one polygon is left, because we
know that the left child of such a pseudo-leaf will be “in”
and the right one will be “out”.

Given such a representation, it is very easy and efficient,
for instance, to determine whether or not a given a point
is inside an object. In the next section, we will describe an
algorithm for solving a slightly more difficult problem.

3.3 Boolean Operations

In solid modeling, a very frequent task is to compute
the intersection or union of a pair of objects. More gen-
erally, given two objects A and B, we want to compute
C := A op B, where op ∈ {∪,∩, \,ª} (see Figure 27).
This can be computed efficiently using the BSP represen-
tation of objects.48, 49 Furthermore, the algorithm is almost
the same for all of these operations: only the elementary
step that processes two leaves of the BSPs is different.

We will present the algorithm for boolean operations
bottom-up in three steps. The first step is a sub-procedure
for computing the following simple operation: given a BSP

R(T)

"leaf"

HT

pT

"anti-parallel on"

pT

"pos./pos."

HTP HT

"mixed"

HH
H

Figure 29: The main building block of the algorithm con-
sists of these four cases (plus analogous ones).

+ →→

Figure 30: Computation of boolean operations is based
on a general merge operation.

T and a plane H, construct a new BSP T̂ whose root is H,
such that T̂− , T ∩ H− , T̂+ , T ∩ H+ (see Figure 28).
This basically splits a BSP tree by a plane and then puts
that plane at the root of the two halves. Since we will not
need the new tree T̂ explicitly, we will describe only the
splitting procedure (which is the bulk of the work any-
way).

First, we need to define some nomenclature:

T− , T+ = left and right child of T, resp.

R(T) = region of the cell of node T (which is convex)

T⊕ , Tª =portion of T on the positive/negative
side of H, resp.

Finally, we would like to define a node T by the tuple
(HT , pT , T− , T+), where H is the splitting plane, p is the
polygon associated with T (with p ⊂ H).

The pseudo-code below is organized into 8 cases (see
Figure 29):

split-tree( T, H, P ) → (Tª , T⊕)
{P = H ∩ R(T)}
case T is a leaf :

return (Tª , T⊕) := (T, T)
case “anti-parallel” and “on” :

return (Tª , T⊕) := (T+ , T−)
case “parallel” and “on” :

. . .
case “pos./pos.” :

(T+ª , T+⊕) := split-tree(T+ , H)
Tª := (HT , pT , T− , T+ª)
T⊕ := T+⊕

case “pos./neg.” :
. . .

case “neg./pos.” :
. . .

case “neg./neg.” :
. . .

case “mixed” :
(T+ª , T+⊕) := split-tree(T+ , H, P ∩ R(T+))
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split merge merge

combine

Figure 31: A graphical depiction of the merge step in the algorithm for boolean operations on objects represented by
BSP trees.

(T−ª , T−⊕) := split-tree(T− , H, P ∩ R(T−))
Tª := (HT , pT ∩ H− , T−ª , T+ª)
T⊕ := (HT , pT ∩ H+ , T−⊕ , T+⊕)
return (Tª , T⊕)

end case

This might look a little bit confusing at first sight, but it is
really pretty simple. A few notes might be in order.

The polygon P is only needed in order to find the case
applying at each recursion. Computing P ∩ R(T+) might
seem very expensive. However, it can be computed quite
efficiently by computing P∩H+

T , which basically amounts
to finding the two edges that intersect with HT . Please see
Chin12 for more details on how to detect the correct case.

It seems surprising at first sight that function split-

tree does almost no work — it just traverses the BSP tree,
classifies the case found at each recursion, and computes
p ∩ H+ and p ∩ H−.

The previous algorithm is already the main building
block of the overall boolean operation algorithm. The next
step towards that end is an algorithm that performs a so-
called merge operation on two BSP trees T1 and T2. Let
Ci denote the set of elementary cells of a BSP, i.e., all re-
gions R(Lj) of tree Ti where Lj are all the leaves. Then
the merge of T1 , T2 yields a new BSP tree T3 such that
C3 = {c1 ∩ c2|c1 ∈ C1 , c2 ∈ C2 , c1 ∩ c2 6= ∅} (see Fig-
ure 30).

The merge operation consists of two cases. The first, al-
most trivial, case occurs when one of the two operands is
a leaf: then at least one of the two regions is homogenous,
i.e., completely inside or outside. In the other case, both
trees are inhomogenous over the same region of space:
then, we just split one of the two with the splitting plane
from the root of the other, and we obtain two pairs of BPSs,
that are smaller, and still cover the same regions in space;
those two pairs can be merged recursively (see Figure 31).

The following pseudo-code describes this recursive proce-
dure more formally:

merge( T1, T2 ) → T3
if T1 or T2 is a leaf then

perform the cell-op as required by the boolean operation to
be constructed (see below)

else
(Tª2 , T⊕2 ) := split-tree(T2 , H1 , . . .)
T−3 := merge(T−1 , Tª2 )
T+

3 := merge(T+
1 , T⊕2 )

T3 := (H1 , T−3 , T+
3 )

end if

The function cell-op is the only place where the se-
mantic of the general merge operation is specialized. When
we have reached that point, then we know that one of the
two cells is homogeneous, so we can just replace it by the
other node’s sub-tree suitably modified according to the
boolean operation. The following table lists the details of
this function (assuming that T1 is the leaf):

Operation T1 Result

∪ in T1
out T2

∩ in T2
out T1

\ in Tc
2

out T1

ª in Tc
2

out T2

Furthermore, we would like to point out that the merge
function is symmetric: it does not matter whether we par-
tition T2 with H1 or, the other way round, T1 with H2 —
the result will be the same.
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4 Bounding Volume Hierarchies
Like the previous hierarchical data structures, bound-
ing volume hierarchies (BVHs) are mostly used to pre-
vent performing an operation exhaustively on all objects.
Like with previously discussed hierarchical data struc-
tures, one can improve a huge range of applications and
queries using BVHs, such as ray shooting, point location
queries, nearest-neighbor search, view frustum and occlu-
sion culling, geographical data bases, and collision detec-
tion (the latter will be discussed in more detail below).

Often times, bounding volume (BV) hierarchies are de-
scribed as the opposite of spatial partitioning schemes,
such as quadtrees or BSP trees: instead of partitioning
space, the idea is to partition the set of objects recursively
until some leaf criterion is met. (However, we will argue
at the end that BV hierarchies are just at the other end
of a whole spectrum of hierarchical data structures.) Here,
objects can be anything from points to complete graphi-
cal objects. With BV hierarchies, almost all queries, which
can be implemented with space partitioning schemes, can
also be answered, too. Example queries and operations are
ray shooting, frustum culling, occlusion culling, point lo-
cation, nearest neighbor, collision detection.

Definition 2 (BV hierarchy)
Let O = {o1 , . . . , on} be a set of elementary objects. A
bounding volume hierarchy for O, BVH(O), is defined by

1. If |O| = e, then BVH(O) := a leaf node that stores O
and a BV of O;

2. If |O| > e, then BVH(O) := a node ν with n(ν) chil-
dren ν1 , . . . , νn, where each child νi is a BV hierarchy
BVH(Oi) over a subset Oi ⊂ O, such that

⋃
Oi = O.

In addition, ν stores a BV of O.

The definition mentions two parameters. The threshold
e is often set to 1, but depending on the application, the op-
timal e can be much larger. Just like sorting, when the set
of objects is small, it is often cheaper to perform the oper-
ation on all of them, because recursive algorithms always
incur some overhead.

Another parameter in the definition is the arity. Mostly,
BV hierarchies are constructed as binary trees, but again,
the optimum can be larger. And what is more, as the defi-
nition suggests, the out-degree of nodes in a BV hierarchy
does not necessarily have to be constant, although this of-
ten simplifies implementations considerably.

Effectively, these two parameters, e and n(ν), control
the balance between linear, exhaustive search/operation,
and a maximally recursive algorithm.

There are more design choices possible according to the
definition. For inner nodes, it only requires that

⋃
Oi = O;

this means, that the same object o ∈ O could be associated
with several children. Depending on the application, the

convex hull

AABB sphere DOP OBB spherical shell

prism cylinder intersection
of other BVs

Figure 32: Some of the most commonly used BVs, and
some less often used ones.

type of BVs, and the construction process, this may not al-
ways be avoidable. But if possible, you should always split
the set of objects into disjoint subsets.

Finally, there is, at least, one more design choice: the
type of BV used at each node. Again, this does not nec-
essarily mean that each node uses the same type of BV.
Figure 32 shows a number of the most commonly used
BVs. The difference between OBBs4 and AABBs is that
OBBs can be oriented arbitrarily (hence “oriented bound-
ing boxes”). DOPs67, 39, 37 are a generalization of AABBs:
basically, they are the intersection of k slabs. Prisms and
cylinders have been proposed by Barequet et al.7 and
Weghorst et al.63, but they seem to be too expensive com-
putationally. A spherical shell is the intersection of a shell
and a cone (the cone’s apex coincides with the sphere’s
center), and a shell is the space between two concentric
spheres. Finally, one can always take the intersection of
two or more different types of BVs.36

There are three characteristic properties of BVs:

• tightness,
• memory usage,
• number of operations needed to test the query object

against a BV.

Often, one has to make a trade-off between these proper-
ties: generally, the type of BV that offers better tightness
also requires more operations per query and more mem-
ory.

Regarding the tightness, one can establish a theoretical
advantage of OBBs. But first, we need to define tightness.29

Definition 3 (Tightness by Hausdorff distance)
Let B be a BV, G some geometry bounded by B, i.e., g ⊂ B.
Let

h(B, G) = max
b∈B

min
g∈G

d(b, g)

be the directed Hausdorff distance, i.e., the maximum dis-
tance of B to the nearest point in G. (Here, d is any metric,
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Figure 33: One way to define tight-
ness is via the directed Hausdorff
distance.

Figure 34: The tightness of an
AABB remains more or less con-
stant throughout the levels of a
AABB hierarchy for surfaces of
small curvature.

Figure 35: The tightness of an OBB
decreases for deeper levels in a
OBB hierarchy for small curvature
surfaces.

very often just the Euclidean distance.) Let

diam(G) = max
g, f∈G

d(g, f )

be the diameter of G.

Then we can define tightness

τ :=
h(B, G)

diam(G)
.

See Figure 33 for an illustration.

Since the Hausdorff distance is very sensitive to out-
liers, one could also think of other definitions such as the
following one:

Definition 4 (Tightness by volume)
Let C(ν) b the set of children of a node ν of the BV hi-
erarchy. Let Vol(ν) be the volume of the BV stored with
ν.

Then, we can define the tightness as

τ :=
Vol(ν)

∑ν′∈C(ν) Vol(ν′)
.

Alternatively, we can define it as

τ :=
Vol(ν)

∑ν′∈L(ν) Vol(ν′)
,

where L(ν) is the set of leaves beneath ν.

Getting back to the tightness definition based on the
Hausdorff distance, we observe a fundamental difference
between AABBs and OBBs:29

• The tightness of AABBs depends on the orientation of
the enclosed geometry. What is worse is that the tight-
ness of the children of an AABB enclosing a surface of
small curvature is almost the same as that of the father.
The worst case is depicted in Figure 34. The tightness of
the father is τ = h/d, while the tightness of a child is

τ′ = h′
d/2 = h/2

d/2 = τ.

• The tightness of OBBs does not depend on the orienta-
tion of the enclosed geometry. Instead, it depends on its
curvature, and it decreases approximately linearly with
the depth in the hierarchy.
Figure 35 depicts the situation for a sphere. The Haus-
dorff distance from an OBB to an enclosed spherical arc
is h = r(1 − cos φ), while the diameter of the arc is
d = 2r sin φ. Thus, the tightness for an OBB bound-

ing a spherical arc of degree φ is τ = 1−cos φ
2 sin φ , which

approaches 0 linearly as φ → 0.

This makes OBBs seem much more attractive than
AABBs. The price of the much improved tightness is, of
course, the higher computational effort needed for most
queries per node when traversing an OBB tree with a
query.

4.1 Construction of BV Hierarchies

Essentially, there are 3 strategies to build BV trees:

• bottom-up,
• top-down,
• insertion

From a theoretical point of view, one could pursue a simple
top-down strategy, which just splits the set of objects into
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two equally sized parts, where the objects are assigned ran-
domly to either subset. Asymptotically, this yields usually
the same query time as any other strategy. However, in
practice, the query times offered by such a BV hierarchy
are by a large factor worse.

During construction of a BV hierarchy, it is convenient
to forget about the graphical objects or primitives, and in-
stead deal with their BVs and consider those as the atoms.
Sometimes, another simplification is to just approximate
each object by its center (baryenter or bounding box cen-
ter), and then deal only with sets of points during the con-
struction. Of course, when the BVs are finally computed
for the nodes, then the true extents of the objects must be
considered.

In the following we will describe algorithms for each
construction strategy.

4.1.1 Bottom-up

In this class, we will actually describe two algorithms.

Let B be the set of BVs on the top-most level of the
BV hierarchy that has been constructed so far.57 For each
bi ∈ B find the nearest neighbor b′i ∈ B; let di be the
distance between bi and b′i . Sort B with respect to di. Then,
combine the first k nodes in B under a common father; do
the same with the next k elements from B, etc. This yields
a new set B′, and the process is repeated.

Note that this strategy does not necessarily produce BVs
with a small “dead space”: in Figure 36, the strategy would
choose to combine the left pair (distance = 0), while choos-
ing the right pair would result in much less dead space.

The second strategy is less greedy in that it computes a
tiling for each level. We will describe it first in 2D.42 Again,
let B be the set of BVs on the top-most level so far con-
structed, with |B| = n. The algorithm first computes the
center ci for each bi ∈ B. Then, it sorts B along the x-axis
with respect to ci

x. Now, the set B is split into
√

n/k vertical
“slices” (again with respect to ci

x). Now, each slice is sorted
according to ci

y and subsequently split into
√

n/k “tiles”,
so that we end up with k tiles (see Figure 37). Finally, all
nodes in a tile are combined under one common father, its
BV is combined, and the process repeats with a new set B′.

In Rd it works quite similarly: we just split each slice
repeatedly by d

√
n/k along all coordinate axes.

4.1.2 Insertion

This construction scheme starts with an empty tree. Let B
be the set of elementary BVs. The following pseudo-code
describes the general procedure:

1: while |B| > 0 do
2: choose next b ∈ B
3: ν := root

ν

ν′

θν′

θν

Figure 38: The probability of a ray hitting a child box can
be extimated by the surface area.

4: while ν 6= leaf do
5: choose child ν′,

so that insertion of b into ν′ causes minimal increase
in the costs of the total tree

6: ν := ν′

7: end while
8: end while

All insertion algorithms only vary step 2 and/or 5. Step 2
is important because a “bad” choice in the beginning can
probably never be made right afterwards. Step 5 depends
on the type of query that is to be performed on the BV
tree. See below for a few criteria.

Usually, algorithms in this class have complexity
O(n log n).

4.1.3 Top-down

This scheme is the most popular one. It seems to produce
very good hierarchies while still being very efficient, and
usually it can be implemented easily.

The general idea is to start with the complete set of el-
ementary BVs, split that into k parts, and create a BV tree
for each part recursively. The splitting is guided by some
heuristic or criterion that (hopefully) produces good hier-
archies.

4.1.4 Criteria

In the literature, there is a vast number of criteria for
guiding the splitting, insertion, or merging, during BV
tree construction. (Often, the authors endow the thus con-
structed BV hierarchy with a new name, even though the
BVs utilized are well known.) Obviously, the criterion de-
pends on the application for which the BV tree is to be
used. In the following, we will present a few of these cri-
teria.

For ray tracing, if we can estimate the probability that a
ray will hit a child box when it has hit the father box, then
we know how likely it is, that we need to visit the child
node when we have visited the father node. Let us assume
that all rays emanate from the same origin (see Figure 38).
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Figure 36: A simple greedy strategy can produce much
“dead space”.

Figure 37: A less greedy strategy combines BVs by com-
puting a “tiling”.

Then, we can observe that the probability that a ray s hits
a child box ν′ under the condition that it has hit the father
box ν is

P(s hits ν′|s hits ν) =
θν′

θν
≈ Area(ν′)

Area(ν)
(4)

where Area denotes the surface area of the BV, and θ de-
notes the solid angle subtended by the BV. This is because
for a convex object, the solid angle subtended by it, when
seen from large distances, is approximately proportional to
its surface area.28 So, a simple strategy is to just minimize
the surface area of the BVs of the children that are pro-
duced by a split. (For the insertion scheme, the strategy is
to choose that child node whose area is increased least.28)

A more elaborate criterion tries to establish a cost func-
tion for a split and minimize that. For ray tracing, this cost
function can be approximated by

C(ν1 , ν2) =
Area(ν1)
Area(ν)

C(ν1) +
Area(ν2)
Area(ν)

C(ν2) (5)

where ν1 , ν2 are the children of ν. The optimal split B =
B1 ∪ B2 minimizes this cost function:

C(B1 , B2) = min
B′∈P(B)

C(B′ , B \ B′)

where B1 , B2 are the subsets of elementary BVs (or ob-
jects) assigned to the children. Here, we have assumed a
binary tree, but this can be extended to other arities anal-
ogously.

Of course, such a minimization is too expensive in
practice, in particular, because of the recursive defini-
tion of the cost function. So, Fussell and Subramanian26,
Müller et al.47, and Beckmann et al.8 have proposed the
following approximation algorithm:

for α = x, y, z do
sort B along axis α with respect to the BV centers
find

kα = min
j=0...n

{
Area(b1 , . . . , bj)

Area(B)
j +

Area(bj+1 , . . . , bn)
Area(B)

(n− j)
}

end for
choose the best kα

where Area(b1 , . . . , bj) denotes the surface area of the BV
enclosing b1 , . . . , bj.

If the query is a point location query (e.g., is a given
point inside or outside the object), then the volume in-
stead of the surface area should be used. This is because
the probability that a point is contained in a child BV, un-
der the condition that it is contained in the father BV, is
proportional to the ratio of the two volumes.

For range queries, and for collision detection, the vol-
ume seems to be a good probability estimation, too.

A quite different splitting algorithm does not (ex-
plicitely) try to estimate any probabilities. It just approx-
imates each elementary BV/object by its center point. It
then proceeds as follows. For a given set B of such points,
compute its principal components (the Eigenvectors of the
covariance matrix); choose the largest of them (i.e., the
one exhibiting the largest variance); place a plane orthog-
onal to that principal axis and through the barycenter of
all points in B; finally, split B into two subsets according
to the side on which the point lies. (This description is a
slightly modified version of Gottschalk et al.29.) Alterna-
tively, one can place the splitting plane through the median
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B2

B1

B

A

A1

A2

Figure 40: Hierarchical collision detection can discard
many pairs of polygons with one BV check. Here, all
pairs of polygons in A1 and B2 can be discarded.

of all points, instead of the barycenter. This would lead to
balanced trees, but not necessarily better ones.

4.2 Collision Detection

Fast and exact collision detection of polygonal objects un-
dergoing rigid motions is at the core of many simulation
algorithms in computer graphics. In particular, all kinds of
highly interactive applications such as virtual prototyping
need exact collision detection at interactive speed for very
complex, arbitrary “polygon soups”. It is a fundamental
problem of dynamic simulation of rigid bodies, simulation
of natural interaction with objects, and haptic rendering.

Bounding volume trees seem to be a very efficient
data structure to tackle the problem of collision detec-
tion for rigid bodies. All kinds of different types of BVs
have been explored in the past: sphere trees32, 52, OBB
trees29, DOP trees39, 67, AABB trees66, 60, 40, and convex hull
hierarchies21, to name but a few.

Given two hierarchical BV volume data structures for
two objects A and B, almost all hierarchical collision de-
tection algorithms implement the following general algo-
rithm scheme:

traverse(A,B)
if A and B do not overlap then

return
end if
if A and B are leaves then

return intersection of primitives
enclosed by A and B

else
for all children A[i] and B[j] do

traverse(A[i],B[j])
end for

end if

This algorithm quickly “zooms in” on pairs of close poly-
gons. The characteristics of different hierarchical collision
detection algorithms lie in the type of BV used, the overlap
test for a pair of nodes, and the algorithm for construction
of the BV trees.

The algorithm outlined above is essentially a simultane-
ous traversal of two hierarchies, which induces a so-called
recursion tree (see Figure 39). Each node in this tree de-
notes a BV overlap test. Leaves in the recursion tree denote
an intersection test of the enclosed primitives (polygons);
whether or not a BV test is done at the leaves depends on
how expensive it is, compared to the intersection test of
primitives.

During collision detection, the simultaneous traversal
will stop at some nodes in the recursion tree. Let us call
the set of nodes, of which some children are not visited
(because their BVs do not overlap), the “bottom slice”
through the recursion tree (see the dashed lines in Fig-
ure 39).

One idea is to save this set for a given pair of objects43.
When this pair is to be checked next time, we can start
from this set, going either up or down. Hopefully, if the
objects have moved only a little relative to each other, the
number of nodes that need to be added or removed from
the bottom slice is small. This scheme is called incremental
hierarchical collision detection.

5 Voronoi Diagrams
For a given set of sites inside an area the Voronoi diagram
is a partition of the area into regions of the same neighbor-
ship. The Voronoi diagram and its dual have been used for
solving numerous problems in many fields of science.

We will concentrate on its application to geometric
problems in 2D and 3D. For an overview of the Voronoi
diagram and its dual in computational geometry one may
consult the surveys by Aurenhammer2, Bernal9, Fortune24

and Aurenhammer and Klein3. Additionally, chapters 5
and 6 of Preparata and Shamos54 and chapter 13 of
Edelsbrunner19 could be consulted.

We start in Section 5.1 with the simple case of the
Voronoi diagram and the Delaunay triangulation of n
points in the plane, under the Euclidean distance. Addi-
tionally we mention some of the elementary structural
properties that follow from the definitions.

In Section 5.2 different algorithmic schemes for com-
puting the structures are mentioned. We present a sim-
ple incremental construction approach which can easily be
generalized to 3D, see Section 5.3.1.

Apart from the Euclidean 3D case some other interest-
ing generalizations are mentioned in Section 5.3.2.
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Figure 39: The recursion tree is induced by the simultaneous traversal of two BV trees.

In Section 5.4 the relevance of the Voronoi diagram and
the Delaunay triangulation in 3D are shown.

Note, that we can only sketch many of the subjects here.
For further details and further literature see one of the sur-
veys mentioned above. The figures are taken from Auren-
hammer and Klein.3

5.1 Definitions and Elementary Properties

5.1.1 Voronoi Diagram

Let S a set of n ≥ 3 point sites p, q, r, . . . in the plane.
In the following we assume that the points are in general
position, i.e., no four of them lie on the same circle and no
three of them on the same line.

For points p = (p1 , p2) and x = (x1 , x2) let d(p, x)
denote their Euclidean distance. By pq we denote the line
segment from p to q. The closure of a set A will be denoted
by A.

Definition 5
For p, q ∈ S let

B(p, q) = {x | d(p, x) = d(q, x)}
be the bisector of p and q. B(p, q) is the perpendicular line
through the center of the line segment pq. It separates the
halfplane

D(p, q) = {x | d(p, x) < d(q, x)}
containing p from the halfplane D(q, p) containing q. We
call

VR(p, S) =
⋂

q∈S,q 6=p

D(p, q)

the Voronoi region of p with respect to S. Finally, the
Voronoi diagram of S is defined by

V(S) =
⋃

p,q∈S,p 6=q

VR(p, S) ∩VR(q, S).

An illustration is given in Figure 41. It shows how the
plane is decomposed by V(S) into Voronoi regions. Note
that it is convenient to imagine a simple closed curve Γ
around the “interesting” part of the Voronoi diagram.

Γ

Figure 41: A Voronoi diagram of points in the Euclidean
plane.

The common boundary of two Voronoi regions belongs
to V(S) and is called a Voronoi edge, if it contains more
than one point. If the Voronoi edge e borders the regions
of p and q then e ⊂ B(p, q) holds. Endpoints of Voronoi
edges are called Voronoi vertices; they belong to the com-
mon boundary of three or more Voronoi regions.

There is an intuitive way of looking at the Voronoi di-
agram. For any point x in the plane we can expand the
circle C(r) with center x and radius r by increasing r con-
tinuously. We detect three cases depending on which event
occurs first:
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• If C(r) hits one of the n sites, say p, then x ∈ VR(p, S).
• If C(r) hits two sites p and q simultaneously x belongs

to the Voronoi edge of p and q.
• If C(r) hits three sites p, q and r simultaneously x is the

Voronoi vertex of p, q and r.

We will enumerate some of the significant properties of
Voronoi diagrams.

1. Each Voronoi region VR(p, S) is the intersection of at
most n− 1 open halfplanes containing the site p. Every
VR(p, S) is open and convex. Different Voronoi regions
are disjoint.

2. A point p of S lies on the convex hull of S iff its Voronoi
region VR(p, S) is unbounded.

3. The Voronoi diagram V(S) has O(n) many edges and
vertices. The average number of edges in the boundary
of a Voronoi region is less than 6.

The Voronoi diagram is a simple linear structure and
provides for a partition of the plane into cells of the same
neighborship. We omit the proofs and refer to the surveys
mentioned in the beginning.

Note, that the Voronoi edges and vertices build a graph.
Therefore the diagram normally is represented by a graph
of linear size. For example the diagram can be represented
by a doubly connected edge list DCEL, see de Berg et al.13,
or with the help of an adjacency matrix.

5.1.2 Delaunay Triangulation

We consider the dual graph of the Voronoi diagram, the
so called Delaunay triangulation. In general, a triangula-
tion of S is a planar graph with vertex set S and straight
line edges, which is maximal in the sense that no fur-
ther straight line edge can be added without crossing other
edges. The triangulation of a point set S has not more than
O(|S|) triangles.

Definition 6
The Delaunay triangulation DT(S) is the dual Graph of
the Voronoi diagram. The edges of DT(S) are called De-
launay edges.

Obviously, the Delaunay triangulation DT(S) is a trian-
gulation of S, an example is shown in Figure 42.

We present two equivalent definitions of the Delaunay
triangulation. They are applied for the computation of the
diagram and give also rise to generalization, for example if
the dual of a Voronoi diagram is no longer well-defined.

1. Two points p, q of S give rise to a Delaunay edge iff a
circle C exists that passes through p and q and does not
contain any other site of S in its interior or boundary.

2. Three points of S give rise to a Delaunay triangle iff
their circumcircle does not contain a point of S in its
interior.

DT(S)

V(S)
w

p

s

v
r

q

Figure 42: Voronoi diagram and Delaunay triangulation.

5.2 Computation

The construction of the Voronoi diagram has time com-
plexity Θ(n log n). The lower bound Ω(n log n) can be
achieved by the following reductions.

• A reduction to the convex hull problem is given by
Shamos.58

• A reduction to the ε-closeness problem is given by Djid-
jev and Lingas16 and by Zhu and Mirzaian68.

The well-known computation paradigms

• Incremental construction,
• Divide-and-Conquer and
• Sweep

are convenient for the construction of the Voronoi diagram
or the Delaunay triangulation, respectively. They can also
be generalized to other metrics and sites other than points,
for example line segments or polygonal chains. The result
of the algorithms is stored in a graph of linear size, see
above.

All these approaches run in deterministic O(n log n).
We explain a simple Incremental construction technique
which runs in O(n log n) expected time and computes the
Delaunay triangulation. The presentation is adapted from
Klein and Aurenhammer.3 The technique can easily be
generalized to the three dimensional case as we will see
in Section 5.3.1.

Simple incremental construction: The insertion pro-
cess is described as follows: We construct DTi =
DT({p1 , . . . , pi−1 , pi}) by inserting the site pi into
DTi−1. We follow Guibas and Stolfi30 and construct DTi
by exchanging edges, using Lawson’s41 original edge flip-
ping procedure, until all edges invalidated by pi have been
removed.

It is helpful to extend the notion of triangle to the un-
bounded face of the Delaunay triangulation. If pq is an
edge of the convex hull of S we call the supporting outer
halfplane H not containing S an infinite triangle with
edge pq. Its circumcircle is H itself, the limit of all circles
through p and q whose center tend to infinity within H.
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As a consequence, each edge of a Delaunay triangulation
is now adjacent to two triangles.

Those triangles of DTi−1 whose circumcircles contain
the new site, pi, are said to be in conflict with pi. Accord-
ing to the (equivalent) definition of the DTi, they will no
longer be Delaunay triangles.

Let qr be an edge of DTi−1, and let T(q, r, t) be the tri-
angle adjacent to qr that lies on the other side of qr than
pi; see Figure 43. If its circumcircle C(q, r, t) contains pi
then each circle through q, r contains at least one of pi , t.
Consequently, qr cannot belong to DTi, due to the (equiv-
alent) definition. Instead, pit will be a new Delaunay edge,
because there exists a circle contained in C(q, r, t) that con-
tains only pi and t in its interior or boundary. This process
of replacing edge qr by pit is called an edge flip.

pi

q

t

r

C(pi,t)

C(q,r,t)

Figure 43: If triangle T(q, r, t) is in conflict with pi then
former Delaunay edge qr must be replaced by pit.

The necessary edge flips can be carried out efficiently if
we know the triangle T(q, s, r) of DTi−1 that contains pi,
see fig. Figure 44. The line segments connecting pi to q, r,
and s will be new Delaunay edges, by the same argument
from above. Next, we check if e. g. edge qr must be flipped.
If so, the edges qt and tr are tested, and so on. We continue
until no further edge currently forming a triangle with,
but not containing pi, needs to be flipped, and obtain DTi.

Two task have to be considered:

1. Find the triangle of DTi−1 that is in conflict with pi.
2. Perform all flips starting from this triangle.

It can be shown that the second task is bounded by the
degree of pi in the new triangulation. If the triangle of
DTi−1 containing pi is known, the structural work needed
for computing DTi from DTi−1 is proportional to the de-
gree d of pi in DTi.

So we yield an obvious O(n2) time algorithm for con-
structing the Delaunay triangulation of n points: we can
determine the triangle of DTi−1 containing pi within lin-
ear time, by inspecting all candidates. Moreover, the degree
of pi is trivially bounded by n.

The last argument is too crude. There can be single ver-
tices in DTi that do have a high degree, but their average
degree is bounded by 6.

With a special implementation using a directed acyclic
graph (DAG), also called Delaunay tree due to Boissonnat
and Teillaud10, we can detect the triangles of DTi−1 which
are in conflict with pi in O(log i) expected time.

Altogether we get the following result:

Theorem 7
The Delaunay triangulation of a set of n points in the plane
can be easily incrementally constructed incrementally in
expected time O(n log n), using expected linear space. The
average is taken over the different orders of inserting the
n sites.

5.3 Generalization of the Voronoi Diagram

5.3.1 Voronoi Diagram and Delaunay Triangulation
in 3D

We will see that incremental construction is also appropri-
ate for the 3D case. The following description was adapted
from Aurenhammer and Klein.3

Let S be a set of n point sites in 3D. The bisector of two
sites p, q ∈ S is the perpendicular plane through the mid-
point of the line segment pq. The region VR(p, S) of a site
p ∈ S is the intersection of halfspaces bounded by bisec-
tors, and thus is a 3-dimensional convex polyhedron. The
boundary of VR(p, S) consists of facets (maximal subsets
within the same bisector), of edges (maximal line segments
in the boundary of facets), and of vertices (endpoints of
edges). The regions, facets, edges, and vertices of V(S) de-
fine a cell complex in 3D.

This cell complex is face-to-face: if two regions have a
non-empty intersection f , then f is a face (facet, edge, or
vertex) of both regions. As an appropriate data structure
for storing a 3-dimensional cell complex we mention the
facet-edge structure in Dobkin and Laszlo.17

Complexity: The number of facets of VR(p, S) is at
most n− 1, at most one for each site q ∈ S \ {p}. Hence,
by the Eulerian polyhedron formula, the number of edges
and vertices of VR(p, S) is O(n), too. This shows that the
total number of components of the diagram V(S) in 3D is
O(n2). In fact, there are configurations S that force each
pair of regions of V(S) to share a facet, thus achieving
their maximum possible number of

(n
2
)
; see, e.g., Dewd-

ney and Vranch.15 This fact sometimes makes Voronoi dia-
grams in 3D less useful compared to 2-space. On the other
hand, Dwyer18 showed that the expected size of V(S) in
d-space is only O(n), provided S is drawn uniformly at
random in the unit ball. This result indicates that high-
dimensional Voronoi diagrams will be small in many prac-
tical situations.
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Figure 44: Updating DTi−1 after inserting the new site pi. In (ii) the new Delaunay
edges connecting pi to q, r, s have been added, and edge qr has already
been flipped. Two more flips are necessary before the final state shown
in (iii) is reached.

p
q p

q

Figure 45: The Voronoi diagram of a point set in L1 and
L2. Note, that there are structural differences.

Figure 46: An Euclidean Voronoi diagram of line seg-
ments.

In analogy to the 2-dimensional case, the Delaunay tri-
angulation DT(S) in 3D is defined as the geometric dual of
V(S). It contains a tetrahedron for each vertex, a triangle
for each edge, and an edge for each facet, of V(S). Equiv-
alently, DT(S) may be defined using the empty sphere
property, by including a tetrahedron spanned by S as De-
launay iff its circumsphere is empty of sites in S. The cir-
cumcenters of these empty spheres are just the vertices of
V(S). DT(S) is a partition of the convex hull of S into
tetrahedra, provided S is in general position. Note that the
edges of DT(S) may form the complete graph on S.

Simple incremental construction: Among the various
proposed methods for constructing V(S) in 3D, incremen-
tal insertion of sites (compare Section 5.2) is most intuitive
and easy to implement. Basically, two different techniques
for integrating a new site p into V(S) have been applied.
The more obvious method first determines all facets of the
region of p in the new diagram, V(S ∪ {p}), and then
deletes the parts of V(S) interior to this region; see e.g.

Watson62, Field23, and Tanemura et al.59 Inagaki et al.33

describe a robust implementation of this method.

In the dual environment, this amounts to detecting and
removing all tetrahedra of DT(S) whose circumspheres
contain p, and then filling the ’hole’ with empty-sphere
tetrahedra with p as apex, to obtain DT(S ∪ {p}). An ex-
ample of an edge flip in 3D is shown in Figure 47.

Joe35, Rajan55, and Edelsbrunner and Shah20 follow a
different and numerically more stable approach. Like in
the planar case, after having added a site to the current De-
launay triangulation, certain flips changing the local tetra-
hedral structure are performed in order to achieve local
“Delaunayhood”. The existence of such a sequence of flips
is less trivial, however. Joe34 demonstrated that no flipping
sequence might exist that turns an arbitrary tetrahedral
triangulation for S into DT(S).

A complete algorithm with run time O(n2) can be found
in Shah.20
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Figure 47: Two–into–three tetrahedra flip for five sites.

5.3.2 Other Types of Generalizations

We simply list some of the generalization schemes and
show examples of some intuitive ones.

• Different metrics

– L1, a comparison of L1 and L2 is shown in 45
– L ∞
– Convex distance functions

• Different space

– On trees and graphs
– Higher dimensions

• Weights
• More general sites

– Line segments, see 46.
– Polygonal chains

• Farthest point Voronoi diagram
• K-th order Voronoi digram
• Colored objects

5.4 Applications of the Voronoi Diagram

5.4.1 Nearest Neighbor or Post Office Problem

We consider the famous post office problem. For a set S of
sites in the plane and an arbitrary query point x we want
to compute the point of S closest to x efficiently.

In the field of computational geometry there is a general
technique for solving such query problems. One tries to
decompose the query set into classes so that every class
has the same answer. Now for a single answer we only
have to determine its class. This technique is called locus
approach.

The voronoi diagram represents the locus approach for
the post office problem. The classes correspond to the re-
gions of the sites. For a query point x we want to determine
its class/region and return its owner.

To solve this task a simple technique can be applied. We

draw a horizontal line through every vertex of the diagram
and sort the lines in O(n log n) time, see Figure 48. The
lines decompose the diagram into slabs. For every slab we
sort the set of crossing edges of the Voronoi diagram in
linear time. Altogether we need O(n2) time for the simple
construction.

x

Figure 48: After constructing the slabs, a query point x
can be located quickly.

For a query point x we locate its slab in O(log n)
time and afterwards its region in O(log n) time by binary
search.

Theorem 8
Given a set S of n point sites in the plane, one can, within
O(n2) time and storage, construct a data structure that
supports nearest neighbor queries: for an arbitrary query
point x, its nearest neighbor in S can be found in time
O(log n).

The simple technique can be easily extended to
3D. There are also more efficient approaches, i.e.,
Edelsbrunner19 constructs a O(log n) search structure for
the Voronoi diagram in linear time and with linear space.
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5.4.2 Other Applications of the Voronoi Diagram in
2D

There are many different geometrical applications of the
Voronoi diagram and its dual. Here we simply list some of
them, together with some performance results, provided
that the diagram is given:

• Closest Pair of sites, O(n)
• Nearest Neighbor Search

– O(n) for all nearest neighbors of the sites
– O(k log2 n) expected time for k-th nearest neighbors

of query point x

• Minimum Spanning Tree and TSP-
Heuristic, O(n log n)

• Largest empty circle, O(n)
• Smallest enclosing circle (square with fixed orienta-

tion), O(n)
• Smallest color spanning circle (square with fixed orien-

tation), O(nk), where k is the number of colors
• Localization problems, see Hamacher31

• Clustering of objects, see Dehne and Noltemeier14

All these results stem more or less from the linear com-
plexity of the diagram. As we have already mentioned the
complexity of the diagrams in three dimension is also lin-
ear in many practical situations. Thus many of the pre-
sented problems can be solved in three dimensions with
almost the same time bound. We will present some special
applications for 3D.

5.5 Texture Synthesis

Textures are visual detail of the rendered geometry, which
have become very important in the past few years, because
the cost of rendering with texture is the same as the cost
without texture. Virtually all real-world objects have tex-
ture, so it is extremely important to render them in syn-
thetic worlds, too.

Texture synthesis generally tries to synthesize new tex-
tures, either from given images, from a mathematical de-
scription, or from a physical model. Mathematical descrip-
tions can be as simple as a number of sine waves to gener-
ate water ripples, while physical models try to describe the
physical or biological effects and phenomena that lead to
some texture (such as patina or fur). In all of these “model-
based” methods, the knowledge about the texture is in the
model and the algorithm. The other class of methods starts
with one or more images; then they try to find some sta-
tistical or stochastic description (explicitely or implicitely)
of these, and finally it generates a new texture from the
statistic.

Basically, textures are images with the following prop-
erties:

1. Stationary: if a window with the proper size is moved

about the image, the portion inside the window always
appears the same.

2. Local: each pixel’s color in the image depends only on a
relatively small neighborhood.

Of course, images not satisfying these criteria can be used
as textures as well (such as façades), but if you want to
synthesize such images, then a statistical or stochastic ap-
proach is probably not feasible.

In the following, we will describe a stochastic algorithm
that is very simple, very efficient, and works remarkably
well.64 Given a sample image, it does not, like most other
methods, try to compute explicitly the stochastic model.
Instead, it uses the sample image itself, which implicitly
contains that model already.

We will use the following terminology:

I = Original (sample) image

T = New texture image

pi = Pixel from I
p = Pixel from T to be generated next

N(p) = Neighborhood of p (see Figure 49)

Initially, T is cleared to black. The algorithm starts by
adding a suitably sized border at the left and the top, filled
with random pixels (this will be thrown away again at the
end). Then, it performs the following simple loop in scan
line order (see Figure 49):

for all p ∈ T do
find the pi ∈ I that minimizes |N(p)− N(pi)|2 {*}
p := pi

end for

Well, the search in the line marked with a star is exactly a
nearest-neighbor search! This can be performed efficiently
with the algorithm presented in Section 5.4.1: if N(p) con-
tains k pixels, then the points are just 3k-dimensional vec-
tors of RGB values, and the distance is just the Euclidean
distance.

Obviously, all pixels of the new texture are determin-
istically defined, once the random border has been filled.
The shape of the neighborhood N(p) can be chosen arbi-
trarily, it must just be chosen such that all but the current
pixel are already computed. Likewise, other “scans” of the
texture are possible and sensible (for instance a spiral scan
order), they must just match the shape of N(p).

The quality of the texture depends on the size of the
neighborhood N(p). However, the optimal size itself de-
pends on the “granularity” in the sample image. In order
to make the algorithm independent, we can synthesize an
image pyramid (see Figure 50). First, we generate a pyra-
mid I0 , I1 , . . . , Id for the sample image I0. Then, we syn-
thesize the texture pyramid T0 , T1 , . . . , Td level by level
with the above algorithm, starting at the coarsest level.
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random border

T
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N(p)
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p
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I0

Id
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Figure 49: The texture synthesis algorithm proceeds in
scan line order through the texture and considers only
the neighborhood around the current pixel as shown.

Figure 50: Using an image pyramid, the texture synthesis
process becomes fairly robust against different scales of
detail in the sample images.

Figure 51: Some results of the texture synthesis algorithm.64 In each pair, the image on the left is the original one, the
one on the right is the (partly) synthesized one.

The only difference is that we extend the neighborhood
N(p) of a pixel p over k levels as depicted by Figure 50.
Consequently, we have to build a nearest-neighbor search
structure for each level, because as we proceed down-
wards in the texture pyramid, the size of the neighborhood
grows.

Of course, now we have replaced the parameter of the
best size of the neighborhood by the parameter of the best
size per level and the best number of levels to consider for
the neighborhood. However, as Wei and Levoy64 report, a
neighborhood of 9 × 9 (at the finest level) across 2 levels
seems to be sufficient in almost all cases.

Figure 51 shows two examples of the results that can be
achieved with this method.

5.6 Shape Matching

As the availability of 3D models on the net and in
databases increases, searching for such models becomes an
interesting problem. Such a functionality is needed, for
instance, in medical image databases, or CAD databases.
One question is how to specify a query. Usually, most re-
searchers pursue the “query by content” approach, where
a query is specified by providing a (possibly crude) shape,
for which the database is to return best matches. (This idea
seems to originate from image database retrieval, where it

was called QBIC = “query by image content”.) The funda-
mental step here is the matching of shapes, i.e., the calcu-
lation of a similarity measure.

Almost all approaches perform the following steps:

1. Define a transformation function that takes a shape and
computes a so-called feature vector in some high di-
mensional space, which (hopefully) captures the shape
in its essence. Naturally, those transformation func-
tions are preferred that are invariant under rotation
and/or translation and tessellation.

2. Define a similarity measure d on the feature vectors,
such that if d( f1 , f2) is large, then the associated shapes
s1 , s2 do not look similar. Obviously, this is (partly) a
human factors issue. In almost all algorithms, d is just
the Euclidean distance.

3. Compute a feature vector for each shape in the database
and store them in a data structure that allows for fast
nearest-neighbor search.

4. Given a query, i.e., a shape, compute its feature vector,
and retrieve the nearest neighbor from the database.
Usually, the system also retrieves all k nearest neigh-
bors. Often times, you are not interested in the exact
k nearest neighbors but only in approximate nearest
neighbors (because the feature vector is an approxima-
tion of the shape anyway).

The main difference among most shape matching algo-
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Figure 52: The shape distribution of a number of different
simple objects.

rithms is, therefore, the transformation from shape to fea-
ture vector.

So, fast shape retrieval essentially requires a fast (ap-
proximate) nearest neighbor search. We could stop our dis-
cussion of shape matching here, but for sake of complete-
ness, we will describe a very simple algorithm (from the
plethora of others) to compute a feature vector.50

The general idea is to define some shape function
f (P1 , . . . , Pn) → R, which computes some geometrical
property of a number of points, and then evaluate this
function for a large number of random points that lie on
the surface of the shape. The resulting distribution of f is
called a shape distribution.

For the shape function, there are a lot of possibilities
(your imagination is the limit). Examples are:

• f (P1 , P2) = |P1 − P2|;
• f (P1) = |P1 − P0|, where P0 is a fixed point, such as the

bounding box center;
• f (P1 , P2 , P3) = ∠(P1P2 , P1P3);
• f (P1 , P2 , P3 , P4) = volume of the tetrahedron between

the four points.

Figure 52 shows the shape distributions of a few simple ob-
jects with the distance between two points as shape func-
tion.

6 Dynamization of Geometric Data
Structures

We present a generic approach for the dynamization of an
arbitrary static geometric data structure. Often a simple
static data structure is sufficient if the set of represented
geometric objects will have few changes over time. Once
created, the static structure mostly has to cope with data
queries due to its geometric intention. If the set of ob-
jects varies very much over time, there is need for more

complex dynamic structures which allow efficient inser-
tion and deletion of objects.

For example a one dimensional sorted array of a fixed
set M is sufficient for x is Element of M queries. But if
the set M has many changes over time, a dynamic AVL-
tree would be more likely. The AVL-tree implementation
is more complex since rotations of the tree has to be con-
sidered for insertion and deletion of objects. Additionally,
the AVL-tree dynamization was invented for the special
case of the one-dimensional search. We want to show that
it is possible to dynamize a simple static data structure in-
directly but also efficiently in a general setting. Once this
generic approach is implemented it can be used for many
static data structures.

The generic approaches presented here are not optimal
against a dynamization adapted directly to a single data
structure, but they are easy to implement and efficient for
many applications.

In Section 6.1 we formalize the given problem and de-
fine some requirements. In Section 6.2 we present methods
allowing insertion and deletion in amortized efficient time.
For many applications this is already efficient enough.
Within this section the dynamization technique is ex-
plained in detail and the amortized cost of the new oper-
ations are shown. Similar ideas for the worst-case sensi-
tive approach are sketched in Section 6.3. The effort of the
dynamization itself is amortized over time. For details see
Klein38 or the work of Overmars51 and van Kreveld.61 We
present a simple example in Section 6.4.

6.1 Model of the Dynamization

Let us assume that TStat is a static abstract (geometric)
data type. Since we have a geometric data structure, we
assume that the essential motivation of TStat is a query
operation on the set of stored objects D. i.e., for a query
object q the answer is always a subset of D which might be
empty.

We want to define the generic dynamization by a mod-
ule that imports the following operations from TStat:

build(V, D): Build the structure V of type TStat
with all data objects in the set D.

query(V, q): Gives the answer (objects of D) to
a query to V with query object q.

extract(V, D): Collects all data objects D of V in
a single set an returns a pointer to
this set.

erase(V): Delete the complete data structure
V from the storage.

The dynamization module should export a dynamic ab-
stract (geometric) data type TDyn with the following op-
erations:
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Build(W, D): Build the structure W of type
TDyn with data objects in
the set D.

Query(W, q): Gives the answer (objects of D) to
a query to W with query object q.

Extract(W, D): Collects all data objects D of W
in a single set and returns a
pointer this set.

Erase(W): Delete the complete data
structure W from the storage.

Insert(W, d): Insert object d into W.

Delete(W, d): Delete d out of W.

Note, that the new operations Delete and Insert are nec-
essary since we have a dynamic data type now.

Additionally, we introduce some cost functions for the
operations of the abstract dynamic and the abstract static
data type. For example BV(n) denotes the time function
for the operation Build(V, D) of TStat. The notations are
fully presented in Figure 53. The cost functions depend
on the implementation of TStat. Note, that the cost func-
tion of TDyn will depend on the cost functions of TStat
together with the efficiency of the our general dynamiza-
tion.

Modul
Dynamize

Comp.:

BW(n)
QW(n)
EW(n)
IW(n)

DW(n)

ADT TDyn

Build(W, D)
Query(W, q)
Extract(W, D)
Insert(W, d)
Delete(W, d)

ADT TStat

build(V, D)
query(V, q)
extract(V, D)

Comp.:

BV(n)
QV(n)
EV(n)

Space.: SW(n) Space: SV(n)

K
Import

®
Export

Figure 53: Dynamization in the generic sense.

In order to guarantee some bounds for the correspond-
ing cost functions of TDyn the cost functions of TStat
must not increase arbitrarily. On the other hand for the
proof of some time bounds we need some kind of mono-
tonic behavior in the functions, they should not oscillate.
Altogether we define the following requirements which
are fulfilled in many cases:

1. QV(n) and EV(n) increase monotonically in n; exam-
ples: 1, log n,

√
n, n, n log n, n2, 2n.

2. BV (n)
n and SV (n)

n increase monotonically in n; examples
n, n log n, n2, 2n.

3. For all f ∈ {QV , BV , EV , SV} there is a constant C ≥
1, so that f (2n) ≤ C f (n); examples: 1,

√
n, n, n2, and

also log n with n > 1, as well as the products of this
functions, but not 2n.

4. EV(n) ≤ 2 · BV(n).

Moreover, we assume that the that the query operation
can be decomposed, i.e., for a decomposition V = V1 ∪
V2 ∪ · · · ∪ Vj of the data set V the results of the single
operations query(Vi , d) lead to the solution of query(V, d).
This is true for many kinds of range queries.

6.2 Amortized Insert and Delete

6.2.1 Amortized Insert: Binary Structure

The very first idea is to implement Insert(W, d) and
Delete(W, d) directly by

Insert(W, d) : Extract(W, D); Build(W, D ∪ {d})
Delete(W, d) : Extract(W, D); Build(W, D \ {d}).

This throw-away implementation is not very efficient.
Therefore we distribute the n data objects of the static
structure V among several structures Vi. If a new element
has to be inserted we hope that only a single structure Vi
may be concerned. Let

n = al2
l + al−12l−1 + . . . + a12 + a0 mit ai ∈ {0, 1}.

Then al al−1 . . . a1a0 is the binary representation of n.
For every ai = 1 we build a structure Vi which has 2i el-
ements. The collection of these structures is a representa-
tion of Wn which is called binary structure, see Figure 54.
To build up the binary structure Wn we proceed as follows:

Build(W, D): Compute binary representation of
n = |D|.

Decompose D into sets Di with
|Di | = 2i w.r.t. the representation
of n.

Compute build(Vi , Di) for every Di.

In principle, the binary structure Wn can be constructed
as quick as the corresponding structure V.

Lemma 9

BW(n) ∈ O(BV(n)).

Proof Computing the binary representation of n and the
decomposition into Di can be done in linear time O(n).

© The Eurographics Association 2002.



Zachmann and Langetepe / Geometric Data Structures for CG 31

24

23

22

21

20
W23 W24

V0

V1

V2

V4 V4

V3

Figure 54: The binary structure Wn contains the structure Vi if ai = 1 holds for the binary
representation of n. For examples see n = 23 (left) and n = 24 (right).

The operation build(Vi , Di) needs BV(2i) time. We have
i ≤ l = blog nc and therefore we conclude:

blog nc
∑
i=0

BV(2i) =
blog nc
∑
i=0

2i BV(2i)
2i

≤
blog nc
∑
i=0

2i BV(n)
n

≤ 2log n BV(n)
n

∈ O(BV(n)).

We used the fact that BV (n)
n increases monotonically.

Altogether we have

BW(n) ∈ O(n + BV(n)) = O(BV(n))

since BV(n) is at least linear.

Similar results hold for some other operations. We can
prove

EW(n) ≤ log n EV(n)

since we have to collect the results of extraxt(Vi) for at
most log n structures Vi.

Additionally,

QW(n) ≤ log n Qv(n)

holds if we assume that the query can be decompose as
well, see the requirements.

It is also easy to see that

SW(n) ≤
blog nc
∑
i=0

SV(2i) ∈ O(SV(n)).

Therefore it remains to analyse IW(n).

As we have seen from Figure 54 sometimes the whole
structure of Wn is destroyed when Wn+1 was build up. In
this example we had to perform the following tasks:

extract(V0 , D0); extract(V1 , D1); extract(V2 , D2);
D := D0 ∪ D1 ∪ D2 ∪ {d};
build(V3 , D);

In general we have to build up Vj and extract and erase
Vj−1, Vj−2, . . ., V0 only if ai = 1 holds for i = 0, 1 . . . , j−
1 and aj = 0 holds (in the binary representation of the
current n).

In this special case we have

IW(n) ≤
(

j−1

∑
i=0

EV(2i)

)
+ Cj + BV(2j)

≤ EV(2j) + Cj + BV(2j)

∈ O
(

BV(2j)
)

.

For a long sequence of insertions many of them are per-
formed without extreme reconstructions. Thus the effort
for all Insert(W, d) is amortized over time.

Generally, let Work be an arbitrary operation with cost
function W. For a sequence of s different operations let
Work be applied k times. If

total cost of k Work operationen
k

≤ W(s)

holds for a monotonically increasing cost function W, we
say that the operation Work is performed in amortized
time W(s).

Note, that this is not an expected value and that W is
a function of s, i.e., the length of the operation sequence.
The current data set may have a number of elements n ≤
s.
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For the Insert(W, d) operation one can prove

IW(s) ∈ O
(

log s
s

BV(s)
)

.

Note, that except insertions there are only queries in s.
Queries do not change the size of the data set and so we
can also replace s by the number of insertions here.

Altogether, the results are presented in the following
theorem.

Theorem 10
A static abstract data type as presented in Figure 53 can be
dynamized by means of the binary structure in a dynamic
abstract data type TDyn so that the operation Insert(W, d)
is performed in amortized time

IW(s) ∈ O
(

log s
s

BV(s)
)

.

Let n be the size of the current data set. We have

SW(n) ∈ log n Sv(n)

BW(n) ∈ BV(n))

QW(n) ∈ log n Qv(n).

6.2.2 Amortized Delete: Occasional Reconstruction

Assume that we did not have implemented the Insert op-
eration, yet.

If we have to delete an object we can not choose its
location beforehand. Therefore the deletion of an objects
is much more difficult than the insertion. Deletion may
cause fundamental reconstruction.

For many data structures it is easier to simply mark
an object as deleted. Physically the object remains in the
structure but does no longer belong to the data set D.
These objects have bad influence on the running time of all
operations although they are no longer necessary. There-
fore from time to time we have to reconstruct the data
structure for the actual data set.

First of all for TStat we introduce an additional oper-
ation weak.delete(V, d) with cost function WDV(n). We
simply want to construct a strong delete function with an
acceptable amortized time bound for TDyn.

Therefore we use weak.delete(V, d) until D has only the
half size of V. Then we erase V and build a new struc-
ture V out of D. The cost of the occasional reconstruction
is amortized over the preceeding delete-operations. This
gives the following result.

Theorem 11
A static abstract data type as presented in Figure 53 with an
additional weak.delete(V, d) operation and with additional

cost function WDV(n) can be dynamized by means of oc-
casional reconstruction in a dynamic abstract data type
TDyn so that

BW(r) = BV(r)
EW(r) ∈ O (EV(r))
QW(r) ∈ O (QV(r))
SW(r) ∈ O (SV(r))

DW(s) ∈ O
(

WDV(s) +
BV(s)

s

)
,

holds. The size of the current actual data set is denoted
with r and s denotes the length of the operation sequence.

We omit the proof here.

6.2.3 Amortized Insert and Amortized Delete

In the preceeding sections we have discussed Insert and
Delete separately. Now we want to show how to combine
the two approaches.

A static abstract data type with a weak delete imple-
mentation is given. As in Section 6.2.1 we use the binary
structure for the insertion. The operation weak.delete is
only available for the structures Vi and we have to ex-
tend it to W in order to apply the result of Section 6.2.2.
If Weak.Delete(W, d) is applied, d should be marked as
deleted in W. But we do not know in which of the struc-
tures Vi the element d lies. Therefore in addition to the
binary structure we construct a balanced searchtree T that
stores this information. For every d ∈ W there is a pointer
to the structure Vi with d ∈ Vi, see Figure 55 for an exam-
ple.

The additional cost of the search tree T is cov-
ered as follows. Query operations are not involved. For
Weak.Delete(W, d) there is an additional O(log n) for
searching the corresponding Vi and for marking d as
deleted in Vi.

If an object d has to be inserted we have to update T.
The object d gets an entry for its structure Vj in T, this
is done in time O(log n) and it will not affect the time
bound for the insertion. But furthermore if V0 , . . . , Vj−1
has to be erased the corresponding objects should point to
Vj afterwards. This can be efficiently realized by collecting
the pointers of T to Vi in a list for every Vi. We collect
the pointers and change them to "‘Vj"’. This operation is

already covered by time O(BV(2j)) for constructing Vj.

Altogether we conclude:

Theorem 12
A static abstract data type as presented in Figure 53 with an
additional weak.delete(V, d) operation and with additional
cost function WDV(n) can be dynamized by means of bi-
nary structure, searchtree T and occasional reconstruction
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Figure 55: A structure W15 with a searchtree T storing pointers to Vi for every d ∈ Vi.

in a dynamic abstract data type TDyn so that the amor-
tized time for insertion reads

IW(s) ∈ O
(

log s
BV(s)

s

)
,

and the amortized time for deletion reads

DW(s) ∈ O
(

log s + WDV(s) +
BV(s)

s

)
.

For the rest of the operations we have

BW(r) = BV(r)
EW(r) ∈ O (log r EV(r))
QW(r) ∈ O (log r QV(r))
SW(r) ∈ O (SV(r)) .

The size of the current actual data set is denoted with r and
s denotes the length of the operation sequence.

6.3 Worst-Case sensitive Insert and Delete

In the last section we have seen that it is easy to amor-
tize the cost of Insert and Delete analytically over time.
The main idea for the construction of the dynamic data
structure was given by the binary structure of Wn which
has fundamental changes from time to time but the corre-
sponding costs were amortized. Now we are looking for
the worst-case cost of Insert and Delete. The idea is to
distribute the construction of Vj itself over time, i.e., the
structure Vj should be finished if Vj−1, Vj−2, . . . V0 has to
be erased.

We only refer to the result of this approach. The ideas
are very similar to the ideas of the preceeding sections.
Technically, a modified binary representation is used in
order to distribute the effort of the reconstruction over
time. For the interested reader we refer to Klein38 or
van Kreveld61 and Overmars51.

Theorem 13
A static abstract data type as presented in Figure 53 with an
additional weak.delete(V, d) operation and with additional

cost function WDV(n) can be dynamized in a dynamic ab-
stract data type TDyn so that

Build(W, D) ∈ O(BV(n))
Query(W, q) ∈ O(log n ·QV(n))
Insert(W, d) ∈ O

(
log n

n BV(n)
)

Delete(W, d) ∈ O
(

log n + WDV(n) + BV (n)
n

)

Space O(SV(n)).

Here n denotes the number of relevant, stored data ob-
jects.

6.4 A Simple Example

For convenience, we take a simple example from Section 2
and apply Theorem 13, thus implementing worst-case sen-
sitive insertion and deletion.

In Section 2.2 an easy implementation of the static k-d-
tree was presented with Sk-d(n) = O(n) and query time
Qk-d(n) = O(

√
n + a), where a represents the size of

the answer, see Theorem 4. Obviously, weak.delete(k-d, x)
can be implemented in O(log n) time, thus WDk-d(n) =
O(log n). Additionally we have Bk-d(n) = O(n log n).

Let Dyn(k-d) denote the dynamic variant based upon
the statically implemented k-d-tree.

Application of Theorem 13 results in:

Build(Dyn(k-d), D) ∈ O(n log n)
Query(Dyn(k-d), q) ∈ O(

√
n log n + a)

Insert(Dyn(k-d), d) ∈ O
(

log2 n
)

Delete(Dyn(k-d), d) ∈ O (log n)
Space O(n).
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