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1.
Introduction

In
contrast

to
real-w

orld
objects,

object
representations

in
virtual

environm
ents

have
no

notion
of

interpenetration.
T

herefore,
algorithm

s
for

the
detection

of
interfering

object
representations

are
an

essential
com

ponent
in

virtual
envi-

ronm
ents.A

pplications
are

w
ide-spread

and
can

be
found

in
areas

such
as

surgery
sim

ulation,
gam

es,
cloth

sim
ulation,

and
virtualprototyping.

E
arly

collision
detection

approaches
have

been
presented

in
robotics

and
com

putational
geom

etry
m

ore
than

tw
enty

years
ago.N

evertheless,collision
detection

is
stilla

very
ac-

tive
research

topic
in

com
puter

graphics.
T

his
ongoing

in-
terest

is
constantly

docum
ented

by
new

results
presented

in
journals

and
atm

ajor
conferences,such

as
S

iggraph
and

E
u-

rographics.T
his

interestin
collision

detection
is

based
on

•
recentadvances

in
dynam

ic
physically-based

sim
ulations

w
hich

require
efficientcollision

detection
algorithm

s
(see

F
ig.1)

•
new

challenging
problem

dom
ains

such
as

deform
able,

tim
e-critical,or

continuous
collision

detection,
•

advances
in

graphics
hardw

are
w

hich
is

em
ployed

for
im

age-space
collision

detection
and

for
the

acceleration
ofexisting

techniques.

In
order

to
enable

a
realistic

behavior
of

interacting
ob-

jects
in

dynam
ic

sim
ulations,

collision
detection

algorithm
s

have
to

be
accom

panied
by

collision
response

schem
es.

T
hese

schem
es

process
the

collision
inform

ation
and

com
-

pute
a

response
w

ith
the

objective
ofresolving

the
collision.

F
or

instance,
distance

field
approaches

provide
the

penetra-
tion

depth
of

tw
o

objects
w

hich
can

easily
be

used
for

the
collision

response.
H

ow
ever,

other
approaches

provide
less

intuitive
collision

inform
ation,

such
as

intersections
of

sur-
face

representations
or

certain
patterns

of
the

stencilbuffer
inside

a
G

P
U

.
T

herefore,
the

nature
of

the
inform

ation
pro-

vided
by

a
collision

detection
algorithm

is
an

im
portantchar-

acteristic
in

term
s

ofits
practicability.

F
igure

1:In
te

ra
ctive

e
nviro

n
m

e
n

tw
ith

d
yn

a
m

ica
lly

d
e

fo
rm

-
in

g
o

b
je

cts
a

n
d

co
llisio

n
h

a
n

d
lin

g.
S

u
rfa

ce
w

ith
h

ig
h

ge
o

-
m

e
tric

co
m

p
lexity

a
n

d
th

e
u

n
d

e
rlyin

g
te

tra
h

e
d

ra
lm

e
sh

a
re

sh
o

w
n

.

c©
T

he
E

urographics
A

ssociation
2005.



M
.Te

sch
n

e
r

e
ta

l./C
o

llisio
n

H
a

n
d

lin
g

2.
S

um
m

ary

T
his

tutorialw
illdiscuss

collision
detection

algorithm
s

w
ith

a
special

em
phasis

on
the

provided
collision

inform
ation.

T
he

potentialcom
bination

w
ith

collision
response

schem
es

w
ill

be
explained

w
hich

is
particular

im
portant

for
using

collision
detection

algorithm
s

in
dynam

ic
sim

ulation
envi-

ronm
ents.

T
he

tutorialw
illcover

a
large

variety
of

relevant
techniques.

T
he

tutorialstarts
w

ith
basic

concepts,such
as

bounding-
volum

e
hierarchies,

spatialpartitioning,
distance

fields,
and

proxim
ity

queries.
T

he
idea

of
im

age-space
collision

detec-
tion

is
derived

as
a

special
case

of
spatial

partitioning
and

it
is

illustrated
how

graphics
hardw

are
can

be
used

to
ac-

celerate
these

m
ethods.

B
ased

on
the

provided
collision

in-
form

ation,the
potentialcom

bination
w

ith
collision

response
schem

es
w

illbe
discussed

for
alltechniques.

T
he

tutorialproceeds
w

ith
furthercollision

detection
chal-

lenges
that

are
particular

im
portant

for
dynam

ic
sim

ula-
tion

environm
ents.A

pproaches
to

self-collision
detection,as

they
can

occur
in

deform
able

m
odeling,

w
ill

be
discussed.

S
tochastic

m
ethods,

that
can

be
used

for
tim

e-criticalcolli-
sion

detection,
w

illbe
explained.

F
urther,

continuous
colli-

sion
detection

w
illbe

introduced
w

hich
aim

s
atsolving

prob-
lem

s
related

to
discrete-tim

e
sim

ulations.

3.
P

roposed
Length

•
full-day

tutorial

4.
Topics

•
B

ounding-Volum
e

H
ierarchies

•
S

patialP
artitioning

•
D

istance
F

ields
•

P
roxim

ity
Q

ueries
•

Im
age-S

pace
C

ollision
D

etection
•

D
etection

ofS
elf-C

ollisions
•

S
tochastic

M
ethods

•
C

ontinuous
C

ollision
D

etection

5.
TutorialS

yllabus

B
asic

Techniques(halfday).In
this

partofthe
tutorial,four

m
ain

concepts
of

collision
detection

algorithm
s

w
illbe

ex-
plained:

bounding-volum
e

hierarchies,
spatial

partitioning,
distance

fields,
and

proxim
ity

queries.
A

dvantages,
draw

-
backs,

and
relevance

of
the

collision
inform

ation
w

ith
re-

spect
to

the
considered

application
in

sim
ulation

environ-
m

ents
w

illbe
discussed.

A
dvanced

Techniques(half
day).

T
he

m
ain

topic
in

this
part

is
im

age-space
collision

detection.
A

variety
of

recent
approaches

w
ill

be
explained

and
discussed.

F
urther,

solu-
tions

to
specific

collision
detection

problem
s

inherentto
dy-

nam
ic

sim
ulation

environm
ents

w
ill

be
discussed,

nam
ely

self-collisions,tim
e-criticalcollision

detection,and
continu-

ous
collision

detection.

6.
S

uggestions
for

S
horter

P
resentations

In
the

case
of

a
condensed

half-day
tutorial,

the
presenta-

tions
w

ould
be

focused
on

recentadvances
in

collision
han-

dling,such
as

G
P

U
-accelerated

im
age-space

collision
detec-

tion,stochastic
m

ethods
for

tim
e-criticalcollision

detection,
challenges

in
continuous

collision
detection,

and
approxi-

m
ate

proxim
ity

queries
for

consistentcollision
response.

7.
P

rerequisites

T
he

participants
should

have
a

w
orking

know
ledge

ofspatial
data

structures,
graphics

hardw
are,

and
dynam

ic
sim

ulation
environm

ents.

8.
O

rganizer

P
ro

f.D
r.-In

g.M
a

tth
ia

s
Te

sch
n

e
r

C
om

puter
G

raphics
Laboratory

C
om

puter
S

cience
D

epartm
ent

A
lbert-Ludw

igs-U
niversity

F
reiburg

G
eorges-K

oehler-A
llee

052
79110

F
reiburg

im
B

reisgau
G

erm
any

phone
+

49
761

203
8281

fax
+

49
761

203
8262

m
ail

teschner@
inform

atik.uni-freiburg.de
http

http://cg.inform
atik.uni-freiburg.de/

9.
S

peakers

M
a

tth
ia

s
Te

sch
n

e
rreceived

the
P

hD
degree

in
E

lectricalE
n-

gineering
from

the
U

niversity
of

E
rlangen-N

urem
berg

in
2000.F

rom
2001

to
2004,he

w
as

research
associate

atS
tan-

ford
U

niversity
and

at
the

E
T

H
Z

urich.
C

urrently,
he

is
professor

of
C

om
puter

S
cience

and
head

of
the

C
om

puter
G

raphics
Laboratory

atthe
U

niversity
ofF

reiburg.H
is

reser-
ach

interests
com

prise
real-tim

e
rendering,

scientific
com

-
puting,

physicalsim
ulation,

com
puter

anim
ation,

com
puta-

tional
geom

etry,
collision

handling,
and

hum
an

perception
of

m
otion.

H
is

research
is

particularly
focused

on
real-tim

e
physically-based

m
odeling

ofinteracting
deform

able
objects

and
fluids

w
ith

applications
in

entertainm
enttechnology

and
m

edicalsim
ulation.M

atthias
Teschnerhas

contributed
to

the
field

ofphysically-based
m

odeling
and

collision
handling

in
severalpapers.A

tE
urographics

2004,he
organized

a
S

tate-
of-the-A

rt
report

on
collision

detection.
A

t
IE

E
E

V
R

2005,
he

w
illparticipate

in
a

tutorialon
collision

detection.

B
ru

n
o

H
e

id
e

lb
e

rge
rreceived

his
M

S
c

degree
in

C
om

-
puter

S
cience

from
the

S
w

iss
F

ederal
Institute

of
Technol-

ogy,
Z

urich,
S

w
itzerland

in
2002.

H
e

is
currently

pursuing
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his
P

hD
as

a
m

em
ber

ofthe
C

om
puter

G
raphics

Laboratory
atE

T
H

Z
urich.H

is
research

interests
are

real-tim
e

com
puter

graphics,
especially

collision
detection,

collision
response

and
deform

able
m

odeling.
H

e
has

published
num

erous
pa-

pers
at

international
conferences

in
the

aforem
entioned

re-
search

areas
and

contributed
to

the
S

tate-of-the-A
rt

R
eport

on
"C

ollision
D

etection
for

D
eform

able
O

bjects"
at

E
uro-

graphics
2004.

D
in

e
sh

M
a

n
o

ch
ais

currently
a

professor
of

C
om

puter
S

cience
at

the
U

niversity
of

N
orth

C
arolina

at
C

hapelH
ill.

H
e

received
his

B
.Tech.

degree
in

C
om

puter
S

cience
and

E
ngineering

from
the

Indian
Institute

of
Technology,

D
elhi

in
1987;

M
.S

.
and

P
h.D

.
in

C
om

puter
S

cience
at

the
U

ni-
versity

of
C

alifornia
at

B
erkeley

in
1990

and
1992,

respec-
tively.

H
e

received
A

lfred
and

C
hella

D
.

M
oore

fellow
ship

and
IB

M
graduate

fellow
ship

in
1988

and
1991,

respec-
tively,and

a
Junior

F
aculty

A
w

ard
in

1992.H
e

w
as

selected
an

A
lfred

P.
S

loan
R

esearch
F

ellow
,

received
N

S
F

C
areer

A
w

ard
in

1995
and

O
ffice

of
N

avalR
esearch

Young
Inves-

tigator
A

w
ard

in
1996,

H
onda

R
esearch

Initiation
A

w
ard

in
1997,

and
H

ettlem
an

P
rize

for
scholarly

achievem
ent

at
U

N
C

C
hapel

H
ill

in
1998.

H
e

has
also

received
best

pa-
per

aw
ards

atthe
A

C
M

S
uperC

om
puting,A

C
M

M
ultim

edia
and

E
urographics

conferences.H
is

research
interests

include
geom

etric
and

solid
m

odeling,
interactive

com
puter

graph-
ics,physically-based

m
odeling,virtualenvironm

ents,robot-
ics

and
scientific

com
putation.

H
is

research
has

been
spon-

sored
by

A
R

O
,D

A
R

P
A

,D
O

E
,H

onda,Intel,N
S

F,O
N

R
and

S
loan

F
oundation.

H
e

has
published

m
ore

than
120

papers
in

leading
conferences

and
journals

on
com

puter
graphics,

geom
etric

and
solid

m
odeling,

robotics,
sym

bolic
and

nu-
m

eric
com

putation,
virtualreality,

m
olecular

m
odeling

and
com

putationalgeom
etry.

H
e

has
served

as
a

program
com

-
m

ittee
m

em
berform

any
leading

conferences
on

virtualreal-
ity,

com
puter

graphics,
com

putationalgeom
etry,

geom
etric

and
solid

m
odeling,anim

ation
and

m
olecular

m
odeling.H

e
w

as
the

program
co-chair

for
the

firstA
C

M
S

iggraph
w

ork-
shop

on
sim

ulation
and

interaction
in

virtual
environm

ents
and

program
chairoffirstA

C
M

W
orkshop

on
A

pplied
C

om
-

putationalG
eom

etry.
H

e
w

as
the

guest
co-editor

of
special

issues
of

InternationalJournalof
C

om
putationalG

eom
etry

and
A

pplications.H
e

is
a

m
em

ber
ofthe

editorialboards
of

IE
E

E
T

ransactions
on

V
isualization

and
C

om
puterG

raphics,
and

G
raphicalM

odels
and

Im
aging

P
rocessing.

N
ag

a
G

ovin
d

a
ra

juis
currently

research
assistant

profes-
sor

ofC
om

puter
S

cience
atthe

U
niversity

ofN
orth

C
arolina

atC
hapelH

ill.H
e

received
his

B
.Tech.degree

in
C

om
puter

S
cience

and
E

ngineering
from

the
Indian

Institute
of

Tech-
nology,

B
om

bay
in

2001,
M

.S
.

and
P

h.D
.

in
C

om
puter

S
ci-

ence
at

the
U

niversity
of

N
orth

C
arolina

at
C

hapel
H

ill
in

2003
and

2004,
respectively.

H
is

research
interests

include
com

putergraphics,com
putationalgeom

etry,data
bases,data

m
ining,graphics

hardw
are,paralleland

distributed
com

put-
ing.

H
e

serves
as

a
program

com
m

ittee
m

em
ber

for
the

P
a-

cific
G

raphics
2005.

N
aga

G
ovindaraju

has
contributed

to

the
field

of
G

P
U

-accelerated
collision

detection
in

several
papers,and

tutorials.A
tS

iggraph
2004,he

w
as

co-presenter
of

a
course

on
general

purpose
com

putation
on

graphics
hardw

are.

G
a

b
rie

lZ
a

ch
m

a
n

nis
professor

for
com

puter
graphics

at
C

lasuthal
U

niversity
since

2005.
P

rior
to

that,
he

w
as

as-
sistant

professor
w

ith
the

com
puter

graphics
group

at
B

onn
U

niversity.
H

e
received

a
P

hD
in

com
puter

science
from

D
arm

stadt
U

niversity
in

2000.
F

rom
1994

until
2001,

he
w

as
w

ith
the

virtual
reality

group
at

the
F

raunhofer
Insti-

tute
for

C
om

puter
G

raphics
in

D
arm

stadt,
w

here
he

carried
out

m
any

industrialprojects
in

the
area

of
virtualprototyp-

ing.
Z

achm
ann

has
published

m
any

papers
at

international
conferences

in
areas

like
collision

detection,
virtual

proto-
typing,

intuitive
interaction,

m
esh

processing,
and

cam
era-

based
hand

tracking.H
e

has
also

served
on

various
interna-

tionalprogram
com

m
ittees.

S
te

fa
n

K
im

m
e

rlestudied
P

hysics
and

C
hem

istry
in

T
ue-

bingen
and

S
an

D
iego.

In
2000,

he
received

his
D

iplom
a

in
P

hysics
from

the
U

niversity
of

T
uebingen.

S
ince

2001,
he

is
a

P
hD

student
at

the
graphics

research
group

at
G

R
IS

.
In

2003
and

2004,
he

w
as

an
invited

researcher
at

G
R

AV
IR

,
IN

R
IA

R
hone-A

lpes
in

G
renoble.

H
is

m
ain

research
inter-

ests
are

physically-based
m

odeling
and

collision
detection

for
deform

able
objects.H

is
specialinterestis

the
sim

ulation
ofvirtualcloth.S

tefan
K

im
m

erle
has

contributed
to

the
field

ofcollision
detection

and
cloth

sim
ulation

in
severalpapers,

S
tate-of-the-A

rtreports
and

tutorials.A
tE

urographics
2004,

he
w

as
co-presenter

ofa
tutorialon

the
real-tim

e
sim

ulation
of

cloth
and

of
a

S
tate-of-the-A

rt
report

on
collision

detec-
tion

ofdeform
able

objects.

Jo
h

a
n

n
e

s
M

e
zge

rreceived
his

D
iplom

a
in

C
om

puter
S

ci-
ence

from
the

U
niversity

of
T

uebingen,
G

erm
any,

in
2002.

S
ince

then
he

is
P

hD
student

and
research

associate
at

the
graphics

research
group

G
R

IS
in

T
uebingen.

H
is

research
interests

include
collision

detection
and

the
sim

ulation
of

deform
ing

objects.
Johannes

M
ezger

has
contributed

to
the

field
of

collision
detection

and
cloth

sim
ulation

in
several

publications.

A
rn

u
lp

h
F

u
h

rm
a

n
n

studied
C

om
puter

S
cience

at
the

U
niversity

of
Technology

in
D

arm
stadt

and
received

his
D

iplom
a

in
2001.S

ince
2001,he

is
a

m
em

ber
ofthe

A
nim

a-
tion

and
Im

age
C

om
m

unication
research

group
atthe

F
raun-

hoferInstitute
forC

om
puterG

raphics.H
is

m
ain

research
in-

terests
are

physically
based

m
odeling,

anim
ation

of
clothes

and
collision

detection
fordeform

able
objects.In

area
ofcol-

lision
detection,

he
has

published
m

any
papers

at
interna-

tionalconferences.
H

e
has

contributed
to

a
S

tate-of-the-A
rt

reporton
collision

detection
atE

urographics
2004.

10.
C

ourse
N

otes
D

escription

T
his

tutorialbuilds
on

lecture
m

aterialfrom
the

U
niversity

of
F

reiburg,
E

T
H

Z
urich,

U
niversity

of
N

orth
C

arolina
at

c©
T

he
E

urographics
A

ssociation
2005.



M
.Te

sch
n

e
r

e
ta

l./C
o

llisio
n

H
a

n
d

lin
g

C
hapel

H
ill,

and
the

U
niversity

of
B

onn.
F

urther,
m

aterial
from

a
previous

S
TA

R
presentation

atE
urographics

2004,a
tutorialatIE

E
E

V
R

2005,and
a

course
atS

iggraph
2004

w
ill

be
used.

S
ince

allpresenters
actively

contribute
to
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Collision Detection

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Problem Description

Object representations in simulation environments
do not consider impenetrability.

Collision detection: Detection of interpenetrating objects.

• polygonal or non-polygonal surface
• convex, non-convex
• defined volume (closed or open surface)
• rigid or deformable objects
• pair-wise tests or multiple objects 
• first contact, all contacts
• intersection, proximity, penetration depth
• static or dynamic
• discrete or continuous time

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Bounding Volumes

Bounding Volume Hierarchies BVH

Generation of BVHs

Comparison

BVHs for Deformable Objects

Outline

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

• Spheres
• Axis-aligned bounding boxes (ABB)
• Object-oriented bounding boxes (OBB)
• Discrete orientation polytopes (k-DOPs)

Simplified conservative surface representation
for fast approximative collision detection test

• avoid checking all object primitives.
• check bounding volumes to get the information

whether objects could interfere. Fast rejection test.
• motivated by spatial coherence: Assumption that

collisions between objects are rare

Bounding Volumes
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• should fit the object as tightly as possible 
to reduce the probability of a query object 
intersecting the volume but not the object

• overlap tests for bounding volumes should be efficient
• memory efficient
• efficient computation of a bounding volume, 

if recomputation is required

Requirements 
for Bounding Volumes

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

2
21 )())(( rr +>−− 2121 cccc

r1

r2

c2

c1

two spheres do not overlap if

sphere is represented by center c and radius r.

Spheres

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

good choice bad choice

Sphere as Bounding Volume

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

x

y

c2

c1
AABB is represented by 
center c and radii rx, ry.

rx2

ry2

two AABBs do not overlap in 2D if 210
1

)( rxrx +>







− 21 cc

211
0

)( ryry +>







− 21 ccor

Axis-Aligned Bounding Box 
AABB
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bad choicegood choice

AABB as Bounding Volume

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

A k-DOP is “a convex polytope whose facets are determined by halfspaces
whose outward normals come from a small fixed set of k orientations.”
[Klosowski]

k-DOP is represented by 
k/2 directions and k/2 pairs
of min, max values
(6-, 14, 18-, 26-DOPs)

x

y

min1

min2

max2

max1

Two k-DOPs do not overlap, if their projections 
in at least one direction do not overlap.

Discrete Orientation Polytope
k-DOP

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

quite good choicegood choice

larger k’s are more flexible than smaller
AABB is a 4-DOP. Is a 4-DOP an AABB?

8-DOPs as Bounding Volumes

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

µ =
1
n

vi
i=1

n

∑

Cjk =
1
n

v ij
i=1

n

∑ v ik

v i = vi − µ 1≤ j,k ≤ 3

vertices:

mean: 

covariance matrix: 

v v ∈ℜ3

An OBB can be represented by the
principal axes of a set of vertices.
These axes are not fixed. They move
according to object transformations.

eigenvectors of the
covariance matrix

Oriented Bounding Box OBB
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• principal axes of an object are not always a 
good choice for the main axes of an OBB

• inhomogeneous vertex distribution
can cause bad OBBs

OBB Examples

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

• axes of Α,Β
• unit vectors

a1,a2 ,b1,b2 • 'radii' of Α,Β

L • unit vector

pA = a1A1L + a2A2L

A1, A2 ,B1,B2

T

LT ⋅ L

Α

Β

b2B2

b1B1

pB

pA

a2A2

a1A1

pB = b1B1L + b2B2L

Α,Β do not overlap:

or ∃L ∈ A1,A2 ,B1,B2{ }: T ⋅ L > pA + pB∃L : T ⋅ L > pA + pB

OBB Overlapping Test in 2D

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Separating Axis Test SAT

• works with polytopes: line segments, triangles, boxes

• two objects A and B are disjoint if for some vector v
the projections of the objects onto the vector do not overlap. 
In this case, v is referred to as separating axis.

• vector v has to be a face orientation of A or B 
or a cross product of two edges of A and B.

• 3D boxes: tests with 3 + 3 + 3 ⋅ 3 axes

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

• B=[b1 b2 b3] is orientation of B
relative to A’s local basis I

• c is the center of B relative to
A’s local coordinate system

• hA, hB are the extents of A, B
• v is relative to A’s basis, BTv is

the same vector relative to B

OBB Overlapping Test in 3D

Bh

v

Α

Β

2b

1b
2e

1e

Ah

O
c

• vector v is a separating axis iff

B
T

A hvBhvcv ⋅+⋅>⋅
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OBB Overlapping Test in 3D

• 15 axes v have to be tested
• 3 coordinate axes of A’s orientation I
• 3 coordinate axes of B’s orientation B = [b1 b2 b3] = [ βij ]
• 9 cross products of a coord. axis of I and a coord. axis of B

• expressions BTv can be simplified for all axes, e. g.

B
T

A hvBhvcv ⋅+⋅>⋅

T),,0( 2232 ββ−=×= 21 bev

( ) T),0,( 1113 ββ−=×= 21
TT beBvB
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• spheres
• axis-aligned bounding boxes (AABB)
• oriented bounding boxes (OBB)
• discrete orientation polytopes (k-DOPs)

• ellipsoids
• convex Hulls
• swept-Sphere Volumes (SSVs)

• point Swept Spheres (PSS)
• line Swept Spheres (LSS)
• rectangle Swept Spheres (RSS)
• triangle Swept Spheres (TSS) Lin, UNC

PSS

LSS RSS

Bounding Volumes
Summary

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

sphere ABB OBB 6-DOP convex
hull

tighter approximation

decreasing complexity and 
computational expenses for overlap test 

Optimal Bounding Volume

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Bounding Volumes

Bounding Volume Hierarchies BVH

Generation of BVHs

Comparison

BVHs for Deformable Objects

Outline
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• subdivsion of bounding volumes to generate a hierarchy

• improved object approximation at higher levels

layer 1 layer 2 layer 3

Bounding Volume Hierarchies BVHs

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

• bounding volume tree
(BV tree)

• nodes contain
bounding volume
information

• leaves additionally
contain information
on object primitives

BV

BVBV

BVBV

primitives primitives

primitives

BV for the
entire object

BV for parts
of the object

BV for a few/one
object primitive(s)

Hierarchy of Bounding Volumes

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

• Sean Quinlan, Stanford Univ

• Philip Hubbard, Brown Univ

BVH Example

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Object

OBB
level 1

OBBs
level n

OBB Tree
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• BV-trees speed-up the collision detection test
• if bounding volumes in a hierarchy level overlap, 

their children are checked for overlapping. 
If leaves are reached, primitives are checked against each other.

Overlapping Test for BV Tree

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Overlapping Test for BV Tree

Pseudo code

1. interference check for two parent nodes (root)
2. if no interference then “no collision” else
3. all children of one parent node are checked 

against children of the other parent node
4. if no interference then “no collision” else
5. if at leave nodes then “collision” else go to 3

step 3 checks BVs or object primitives for intersection

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Box-Triangle and
Triangle-Triangle Test

Box-Triangle Test
a) separating axes test requires 13 axes to be tested

(4 face normals, 3 x 3 cross products of edges)

Triangle-Triangle Test
a) separating axes test requires max. 11 axes to be tested

(2 face normals, 3 x 3 cross products of edges)
b) testing each edge of one triangle against the other triangle

for intersection -> 6 edge-triangle tests
(edge-triangle intersections occur in pairs 
-> 5 tests are sufficient)

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Edge-Triangle Test
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• improved object approximation at higher levels
• fast rejection query
• fast localization of object regions with potential collisions

• additional storage requirements
• generation of BVHs can be expensive

• BVHs are generally used for rigid models
where they can be pre-computed

Characteristics of BVH

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Cost function (M. Lin, UNC):

F = Nu x Cu +  Nbv x Cbv + Np x Cp

F: total cost for interference detection
Nu: number of bounding volumes updated 
Cu: cost of updating a bounding volume
Nbv: number of bounding volume pair overlap tests
Cbv: cost of overlap test between two bounding volumes 
Np: number of primitive pairs tested for interference
Cp: cost of testing two primitives for interference

Computational Costs 
of BV Trees

tree genera-
tion/update

BV intersec-
tion test

primitive 
intersection test

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Optimization

F = Nu x Cu +  Nbv x Cbv + Np x Cp

• infrequent BV updates to minimize Nu

• tight-fitting bounding volumes to minimize Nbv

• simple intersection test for bounding volumes to minimize Cbv

Better approximation

Decreasing computational expenses for overlap test 
University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Lin, UNC Chapel Hill

approximation
of a torus

AABB vs. OBB Tree
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• translation, rotation
Spheres

• translation, no rotation
Axis-Aligned Bounding Boxes

• translation, no rotation 
(principal orientations are fixed for all objects)

Discrete Orientation Polytopes

• translation, rotation 
(box orientations are not fixed)

Object-Oriented Bounding Boxes 

some object transformations can be simply applied 
to all elements  of the bounding-volume tree:

Object Transformations

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Axis-Aligned Bounding Boxes
Discrete Orientation Polytopes

• rotation of the bounding volume is not
possible due to the respective box overlap test.
The intersection tests require fixed surface normals.

1. recomputation of the BV hierarchy
2. preservation of the tree structure, update of all nodes
a) additional storage of the convex hull which is rotated with the object

- check if extremal vertices are still extremal after rotation
- compare with adjacent vertices of the convex hull
- “climb the hill” to the extremal vertex

b) computation of an approximate box by rotating the box and
checking the rotated box for extremal values

Rotations

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Problem Spheres

ABB, k-DOP OBB

• quality of higher-level
BV approximation
influences collision
detection performance
in case of close proximity

• quality of higher-level
BV approximations is
not very critical

• in case of overlapping BV
expensive primitive tests
have to be performed

Close Proximity

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Bounding Volumes

Bounding Volume Hierarchies BVH

Generation of BVHs

Comparison

BVHs for Deformable Objects

Outline
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Bottom-Up

Top-Down

• start with object-representing primitives
• fit a bounding volume to each primitive
• group primitives or bounding volumes recursively
• fit bounding volumes to these groups
• stop in case of a single bounding volume at a hierarchy level

• start with object
• fit a bounding volume to the object
• split object or bounding volume recursively
• fit bounding volumes
• stop, if all bounding volumes in a level contain less than n primitives 

Construction of a BV Tree

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Parameters
• bounding volume
• top-down vs. bottom-up
• what to subdivide / group: object primitives or bounding volumes
• how to subdivide / group object primitives or bounding volumes
• how many primitives in each leaf of the BV tree
• re-sampling of the object ? 

Goals
• balanced tree
• tight-fitting bounding volumes
• minimal redundancy 

(primitives in more than one BV per level)

Construction of a BV Tree

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Hubbard, C. O’Sullivan:
• approximate triangles with spheres and build the tree

bottom-up by grouping spheres
• cover vertices with spheres and group them
• resample vertices prior to building the tree

(homogeneous vertex distribution reduces redundancy)
• build the tree top-down by using an octree
• compute the medial axis and place spheres on it

octree based

medial axis
based

Construction of a BV Tree
Spheres

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Bounding Volumes

Bounding Volume Hierarchies BVH

Generation of BVHs

Comparison

BVHs for Deformable Objects

Outline
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Axis-aligned
bounding box

Object-oriented
bounding box

k discrete
orientation
polytope

van den 
Bergen
Eindhoven
University
1997

Gottschalk
et al.
University of
North Carolina
1995

Klosowski
et al.
University of
New York
1998

SOLID RAPID QuickCD

Collision Detection Libraries

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

10,000 triangles
per sphere
8-DOP
OBB
ABB

• time to compute a collision for two spheres with radius 1 cm
• translation represents the distance of both centers
• QuickCD [Klosowski], RAPID [Gottschalk], SOLID [Bergen]

Comparison of CD Libraries

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Bounding Volumes

Bounding Volume Hierarchies BVH

Generation of BVHs

Comparison

BVHs for Deformable Objects

Outline

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

BVHs for Deformable 
Collision Detection

• in case of deformable objects, 
BVH has to be updated frequently

• hierarchy generation significantly 
influences performance

• AABBs are commonly used
• AABBs can be updated efficiently 

compared to OBB, k-DOP, spheres
• however, AABBs do not provide an 

optimal model approximation
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Hybrid Hierarchy Update 

• proposed by Larsson / Akenine-Moeller, Eurographics 2001
• AABB hierarchy
• initial hierarchy generation as pre-processing

• lazy hierarchy update during run-time
• bottom-up update starting at depth n/2
• very efficient AABB update based on 

AABBs of children

• update of nodes in depth n/2+1 to n as needed
• this update is only performed if necessary

n/2

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Implementation
of Hierarchy Update

n/2

• after pre-processing each nodes knows
which vertices influence its bounding box

• object is traversed once to update
nodes (box information) in layer n/2

• bottom-up merging of AABBs
• Merge (b1, b2)
Box.Pos = Min(b1.Pos, b2.Pos)
Box.Size = Max(b1.Pos+b1.Size, 

b2.Pos+b2.Size)-Box.Pos

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

• bounding volume tree (BV tree) based on spheres or boxes
• nodes contain bounding volume information
• leaves additionally contain information on object primitives

• isolating interesting regions by checking bounding volumes 
in a top-down strategy 

• construction of a balanced, tight-fitting tree with minimal redundancy

• transformation of BV trees dependent on the basic bounding volume

• optimal bounding box hierarchy dependent on application 
(e. g. close proximity problem)

Hierarchical Bounding
Volumes - Summary

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory
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Collision Detection -
Spatial Partitioning
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• Parts of this slide set are courtesy 
of Bruno Heidelberger, ETH Zurich. 
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Outline

• introduction to spatial data structures
• binary space partitioning trees
• voxel grids 
• spatial subdivision with graphics hardware

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Axis-Aligned Bounding 
Box (AABB)

Object-Oriented
Bounding Box (OBB)

Discrete Orientation
Polytope (k-DOP)

Sphere

(1) Bounding volumes

(3) Collision detection test

(2) Bounding volume tree

Bounding Volume Hierarchies
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Bounding Volume
Hierarchy 

Spatial Partitioning

Model partitioning Space partitioning

BVHs vs. Spatial Partitioning

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

• space is divided up 
into cells

• object primitives are
placed into cells

• object primitives
within the same cell are
checked for collision

• pairs of primitives that do
not share the same cell
are not tested (trivial reject)

Spatial Partitioning - Idea

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

voxel grid octree k-d tree BSP-tree

• cells maintain references to primitives intersecting the cell
• information is updated for each object transformation
• octree, k-d tree, and BSP-tree are object-dependent
• voxel grid is object-independent

Spatial Data Structures

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

• space partitioning into (uniform) rectangular,
axis-aligned cells

• primitives per cell are found by
– scan conversion of primitives to the grid or
– scan conversion of AABBs of the primitives

• fast cell access
• optimal cell size?

– large cells increase the number of primitives per cell
– small cells cause spreading of primitives to a large number of cells

• less efficient in case of non-uniform primitive distribution

Voxel Grid
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• hierarchical structures
• space partitioning into rectangular, axis-aligned cells
• root node corresponds to AABB of an object
• internal nodes represent subdivisions of the AABB
• leaves represent cells which maintain primitive lists

Octree and k-d Tree

octree k-dimensional binary tree

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

• uniform or non-uniform subdivision
• adaptive to local distribution of primitives

– large cells in case of low density of primitives
– small cells in case of high density

• dynamic update
– cells with many primitives can be subdivided
– cells with less primitives can be merged

Octree and k-d Tree

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Outline

• introduction to spatial data structures
• binary space partitioning trees
• voxel grids 

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

• binary space partitioning tree
• hierarchical structure 
• space is subdivided by means of

arbitrarily oriented planes
• generalized k-d tree
• space partitioning into convex cells
• discrete-orientation BSP trees DOBSP

(finite set of plane orientations)

BSP Tree
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• [Henry Fuchs et al. 1980] proposed 
a visible surface algorithm using a pre-computed BSP 

BSP Tree for Rendering

original scene scene partitioning BSP tree

1

2

3

4

1

2a
3

4

2b 1

3 4

2b 2a

+

+ + --

-
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• for a given viewpoint
– render far branch
– render root (node) polygon
– render near branch

• recursively applied to sub-trees
• back to front rendering
• example: viewpoint is in 1-
• rendering of 1+, 1, 1-
• rule recursively applied to 1+ and 1-
• viewpoint is in 3+ -> rendering of 3, 2b
• viewpoint is in 4- -> rendering of 2a, 4

BSP Tree for Rendering

viewpoint

BSP tree

1

2a
3

4

2b

1

3 4

2b 2a

+

+ + --

-
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• BSP trees can be used for 
inside / outside classification of 
closed polygons

BSP Tree for Collision Detection

original scene scene partitioning solid-leaf
BSP tree

1
2

3

4

1
2

3a

4

3b

1

3b 3a

4 2

+

+ + --

-

out out
+ - + -

out out inin
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• query point is inside

• query point is outside

Collision Query

1
2

3a

4

3b

1

3b 3a

4 2

+

+ + --

-

out out
+ - + -

out out inin

1
2

3a
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3b

1

3b 3a

4 2
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+ + --

-

out out
+ - + -

out out inin
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• keep the number of nodes small
• keep the number of levels small
• introduce arbitrary support planes

(especially in case of convex objects, 
where all polygon faces are in the same half-space
with respect to a given face)

BSP Tree Construction

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

• introduction to spatial data structures
• binary space partitioning trees
• voxel grids 

Outline

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Related Approaches

• [Levinthal 1966]
– 3D grid (“cubing”)
– analysis of molecular structures
– neighborhood search 

to compute atom interaction
• [Rabin 1976]

– 3D grid + hashing
– finding closest pairs

• [Turk 1989, 1990]
– rigid collision detection
– 3D grid + hashing

Cyrus Levinthal, MIT

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Deformable Collision Detection

• [Teschner, Heidelberger et al. 2003]
– collisions and self-collisions for 

deformable tetrahedral meshes
– uniform 3D grid
– non-uniform distribution 

of object primitives
à hashing

– no explicit 3D data structure
– analysis of optimal cell size 

NCCR Co-Me

Epidaure, INRIA
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Algorithm - Setup

implicit uniform grid: hash function:
H(cell) à hash table index

hash table:

...

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 1

• all vertices are hashed according to their cell:

...

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 2

• all tetrahedrons are hashed according to
the cells touched by their bounding box

...

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 3

• vertices and tetrahedrons in the same 
hash table entry are tested for intersection:

...

A) à no collision

B) à collision

C) à self-collision
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Vertex-in-Tetrahedron Test

(a) Barycentric coordinates: (b) Oriented faces:

à Barycentric coordinates faster

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Summary

• stages:
– hash all vertices
– hash all tetrahedrons
– intersection test within each hash table entry

• parameters:
– grid cell size
– grid cell shape
– hash table size
– hash function

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm - Parameters

implicit uniform grid: hash function:
H(cell) à hash table index

cell sizecell shape hash table size

hash table:

...

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Grid Cell Size

• [Bentley et al. 1977] suggest a cell size equal to the size of the 
bounding box of an object primitive

• [Teschner, Heidelberger et al. 2003]

test scenario
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Hash Table Size

• larger hash table reduces hash collisions

test scenario

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Hash Function

H(i, j, k) := (i ⋅ p1 xor j ⋅ p2 xor k ⋅ p3) mod n

i, j, k :  cell coordinates

p1, p2, p3 :  large primes

n :  hash table size

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

• [Teschner, Heidelberger et al. 2003] 
collision and self-collision detection

Performance

test scenarios
174

72

34

15

6

max time 
[ms]

5898205142

48401000020

2420050000100

193640008

12001000100

verticestetrasobjects

Pentium 4, 1.8GHz

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Uniform Voxel Grids

• collision and self-collision detection of tetrahedral meshes
• no explicit spatial partitioning 

(AABB and cells are not explicitly represented)
• hash map
• performance dependent on number of object primitives
• performance independent of number of objects

• algorithm can work with various object primitives
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• simple and efficient technique 
• especially interesting for deformable, n-body, and

self-collision detection
• in case of non-uniform or sparse spatial distribution of object 

primitives, hashing is a good choice 
• parameters have

to be investigated

Uniform Voxel Grids

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory
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Image-Space Collision Detection
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of Bruno Heidelberger, ETH Zurich. 
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frame buffer is a uniform grid

• Kenneth Hoff, UNC
• stencil-buffer for collision detection

• clear stencil buffer
• increment stencil buffer for each 

rendered object
• intersection for stencil buffer value larger 1 

stencil value 1

stencil value 2

Graphics Hardware for 
2D Collision Detection
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Closed Objects

• number of entry points equals the number of exit points
• in case of convex objects, one entry point and one exit point
• inside and outside are separated by entry or exit point
• entry point is at a front face
• exit point is at a back face
• front and back faces alternate 

inside
region

entry point

exit point

outside region

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Collision Detection
with Graphics Hardware

Image
Plane
(xy)

z
z
z
z
z
z

z

Depth
Buffer

(z)

z

• exploit rasterization of object primitives 
as intersection test

• benefit from graphics hardware acceleration

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Collision Detection 
with Graphics Hardware

Idea
• computation of entry and exit points can be accelerated

with graphics hardware
• computation corresponds to rasterization of surface primitives
• all object representations that can be rendered are handled
• parallel processing on CPU and GPU

Challenges
• restricted data structures and functionality

Drawbacks
• approximate computation of entry and exit points

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Early approaches 

[Shinya, Forgue 1991]
image-space collision detection for
convex objects

[Myszkowski, Okunev, Kunii 1995]
collision detection for concave objects
with limited depth complexity

[Baciu, Wong 1997]
hardware-assisted collision detection for
convex objects
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More approaches 

[Vassilev, Spanlang, Chrysanthou 2001]
image-space collision detection applied to 
cloth simulation and convex avatars

[Hoff, Zaferakis, Lin, Manocha 2001]
proximity tests and penetration
depth computation, 2D

[Lombardo, Cani, Neyret 1999]
intersection of tool with deformable tissue
by rendering the interior of the tool

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Recent approaches 

[Knott, Pai 2003]  
intersection of edges with surfaces 

[Govindaraju, Redon, Lin, Manocha 2003]
object and sub-object pruning based on
occlusion queries 

[Heidelberger, Teschner 2004]
explicit intersection volume and
self-collision detection based on LDIs

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

z

• render all query objects (e. g. edges) to depth buffer
• count the number f of front faces that occlude the query object
• count the number b of back faces that occlude the query object
• iff f - b == 0 then there is no collision 

Image-Space Collision Detection
[Knott, Pai 2003]

= front face
= back face
= query point

2 occluding front faces
1 occluding back face
→ collision

1 occluding front faces
1 occluding back face
→ no collision

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

• clear depth buffer, clear stencil buffer
• render query objects to depth buffer
• disable depth update
• render front faces with stencil increment

– if front face is closer than query object, then stencil buffer is incremented
– depth buffer is not updated

– result: stencil buffer represents number of occluding front faces

• render back faces with stencil decrement
– if back face is closer than query object, then stencil buffer is decremented
– depth buffer is not updated
– result: stencil buffer represents difference of occluding front and back faces

• stencil buffer not equal to zero → collision

Image-Space Collision Detection
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• works for objects with closed surface
• works for n-body environments
• works for query objects that do not overlap in image space
• numerical problems if query object is part of an object

– offset in z-direction required

• [Video]

Image-Space Collision Detection

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

• RECODE – REndered COllision DEtection
• works with pairs of closed convex objects A and B
• one or two rendering passes for A and B
• algorithm estimates overlapping z intervals per pixel

collision collision no collision

Image-Space Collision Detection 
[Baciu 2000]

z
Ab BbBfAf

z
AbBbBfAf

z
Ab BbBfAf

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

• clear depth buffer
• clear stencil buffer
• enable depth update
• render back faces of A with stencil increment

– if nothing has been rendered → stencil=0
– if something has been rendered → stencil=1

– depth buffer contains depth of back faces of A

• disable depth update
• render B with stencil increment 

– if stencil==1 and B occludes back face of A → stencil+=1
– depth buffer is not updated

– stencil-1 = number of faces of B that occlude A

First Rendering Pass

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

First Rendering Pass

z

z
Ab

z
Ab Bf Bb

z
Ab

z
Ab

Bb

Bb

Bf

Bf

Af

Af

Af

Af

z
AbBbBf

z
AbBbBf

z
AbBbBf

Af

• first pass collision query

• stencil 0 → no collision

• stencil 1 → no collision
– no fragment of B occludes

back face of A (2 cases)

• stencil 2 → collision
– front face of B occludes

back face of A (2 cases)

• stencil 3 → second pass
– front and back face of B

occlude back face of A
(3 cases)
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• render back faces of object B, count occluding faces of A
– corresponds to first pass with A and B permuted
– only 3 cases based on the result of the first rendering pass

• stencil 1 → no collision
– no fragment of A occludes

back face of B (1 case)

• stencil 2 → collision
– front face of A occludes

back face of B (2 cases)

• done

Second Rendering Pass

Af

Af

z
AbBbBf

z
AbBbBf

z
AbBbBf

Af

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

• render front faces of object A, count occluding faces of B
– corresponds to first pass, front faces are rendered instead of back faces
– only 3 cases based on the result of the first rendering pass

• stencil 3 → no collision
– front and back face of B

occlude front face of A

• stencil 2 → collision
– front face of B occludes

front face of A

• stencil 1 → collision
– no fragment of B occludes

front face of A

• done

Second Rendering Pass 
[Myszkowski 1995]

Af

z
AbBbBf

Af

z
AbBbBf

z
AbBbBf

Af

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

• collision detection for pairs of concave objects
A and B with limited depth complexity (number of entry/exit points)

• faces have to be sorted with respect 
to the direction of the orthogonal projection (e. g. BSP tree)

• objects are rendered in front-to-back or back-to-front order
• alpha blending is employed: 

colorframebuffer= colorobject + α ⋅ colorframebuffer

• color of A is zero, color of B is 2k-1, 
k is the number of bits in the frame buffer,
α = 0.5

Image-Space Collision Detection for
Concave Objects [Myszkowski 1995]

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

• example: k = 8 
• color A = 0, color B = 27

• sequence of faces B1 A1 A2 B2 B3 B4 rendered back to front:
– cf b = 000000002

– render B4: cf b = 27 + α ⋅ cf b = 100000002 + 0.5 ⋅ 000000002 = 100000002

– render B3: cf b = 100000002 + 0.5 ⋅ 100000002 = 110000002

– render B2: cf b = 100000002 + 0.5 ⋅ 110000002 = 111000002

– render A2: cf b = 000000002 + 0.5 ⋅ 111000002 = 011100002

– render A1: cf b = 000000002 + 0.5 ⋅ 011100002 = 001110002

– render B1: cf b = 100000002 + 0.5 ⋅ 001110002 = 100111002

• resulting bit sequence represents order of faces of A (0) and B (1)
• odd number of adjacent zeros or ones indicates collision

Image-Space Collision Detection 
for Concave Objects
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• example:

Image-Space Collision Detection 
for Concave Objects

Image
Plane
(xy)

00000000
01100000
01100000
10100000
10100000
10100000

11000000

frame
buffer
(color)

11110000

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

• works with pairs of closed arbitrarily-shaped objects
• three implementations

– n+1 hardware-accelerated rendering passes 
where n is the depth complexity of an object

– n hardware-accelerated rendering passes
– 1 software rendering pass

• three collision queries
– intersection volume (based on intersecting z intervals)

– vertex-in-volume test
– self-collision test

• basic idea and implementation for convex objects 
has been proposed by Shinya / Forgue in 1991

Image-Space Collision Detection 
[Heidelberger 2003]

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

• compact, volumetric object representation [Shade et al. 1998]
• represents object as layers of depth values
• stores entry and exit points

z1 z2 z3 z4

La
ye

r 1
La

ye
r 2

La
ye

r 3
La

ye
r 4

1
2 3

4

Layered Depth
Image

= entry point
= exit point

z

z

Layered Depth Image

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm consists of 3 stages:

a) Very fast detection of 
trivial “no collision” cases

b) Overlapping area defines 
volume of interest (VoI)
for step 2 & 3

Stage 1: Check for bounding box intersection

Algorithm Overview
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d2 d1d3
d2 d1d3
d2 d1
d2 d1
d2 d1

LDI1

d1
d1
d1
d1
d1

LDI2

Stage 2: Generate the layered depth images (LDI)

Step 3: Perform the collision tests
a) test object primitives of one object against LDI of the other
b) combine both LDI to get overlapping volume
c) self-intersection test

Algorithm Overview

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm Overview

Stage 1
Volume-of-interest

Stage 2 Stage 3
Collision queryLDI generation

viewing direction a) LDI intersection b) Vertex-in-volume

c) Self-collision

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm Overview

volume of interest VoI layer 1 layer 2 volume

collision
queries

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

VoI = BoundingBox(Object 1) ∩ BoundingBox(Object 2)

1. evaluation of trivial rejection test: VoI == Øà no collision!
2. choice of opposite render directions for LDI generation

possible enlargement of VoI to guarantee valid directions

outside faces are outside the object 
-> guarantees that first intersection point is an entry point

Volume of Interest

outside
faces
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• object is rendered once for each layer in the LDI
• two separate depth tests per fragment are necessary:

– fragment must be farther than the one in the previous layer (d2)
– fragment must be the nearest of all remaining fragments (d3 & d4)

example:   pass #3

à second depth test is realized using shadow mapping
extended depth-peeling approach [Everitt 2001]

d1 d2 d3 d4
1

2 3
4

LDI Generation on the GPU
Depth Peeling

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Idea:
– for each fragment to be rendered:

check if it is visible from the light source

Algorithm:
– render scene from the light source:

store all distances to the visible (=lit)
fragments in a “shadow map”

– render scene from the camera:
compare the distance z of each
fragment to the light with the
value z* in the shadow map:

Shadow Map (z*)

Frame
Buffer

A

B

Camera

Light

za=za*

zb>zb*

z
z = z* à fragment is lit
z > z* à fragment is shadowed

Shadow Mapping

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Differences to regular depth test:
– shadow mapping depth test is not tied to camera position
– shadow map (depth buffer) is not writeable during depth test
– shadow mapping does not discard fragments

Depth test setup for LDI generation:
– fragment must be farther away than fragment in previous 

depth layer à shadow map test
– fragment must be the nearest of all remaining fragments à

regular depth test

Shadow Mapping 
as Depth Test

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

GPU CPU

LDI #1

read back

z-buffer

clear objectPass #1

z-buffer shadow maptest

copy

clear object
Pass #2

z-buffer shadow maptest

copy

clear object

#pixels 
== 0 !

Pass #n+1

LDI #2

read back
#pixels 

> 0

#pixels 
> 0

… LDI #i - #ncopy …Pass #i - #n

read back

Multipass LDI Generation
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Result of LDI Generation

• multipass LDI generation results in
an ordered LDI representation of the VoI

• requires one rendering pass per depth layer
• requires shadow mapping functionality 

4321

6543211 2 3 4 5 6

1 2 3 4

VoI ordered LDI

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

No collision ß
Collision ß

d1d2x

d1d2d3 x

d1d2xNo collision ß

• test object primitives of one object against LDI of the other 
object (and vice versa)

• vertex-in-volume test

example:

Collision Detection Test

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

d2 d1d3
d2 d1d3
d2 d1
d2 d1
d2 d1

LDI1

d1
d1
d1
d1
d1

LDI2

• intersect both LDI to get the overlapping volume
• provides an explicit intersection volume
• other boolean operations (union, difference) are also possible 
à constructive solid geometry (CSG)

d1
d1
d1
d1
d1

d2
d2
d2
d2
d2

LDI1∩2

LDI1∩2 = LDI1 ∩ LDI2

LDI Combination

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Collision queries

Explicit intersection volume

+

Vertex-in-volume test

+
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Self-collision query

• check for incorrect ordering of front and back faces
• if front and back faces do not alternate -> self collision

21

4321

4321

43211 2 3 4

1 2 3 4

1 2

1 2 3 4

VoI LDI

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

d1d2x

d1d2d3 x

d1d2x

d1
d1
d1
d1
d1

d2
d2
d2
d2
d2

LDI1∩2

d2d1d3
d2d1d3
d2d1
d2d1
d2d1

LDI1

d1
d1
d1
d1
d1

LDI2

(1) Volume of interest (3) Collision detection test

(2) LDI generation

or

Algorithm Summary

or self-collision

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

• object can not be rendered to shadow map (see differences to
depth buffer) à additional copy process necessary 

• limited precision of depth buffer leads to singularities near edges 
between front and back faces:

example:

à handle front and back faces in separate passes

= valid entry point?
= valid leaving point?

d1 d2 d3

d1 d2 d3

d1

No! à corrupt LDI!

Problems

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Unordered LDI Generation

222314

641235

224321

654321

1 2 3 4 5 6

1 2 3 4

VoI unsorted LDI (GPU)

sorted LDI (CPU)

• alternative method for LDI generation
• GPU generates unsorted LDI

• fragments are rendered in the same order in each rendering pass

• stencil buffer is used to get n-th value in the n-th pass 

• CPU generates ordered LDI
• depth complexity is known for each fragment 

(how many values are rendered per pixel)
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Unordered LDI Generation

frame buffer

GPU CPU

ldi layer 1

clear

Pass 1

read back

stencil buffer
Test: GREATER  Ref: 1
Fail: INCR   Pass: INCR

depth buffer
Test: DISABLED

render

depth 
complexities

read back

nmax

identify

frame buffer

ldi layer n

clear

read back

stencil buffer
Test: GREATER   Ref: n
Fail: KEEP   Pass: INCR

depth buffer
Test: DISABLED

render

Pass n
(2 = n = nmax)

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

• performance is dependent on:
– depth complexity of objects in volume of interest
– read back delay for simple objects
– rendering speed for complex objects

• requires graphics hardware

Limitations

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Ordered LDI Generation 
on CPU

Motivation
• buffer read-back from GPU 

can be performance bottleneck
• GPU requires multiple passes
• CPU can store fragments directly into LDI

Simplified software-renderer
• rasterization of triangle meshes
• frustum culling
• face clipping
• orthogonal projection

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

LDI Generation - Summary

Ordered LDI (GPU) Unordered LDI (GPU)

• n+1 passes
• complex setup
• two depth tests
• shadow map
• OpenGL extensions

• n passes
• simple setup
• no depth test
• stencil buffer
• plain OpenGL 1.4

Ordered LDI (CPU)

• 1 pass
• simple setup
• no depth test

rasterize
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Performance - Intersection Volume

• hand with 4800 faces
• phone with 900 faces
• two LDIs
• intersection volume

for collision detection
• analysis of front / back face 

ordering for self-collision

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Performance – Intersection Volume

8 / 115 / 73 / 4software (CPU)

21 / 3012 / 189 / 12unordered (GPU, CPU)

68 / 9140 / 5428 / 37ordered (GPU)

overall
min / max

self collision
min / max

collision
min / max

method

3 GHz Pentium 4, GeForce FX Ultra 5800
hand with 4800 faces
phone with 900 faces
measurements in ms

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Performance – Vertex-in-Volume

• santa with 10000 faces
• 20000 particles
• one LDI
• test vertices against 

inside regions of the LDI

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Performance – Vertex-in-Volume

35105400software (CPU)

2575225unordered (GPU, CPU)

50160450ordered (GPU)

50k faces
10k particles

150k faces
30k particles

520k faces
100k particles

method

3 GHz Pentium 4, GeForce FX Ultra 5800
LDI resolution 64 x 64
measurements in ms
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Performance – LDI resolution

• mouse with 15000 faces
• hat with 1500 faces
• two LDIs
• intersection volume 

for collision detection

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Performance – LDI resolution

632software (CPU)

1798unordered (GPU, CPU)

512624ordered (GPU)

128 x12864 x 6432 x32method

3 GHz Pentium 4, GeForce FX Ultra 5800
mouse with 15000 faces
hat with 1500 faces
measurements in ms

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Applications – Cloth Modeling

3 orthogonal
dilated LDIs

LDI

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Real-Time Cloth Simulation
with Collision Handling

stable collision handling

real-time movie
3GHz Pentium 4
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Real-Time Cloth Simulation
with Collision Handling

concave transforming object concave deforming object

real-time movies
3GHz Pentium 4

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Summary

• image-space technique
• detection of collisions and self-collisions
• handling of rigid and deformable closed meshes
• no pre-processing
• CPU: 5000 / 1000 faces at 100 Hz
• GPU: 520000 faces / 100000 particles at 4 Hz
• application to cloth simulation
• limitations

• closed meshes
• accuracy
• collision information for collision response

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

• collision detection of a surgical tool and an anatomical structure
• tool is modeled as a box 
• viewing volume of a camera is specified based on this box

(near, far, left, right, top, bottom)
• anatomical structure is rendered in terms of this camera
• if something has been rendered → collision
• if nothing has been rendered → no collision

Image-Space Collision Detection 
with a Box [Lombardo 1998]

near far

right
left

bottom

top
collision

no collision

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Bounding Volume Hierarchies
- efficient or lazy update of BV hierarchies
- hierarchy update is essential for performance

Spatial Partitioning with Hashing
- detects self-collisions
- appropriate for deformable objects or many objects 

Spatial Partitioning with Graphics Hardware
- rendering of objects provides spatial partitioning
- rendering result can be employed for collision detection
- LDIs can be used to approximately represent objects
for further processing

Intersection Detection for 
Deformable Objects
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n for a pair of objects
n compute their distance 

(find a pair of closest points)
n compute their penetration depth 

(minimal translation to separate two interfering objects)

Proximity Query

distance penetration depth
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n distance
n collision candidates
n continuous collision detection

n penetration depth
n penalty-based collision response
n computation of time of contact

Application
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→ contact at tx
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n A                                                  B

n A + B = { x + y : x ∈ A, y ∈ B }

(A + t1) + (B + t2) = (A + B) + t1 + t2

n representation of swept objects

Minkowski Addition

O

O

O
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n A                                                  B

n CSO(A,B) = A - B = A + (-B) = { x - y : x ∈ A, y ∈ B }

n to realize A-B,
the reflection of B is added to A

Configuration Space Obstacle

O

O

O
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CSO and Proximity Queries

n iff A and B intersect, 
they have a common point x1 = y1 with x1 – y1 = O

n → O ∈ CSO(A,B) iff A and B intersect

n d (A,B) distance between A and B 
d (A,B) = min { x – y  : x ∈ A, y ∈ B }

n p (A,B) penetration depth of A and B
p (A,B) = inf { x  : x ∉ CSO(A,B) }

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory
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Proximity Queries - Examples
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Convex Objects

n if A and B are convex, then A+B and CSO(A,B) are convex
n proof:

n let w1 = x1 + y1, w2 = x2 + y2 , x1, x2 ∈ A , y1 , y2 ∈ B, w1, w2 ∈ A + B 
n A+B is convex iff λ1w1 + λ2w2 ∈ A + B, λ1 + λ2 = 1, λ1, λ2 ≥ 0
n A is convex ⇒ λ1x1 + λ2x2 ∈ A
n B is convex ⇒ λ1y1 + λ2y2 ∈ B
n λ1x1 + λ2x2 + λ1y1 + λ2y2 = λ1( x1 + y1) + λ2( x2 + y2 ) = λ1w1 + λ2w2 

n ⇒ λ1w1 + λ2w2 ∈ A + B 
n ⇒ A+B is convex

n important for computing proximity queries on CSOs
for convex objects
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Convex Polytopes

n A and B are polytopes, e. g. closed triangulated surfaces
n conv (A) – convex hull of A
n vert (A) – set of vertices of A

n A + B = conv ( vert (A) + vert (B) )

n computing the convex hull for all pair wise sums of
vertices of A and B gives the Minkowski sum of A and B

n important for computing A + B for convex polytopes
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n axis-aligned boxes A = [ p1, q1 ] , B = [ p2, q2 ]
n CSO (A, B) = [ p1, q1 ] - [ p2, q2 ] = [ p1 - q2, q1 - p2 ]
n A and B intersect iff O ∈ [ p1 - q2, q1 - p2 ]
n intersecting AABBs in 1D

Proximity Queries - AABBs

p1 q1

p2 q2

p1 – q2 < 0 q1 – p2 > 00
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n axis-aligned boxes 
A = [ c1 - h1, c1 + h1] , B = [ c2 – h2, c2 + h2] , h1, h2 > O

n CSO (A, B) = [ c1  - c2 – (h1 + h2), c1  - c2 + (h1 + h2) ] 

n O ∈ CSO (A, B) iff |c1  - c2| < h1 + h2
(see BVH slides)

n intersection test for spheres can be derived
in a similar way

Proximity Queries - AABBs

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

n Minkowski sum or configuration space obstacle CSO
can be used for proximity queries

n if origin is not contained in CSO, 
then the distance of two objects is given by
the distance of the CSO to the origin

n if origin is contained in CSO, the penetration depth
is given by the distance of the CSO to the origin

n useful characteristics for CSO of convex polytopes
n intersection tests for AABBs and other basic primitives

can be derived from CSO

Summary

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory
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n for a given convex polytope C with O ∉ C, 
GJK computes the point v ( C ) closest to the origin O

n || v (C) || = min ( || x || : x ∈ C )

n iff C = CSO ( A, B), then GJK computes the distance 
d ( A, B ) of two non-intersecting convex objects A and B

n d ( A, B ) = || v ( CSO (A, B) ) ||

Overview

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

n A support mapping of a polytope A is a function sA
that maps a vector v to a vertex of A. 

n sA (v) ∈ vert (A) with v ⋅ sA (v) = max ( v ⋅ a : a ∈ vert (A) )

n The vertex sA (v) is
the support point of A with respect to v.

Support Mapping

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Support Mapping - Example

A
B

v2v1

sA (v1)

sA (-v1) sA (-v2)

sA (v2) sB (v1)

sB (-v1)

sB (-v2)

sB (v2)
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n represent the convex polytope as an adjacency graph
n start with an initial guess
n “climb the hill” by searching the adjacency graph

for better solutions ⇒ hill climbing

n p = cached support vertex
n repeat

n optimal = true
n for q ∈ adj (p) do

n if v ⋅ q > v ⋅ p then { p = q, optimal = false }
n until optimal 

Support Mapping for 
Convex Polytopes
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GJK Initialization – Step 0

n iterative approximation of d ( A, B )
n GJK starts with an arbitrary v0 ∈ A – B 

and a set of vertices W0 = ∅

n w0 = sA-B ( -v0 )

O
v0

w0

A-B
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Step 1

n v1 = v ( conv ( W0 ∪ {w0} ) ) = v ( conv (w0 ) ) 
n w1 = sA-B ( -v1 ) 
n W1 = “smallest” X with X⊆ W0 ∪ {w0} such that v1 ∈ conv(X)
n W1 = {w0}

O
w1

v1

A-B

w0
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Step 2

n v2 = v ( conv ( W1 ∪ {w1} ) ) = v ( conv ( w0, w1 ) )
n w2 = sA-B ( -v2 ) 
n W2 = “smallest” X with X⊆ W1 ∪ {w1} such that v2 ∈ conv(X)
n W2 = { w0, w1 }

O
w1

v2

A-B

w0

w2
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Step 3

n v3 = v ( conv ( W2 ∪ {w2} ) ) = v ( conv ( w0, w1, w2 ) )
n w3 = sA-B ( -v3 ) 
n W3 = “smallest” X with X⊆ W2 ∪ {w2} such that v3 ∈ conv(X)
n W3 = { w2 }

O
w1

v3

A-B

w0

w2

w3
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“smallest” X

n v1 = v ( conv ( w0, w1, w2 ) )    X = { w0, w1, w2 }
n v1 = λ0 w0 + λ1 w1 + λ2 w2   with λ0+λ1+λ2=1, λ0,λ1,λ2 ≥ 0

n if λi = 0 then the corresponding wi can be removed
from X such that v1 = v ( conv ( X ) )

n example:
n v1 = λ0 w1 + λ1 w2

n ⇒ v1 = v ( conv ( w1, w2 ) ) 
n ⇒ X = { w1, w2 }

w0
w1

w2

v1
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GJK Algorithm

n v = arbitrary point in A – B
n W = ∅
n w = sA-B ( -v )
n while v not close enough to v (A-B)

n v = v ( conv ( W ∪ {w} ) )
n W = smallest X ⊆ W ∪ {w} such that v ∈ conv (X)
n w = sA-B ( -v )

n return ||v||

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Convergence and Termination

n || vk+1 || ≤ || vk ||
n if || vk+1 || = || vk || then vk = v ( A-B ) 

n for polytopes, GJK computes vk = v ( A-B ) 
in a finite number of iterations

n for non-polytopes, the error of || vk || is bound by
|| vk - v ( A-B ) ||2 ≤ || vk ||2 - vk ⋅ wk

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

n GJK computes the distance of two non-intersecting objects
n iterative process
n main loop performs three steps on a simplex

n computation of the distance of the simplex to the origin
n support mapping based on this distance
n adaptation of the simplex based on the support point

n GJK converges to the correct solution
n GJK computes the distance in a finite number 

of iterations for polytopes

Summary
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n EPA computes the penetration depth of two objects
n iterative process
n works with an CSO that contains the origin
n starts with a simplex (triangle in 2D, tetrahedron in 3D)

that contains the origin and whose vertices are on the 
boundary of the CSO

n the initial simplex is subdivided (expanded) by EPA
to approximate the CSO

n the distance of the expanded polytope to the origin
corresponds to the penetration depth 

Introduction
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n v0 = v ( X )
n w0 = sA-B ( v0 )
n expand X such that it contains w0

Step 0

O

w0

v0

A-B

X

O

w0

A-B

X
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n v1 = v ( X )
n w1 = sA-B ( v1 )
n expand X such that it contains w1

Step 1

w1

v1 O

A-B

X

w1

O

A-B

X
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n v2 = v ( X )
n w2 = sA-B ( v2 )
n expand X such that it contains w2

Step 2

v2

w2

O

A-B

X

w2

O

A-B

X
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Convergence and Termination

n || vk+1 || ≥ || vk ||

n for polytopes, EPA computes vk = v ( A-B ) 
in a finite number of iterations
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n two polytopes A and B
n start with an arbitrary vertex v’A with v’A ∈ vert (A)
n compute nearest vertex vB with vB ∈ vert (B)

Approximate Distance – Step 1

BA

v’A vB
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n compute nearest vertex vA ∈ vert (A) with respect to vB

n || vA – vB || is the approximate distance of A and B

Approximate Distance – Step 2

BA vA

vB
v’A

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

n better approximation for larger distances
and convex objects

n bad approximation in case of concave objects

Characteristics

B

A

vA

vB

v’A
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Motivation

n compute consistent penetration depth information 
for all intersecting points of a tetrahedral mesh

n can be used to compute penalty forces which provide
realistic collision response for deformable tetrahedral 
meshes
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Challenges

n inconsistent penetration depth information due to
discrete simulation steps and object discretization

n inconsistent penetration depth results in oscillation 
artifacts or non-realistic collision response

inconsistent inconsistent consistentconsistent

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 1

n object points are classified as colliding 
or non-colloding points → slides on spatial hashing

non-colliding point
colliding point

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 2

n border points, intersecting edges, and intersection points 
are detected → extension of spatial hashing

intersection edge
border point

intersection point
intersection normal

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm – Stage 3

n penetration depth d(p) of a border point p is 
approximated using the adjacent intersection
points xi and normals ni
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Algorithm – Stage 4

n consistent penetration depth information at points pj is
propagated to other colliding points p

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Results

n consistent collision response

n inconsistent collision response

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Results - Video

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Summary

n consistent penetration depth information in case of
n discrete object representation
n discrete time simulation

n addresses the problem of discontinuities in magnitude 
and direction of the penetration depth

n provides realistic penalty-based collision response 
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Interacting Deformable Objects

n deformable modeling based on constraints
n collision detection based on spatial hashing
n collision response based on consistent

penetration depth computation 

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory
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Fast Collision Detection among 
Deformable Objects using Graphics 
Processors
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Outline

Overview
Interactive Collision Detection
Conclusions and Future Work
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Collision Detection

Well studied
Computer graphics, computational geometry 
etc.

Widely used in games, simulations, 
virtual reality applications

Often a computational bottleneck 
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Interactive Collision Detection
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Interactive Collision Detection

Visibility to reduce number of pair-wise overlap tests
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Interactive Collision Detection
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Graphics Processing Units (GPUs)

Well-designed for visibility computations
Rasterization – image-space visibility

Massively parallel
Render millions of polygons per second
Well suited for image-based algorithms

High growth rate

8
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Recent growth rate of 
Graphics Processing Units

Card Million triangles/sec
Radeon 9700 Pro 325
GeForce FX 5800 350
Radeon 9800 XT 412
GeForce FX 5950 356
GeForce FX 6800 600
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Graphics Processing Units (GPUs)

Well-designed for visibility computations
Rasterization – image-space visibility

Massively parallel
Render millions of polygons per second
Well suited for image-based algorithms

High growth rate
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GPUs: Geometric 
Computations

Used for geometric applications
Minkowski sums [Kim et al. 02]
CSG rendering [Goldfeather et al. 89, Rossignac et al. 
90]
Voronoi computation [Hoff et al. 01, 02, Sud et al. 
04]
Isosurface computation [Pascucci 04]
Map simplification [Mustafa et al. 01]

11
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

GPUs for Geometric 
Computations: Issues

Precision
Frame-buffer readbacks
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Draw stream 
of triangles CPUGPU

Visibility of 
triangles

Vertex Processing 
Engines Setup Engine

Stream of 
vertices

Stream of visible pixels

Alpha test

Pixel Processing
Engines

Stencil test

Depth test

Stream of 
transformed 
vertices

Setup of 
setup 
commands 
and state

count of visible pixels

GPU
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Setup Engine
Stream of 
transformed 
vertices

Setup of 
setup 
commands 
and state

Vertex Processing 
Engines

Pixel Processing
Engines

Stream of visible pixels

Alpha test

Stencil test

Depth test

Stream of 
vertices

IEEE Floating 
Point (32-bit)

IEEE Floating 
Point (32-bit) Limited Resolution!

Draw stream 
of triangles CPUGPU

Visibility of 
triangles

GPU
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Pixel Processing
Engines

Stream of visible pixels

Limited Resolution!

Resolution along X, Y,Z

X – 12 bits fixed precision

Y – 12 bits fixed precision

Z – 24 bits fixed precision

On CPU – 32-bit or 64-bit 
floating-point precision

Frame-Buffer Precision
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Frame-Buffer Readback

Involve stalls
Affect throughput

Slow!
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Frame-Buffer 
Readback Performance

Data Courtesy: www.techreport.com
June 2004

Readback of 1Kx1K frame-buffer takes 18 ms over PCI-Express
Graphics driver – 61.45
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GPU Growth Rate

CPU Growth Rate

AGP Bandwidth Growth 
Rate

Courtesy: Anselmo Lastra
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Outline

Overview
Interactive Collision Detection
Conclusions and Future Work
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Features

Interactive collision detection
between complex objects

Large number of objects
High primitive count
Non-convex objects
Open and closed objects
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Non-rigid Motion

Deformable objects
Changing topology
Self-collisions
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Related Work

Object-space techniques
Image-space techniques
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Object-Space Techniques

Broad phase – Compute object pairs in close 
proximity 

Spatial partitioning
Sweep-and-prune

Narrow phase – Check each pair for exact 
collision detection

Convex objects
Spatial partitioning
Bounding volume hierarchies

Surveys in [Klosowski 1998, Redon et al. 2002, 

Lin and Manocha 2003 ]
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Limitations of Object-Space 
Techniques

Considerable pre-processing
Hard to achieve real-time 
performance on complex deformable 
models
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Collision Detection using 
Graphics Hardware

Primitive rasterization – sorting in 
screen-space

Interference tests
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Image-Space Techniques

Use of graphics hardware
CSG rendering [Goldfeather et al. 1989, Rossignac et 
al. 1990]
Interferences and cross-sections [Shinya and Forgue
1991 , Rossignac et al. 1992, Myszkowski 1995, 
Baciu et al. 1998]
Minkowski sums [Kim et al. 2002]
Cloth animation [Vassilev et al. 2001]
Virtual Surgery [Lombardo et al. 1999]
Proximity computation [Hoff et al. 2001, 2002]

26
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Limitations of Image-Space 
Techniques

Pairs of objects
Stencil-based; limited to closed 
models
Image precision
Frame buffer readbacks
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Collision Detection: Outline

Overview
Collision Detection: CULLIDE
Inter- and Intra-Object Collision 
Detection: Quick-CULLIDE
Reliable Collision Detection: FAR
Analysis
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Overview

Potentially Colliding Set (PCS) 
computation
Exact collision tests on the PCS
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Algorithm

Object-Level
Pruning

Subobject-
Level

Pruning
Exact Tests

GPU-based PCS computation Using CPU

30
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Potentially Colliding Set (PCS)

PCS
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Potentially Colliding Set (PCS)

PCS
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Algorithm

Object-Level
Pruning

Subobject-
Level

Pruning
Exact Tests



9

33
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Visibility Computations

Lemma 1: An object O does not 
collide with a set of objects S if O is 
fully visible with respect to S

34
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Visibility of Objects

An object is fully 
visible if it is 
completely in front of 
the remaining objects

O1

O

View 

O2

35
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Visibility for Collisions: 
Geometric Interpretation

Sufficient but not a necessary 
condition for existence of 
separating surface with unit 
depth complexity

O1

O

View 

O2

36
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PCS Pruning

Lemma 2: Given n objects
O1,O2,…,On , an object Oi does not
belong to PCS if it does not
collide with O1,…,Oi-1,Oi+1,…,On

Prune objects that do not collide
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PCS Pruning

O1 O2  … Oi-1  Oi  Oi+1 … On-1  OnO1 O2  … Oi-1 Oi Oi+1 … On-1  OnO1 O2  … Oi-1  Oi Oi+1 … On-1  On

38
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

PCS Computation

Each object tested against all objects 
but itself
Naive algorithm is O(n2)
Linear time algorithm

Uses two pass rendering approach
Conservative solution
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PCS Computation: First Pass

O1 O2  … Oi-1  Oi  Oi+1 … On-1  On

Render

40
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O1 O2  … Oi-1 Oi

PCS Computation: First Pass

Fully Visible?

Render Yes. Does not 
collide with
O1,O2,…,Oi-1
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PCS Computation: First Pass

O1 O2  … Oi-1  Oi  Oi+1 … On-1 On

Render

Fully Visible?
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PCS Computation: Second Pass

O1 O2  … Oi-1  Oi  Oi+1 … On-1  On

Render
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PCS Computation: Second Pass

Render

Fully Visible?

Oi Oi+1 … On-1  On

Yes. Does not 
collide with 
Oi+1,…,On-1,On
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PCS Computation: Second Pass

Render

Fully Visible?

O1 O2  … Oi-1  Oi  Oi+1 … On-1  On
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PCS Computation

O1 O2  … Oi-1  Oi  Oi+1 … On-1  On

Fully VisibleFully Visible
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PCS Computation

O1 O2 O3 … Oi-1 Oi Oi+1 … On-2 On-1 On

O1 O3  … Oi-1  Oi+1 … On-1

47
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Algorithm

Object-Level
Pruning

Subobject-
Level

Pruning
Exact Tests

48
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

CULLIDE Algorithm

Object-Level
Pruning

Subobject-
Level

Pruning
Exact Tests

Exact overlap 
tests using CPU
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Full Visibility Queries on GPUs

We require a query
Tests if a primitive is fully visible or not

Current hardware supports occlusion 
queries

Test if only part of a primitive is visible or not

Our solution
Change the sign of the depth function

50
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Full Visibility Queries on GPUs

Depth function
GEQUAL LESS

All fragments Pass FailPass
Fail

Fail
PassFail PassFail

Query not 
supported

Occlusion 
query

Examples - HP_Occlusion_test, NV_occlusion_query
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Bandwidth Analysis

Read back only integer identifiers
Computation at high screen resolutions

52
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Live Demo: CULLIDE

Laptop
1.6 GHz Pentium IV CPU
NVIDIA GeForce FX 700 GoGL
AGP 4X
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Live Demo: CULLIDE

Environment
Dragon – 250K polygons
Bunny – 35K polygons

Average frame rate – 15 frames per 
second!
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Interactive Collision Detection: 
Outline

Overview
Collision Detection: CULLIDE
Inter- and Intra-Object Collision 
Detection: Quick-CULLIDE
Reliable Collision Detection: FAR
Analysis
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Quick-CULLIDE

Improved two-pass algorithm
Utilize visibility relationships among 
objects across different views
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Quick-CULLIDE: Visibility 
Sets

Decompose PCS into four disjoint sets
FFV (First pass Fully Visible)
SFV (Second pass Fully Visible)
NFV (Not Fully Visible in either passes)
BFV (Both passes Fully Visible)

Visibility sets have five interesting 
properties!
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Visibility Sets: Properties

Lemma 1: FFV and SFV are collision-
free sets
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PCS Computation: First Pass

O1 O2  … Oi-1  Oi … Oj … On-1  On

Render
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PCS Computation: First Pass

O1 O2  … Oi-1 Oi … Oj … On-1  On

Render

Fully Visible
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Visibility Sets: Properties

Lemma 2: It is sufficient to test 
visibility of objects in FFV in second 
pass only
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PCS Computation: First Pass

O1 O2  … Oi-1  Oi Oi+1 … On-1  On
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O1 O2  … Oi-1 Oi

PCS Computation: First Pass

Render
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PCS Computation: First Pass

O1 O2  … Oi-1  Oi Oi+1 … On-1  On

Not Colliding

Collision tested 
in Second pass
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Visibility Sets: Properties

Lemma 3: It is sufficient to render 
objects in FFV in first pass only!



17

65
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

PCS Computation: First Pass

O1 O2  … Oi-1  Oi Oi+1 … On-1  On
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O1 O2  … Oi-1 Oi

PCS Computation: First Pass

Render
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PCS Computation

O1 O2  … Oi-1  Oi Oi+1 … On-1  On

Not Colliding

Render
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Visibility Sets: Properties

Lemma 4: It is sufficient to test the 
visibility of objects in SFV in first pass 
only!
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Visibility Sets: Properties

Lemma 5: It is sufficient to render 
objects in SFV in second pass only!

70
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Quick-CULLIDE: 
Advantages

Better culling efficiency 
Lower depth complexity than CULLIDE
Always better than CULLIDE

Faster computational performance
Lower number of visibility queries and rendering 
operations 

Can handle self-collisions
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Self-Collisions: Definition

Pairs of overlapping triangles in an 
object that are not neighboring
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Self-Collisions: Definition

Pairs of overlapping triangles in an 
object that are not neighboring
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Self-Collisions

Occur in most deformable simulations

Image Courtesy: Baraff and Witkin, SIGGRAPH 2003

Artifacts
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Our Solution

Classification of contacts between 
triangles in an object

Touching contacts
Penetrating contacts

75
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Contacts: Classification

(a) (b) (c)

Touching Contacts Penetrating Contact
76
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Solution

Ignore touching contacts
Consider only penetrating contacts

Redefine fully visible
We pass a fragment when a touching contact 
occurs
Pass all fragments with depth ≤ corresponding 
depths in frame-buffer
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Live Demo: Quick-CULLIDE

Laptop
1.6 GHz Pentium IV CPU
NVIDIA GeForce FX 700 GoGL
AGP 4X
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Live Demo: Cloth Simulation

Cloth – 20K triangles
Average frame rate – 13 frames per 
second!
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Interactive Collision Detection: 
Outline

Overview
Collision Detection: CULLIDE
Self-Collision Detection: S-CULLIDE
Reliable Collision Detection: FAR
Analysis
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Inaccuracies in GPU-Based 
Algorithms

Image sampling
Depth buffer precision
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Image Sampling

Occurs when a primitive is nearly parallel 
to view direction
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Image Sampling

Primitives are rasterized but no intersecting 
points are sampled by hardware

Viewport

C = pixel center

Intersecting 
point
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Depth Buffer Precision

Intersecting points are sampled but 
precision is not sufficient

Viewport

C = pixel center

Intersecting 
point

T1
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Our Solution

Sufficiently fatten the triangles
Use Minkowski sums

Minkowski Sum AB = A    B
= {a + b:  a    A, b    B}

⊕
∈∈
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PL

Minkowski Sum: Example

P L
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Reliability

Lemma 1: Under orthographic transformation O, the 
rasterization of Minkowski sum Qs = Q    S, where Q 
is a point in 3-D space that projects inside a pixel X 
and S is a sphere bounding a pixel centered at the 
origin, generates two samples for X that bound the 
depth value of Q. 

⊕
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Reliability

Under orthographic transformation O, the rasterization of Minkowski
sum Qs = Q    S, where Q is a point in 3-D space that projects inside a 
pixel X and S is a sphere centered at origin bounding a pixel, samples X 
with at least two fragments bounding the depth value of Q.

⊕

z

x
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Reliability

z

x

Q

Under orthographic transformation O, the rasterization of Minkowski sum 
QS = Q    S, where Q is a point in 3-D space that projects inside a 
pixel X and S is a sphere centered at origin bounding a pixel, samples X
with at least two fragments bounding the depth value of Q.

⊕

Pixel X
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S

Reliability

Under orthographic transformation O, the rasterization of Minkowski sum 
QB = Q    S, where Q is a point in 3-D space that projects inside a pixel X 
and S is a sphere centered at origin bounding a pixel, samples X 
with at least two fragments bounding the depth value of Q.

z

x

Q

Pixel X

⊕
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S

Reliability

z

x

Q

Under orthographic transformation O, the rasterization of Minkowski
sum QS = Q    S, where Q is a point in 3-D space that projects inside a 
pixel X and S is a sphere centered at origin bounding a pixel, samples X 
with at least two fragments bounding the depth value of Q.

⊕
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S

Reliability

z

x

Q

Under orthographic transformation O, the rasterization of Minkowski
sum QS = Q    S, where Q is a point in 3-D space that projects inside a 
pixel X and S is a sphere centered at origin bounding a pixel, samples X 
with at least two fragments bounding the depth value of Q.

⊕
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Under orthographic transformation O, the rasterization of Minkowski
sum QS = Q    S, where Q is a point in 3-D space that projects inside a 
pixel X and S is a sphere centered at origin bounding a pixel, samples X 
with at least two fragments bounding the depth value of Q.

S

Reliability

z

x

Q

⊕

Sample Depths
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Under orthographic transformation O, the rasterization of Minkowski sum 
QS = Q    S, where Q is a point in 3-D space that projects inside a pixel X 
and S is a sphere centered at origin bounding a pixel, samples X with at 
least two fragments bounding the depth value of Q.

S

Reliability

z

x

Q

⊕

Sample Depths
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Reliability

Lemma 2: Given a primitive P and its Minkowski sum 
Ps = P S. Let X be a pixel partly or fully covered by 
the orthographic projection of P. 
Px = {p       P, p projects inside X},

Min-Depth(P, X) = Minimum depth value in Px

Max-Depth(P, X) =Maximum depth value in Px. 
The rasterization of Px

S generates at least two 
fragments whose depth values bound both 
Min-Depth(P, X) and Max-Depth(P, X) for each pixel X.

⊕

∈
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Reliability

z

x

Given a primitive P

P
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Reliability

z

x

Px is the portion of P projecting inside pixel X

Pixel X

Px
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S

Reliability

z

x

S is a sphere centered at origin bounding pixel X

Pixel X

Px
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Reliability

z

x

If we compute Minkowski sum Px
S= Px S,

Pixel X

Px
S

⊕

Px
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Reliability

z

x

Px

then the rasterization of  the Minkowski sum Px
S

generates two fragments

Pixel X

Px
S

Sample Depths
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Reliability

z

x

Px

and the fragments bound depth values in Px

Pixel X

Px
S

Sample Depths
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Reliability

Theorem 1: Given the Minkowski sum of two 
primitives with S, P1

S and P2
S. If P1 and P2

overlap, then a rasterization of their Minkowski
sums under orthographic projection overlaps in 
the viewport.
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Reliability

z

x

P1

Given two primitives P1 and P2

Pixel X

P2
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Reliability

d

x

P1

If P1 and P2 intersect in 3-D,

Pixel X

P2

P1 and  P2
intersect in 3-D
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Reliability

d

x

P1

and we compute their Minkowski sums with a pixel-sized 
sphere centered at origin

Pixel X

P2
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Reliability

z

x

P1

rasterization of the Minkowski sums overlap in image-space

Pixel X

P2
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Reliability

Corollary 1: Given the Minkowski sum of two 
primitives with B, P1

S and P2
S. If a rasterization

of P1
S and P2

S under orthographic projection do 
not overlap in the viewport, then P1 and P2 do 
not overlap in 3-D.

Useful in Collision Culling: apply fattened 
primitives P1

S in CULLIDE
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z

x

Pixel X

P1

P2

P1
S

P2
S
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Bounding Offsets of a Triangle

Exact Offsets
Three edge-aligned cylinders, three spheres, 
two triangles
Can be rendered using fragment programs
Expensive!

Oriented Bounding Box (OBB)
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(c)(a) (d)(b)

OBB Construction
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Union of OBBs
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Live Demo: FAR

Laptop
1.6 GHz Pentium IV CPU
NVIDIA GeForce FX 700 GoGL
AGP 4X
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Live Demo: FAR

Environment
Tree – 4000 triangles
Leaf – 200 triangles, 200 leaves
Scene – 44K triangles

Average frame rate – 15 frames per 
second!
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Interactive Collision Detection: 
Outline

Overview
Collision Detection: CULLIDE
Self-Collision Detection: S-CULLIDE
Reliable Collision Detection: FAR
Analysis

Performance
Pruning efficiency
Precision
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Analysis: Performance

Based on pruning algorithm in 
CULLIDE
Factors

Output size
Rasterization optimizations
Number of objects
Number of triangles per object
Image resolution
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Analysis: Performance

Collision time
vs.
number of objects

NV30 GPU
Pentium IV 2GHz 
CPU

(in
 m

s)
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Analysis: Performance

Collision time
vs.
number of polygons

NV30 GPU
Pentium IV 2 GHz 
CPU

(in
 m

s)
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Analysis: Performance

Collision time
vs.
screen resolution 

NV30 GPU
Pentium IV 2 GHz
CPU

(in
 m

s)
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Analysis: Pruning Efficiency

Input complexity
Relative object configurations
Pruning efficiency in 

Object-Level Culling
Subobject-Level Culling
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Comparison: FAR and I-COLLIDE
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Analysis: Accuracy

CULLIDE and S-CULLIDE: Image resolution
FAR: IEEE 32-bit floating-point precision
Comparison:

FAR vs. CULLIDE
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Accuracy: FAR vs. CULLIDE
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Outline

Overview
Interactive Collision Detection
Conclusions and Future Work
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Conclusions

Designed efficient algorithms for solving
interactive collision detection,
shadow generation

Applied them to complex 3-D 
environments
Compared to prior state-of-the-art 
algorithms

Significant speedups in some cases
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Advantages

Generality
Accuracy

IEEE 32-bit floating-point precision for collision 
computations

Low Bandwidth
No readbacks
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Advantages

Significant Culling
Practicality

Designed on commodity hardware
Assumes availability of occlusion queries
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Limitations

Precision
Shadow and self-collision algorithms are limited by 
image-precision
Accuracy can be improved

Pair computation
Algorithms compute potential sets
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Future Work

Collision Detection
Pair computation
More applications – continuous collision 
detection, shadow volumes
Reliable self-collisions for general and 
specialized models
New programmability features
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Future Work

Shadow generation
Soft shadow generation
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Future Work

Visibility algorithms for 
Line-of-sight 
Database operations [Govindaraju et al. 2004]
Data mining [Govindaraju et al.  2005a]
3-D sorting [Govindaraju et al. 2005b]
Order-statistics 
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Introduction

Problem of Collision Detection:

Object representations in simulation environments
do not consider impenetrability.

The problem is encountered in 
• computer-aided design and machining (CAD/CAM), 
• robotics,
• automation, manufacturing, 
• computer graphics, 
• animation and computer simulated environments.

Collision Detection: Detection of interpenetrating objects.

University of  Tübingen

Introduction



University of  Tübingen

Introduction

Definition of Bounding Volume Hierarchy (BVH):

Each node of a tree is associated with a subset of primitives 
of the objects together with a bounding volume (BV) that 
encloses this subset with the smallest instance of some 
specified class of shape.

University of  Tübingen

Examples of BVs: 
• Spheres
• Discrete oriented polytopes (k-DOPs)

Axis-aligned bounding boxes (AABB)
• Object-oriented bounding boxes (OBB)

Use these BVs as  simplified surface represen-
tation for fast approximate collision detection test:

• Check bounding volumes to get the information
whether bounded objects could interfere.

• Avoid checking all object primitives against each other.
• Assumption that collisions between objects are rare.

Introduction

University of  Tübingen
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Spheres are represented by center     and radius r.
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good choice bad choice

Bounding Volumes

Sphere as bounding volume:
sphere

University of  Tübingen

Discrete oriented polytopes (k-DOP) are a generalization of axis aligned 
bounding boxes (AABB) defined by k hyperplanes with normals in discrete
directions (                               ).

k-DOP is defined by k /2 pairs
of min, max values in k directions.

Two k-DOPs do not overlap, 
if the intervals in one direction
do not overlap.

Bounding Volumes

}1,0{, ±∈jkk n:n   

x

y

min1

min2

max2

max1

DOP
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Bounding Volumes

6-DOP

(AABB)

18-DOP

14-DOP

26-DOP

Different k-DOPs :

DOP

University of  Tübingen

optimal choice

14-DOP as bounding volume:

Bounding Volumes

also good choice

DOP
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Object oriented bounding boxes (OBB) can be represented by 
the principal axes of a set of vertices. These axes have no 
discrete orientation. They move together with the object.

The axes are given by the Eigenvectors
of the covariance matrix:

Bounding Volumes

OBB
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T

LT ⋅ L

Α

Β

pB

pA

A and B do not overlap if: BA ppLTL +>⋅∃ :

Bounding Volumes

OBB overlap test:

OBB

Problem: Find direction of L
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• Principal axes of an object are not always a 
good choice for the main axes of an OBB!

• Inhomogeneous vertex distribution
can cause bad OBBs. 

Bounding Volumes

OBB
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Bounding Volumes

Better approximation, 
higher build and update costs

Smaller computational costs
for overlap test 

sphere AABB OBBDOP convex hull
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Bounding Volume Hierarchy

• nodes contain bounding 
volume information

• leaves additionally  contain 
information on object 
primitives 

To further accelerate collision detection: 

• use hierarchy over bounding volumes

University of  Tübingen

Parameters

• Bounding volume
• Type of tree (binary, 4-ary, k-d-tree, …)
• Bottom-up/top-down
• Heuristic to subdivide/group object primitives

or bounding volumes
• How many primitives in each leaf of the BV tree

Goals

• Balanced tree
• Tight-fitting bounding volumes
• Minimal redundancy 

(primitives in more than one BV per level)

Hierarchy Construction

University of  Tübingen

Bottom-Up

Top-Down

• Start with object-representing primitives
• Fit a bounding volume to given number of primitives
• Group primitives and bounding volumes recursively
• Stop in case of a single bounding volume at a hierarchy level

• Start with object
• Fit a bounding volume to the object
• Split object and bounding volume

recursively according to heuristic
• Stop, if all bounding volumes in a level 
contain less than n primitives 

Hierarchy Construction
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Top-Down Node-split:
• Split k-DOP using heuristic:

• Try to minimize volume of children (Zachmann VRST02). 
• Split along the longest side of the k-DOP (Mezger et al. 

WSCG03).

• The splitting continues until n single elements remain 
per leaf.

Hierarchy Construction

University of  Tübingen

Bottom-Up Node-grouping:
• Group nodes using heuristic:

• Try to get round-shaped patches by improving a shape factor 
for the area (Volino et al. CGF94).

• Group until all elements are grouped and the root node 
of the hierarchy is reached.

Hierarchy Construction
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Hierarchy Update

Updating is necessary in each time step due to 
movement/deformation of simulated object.

Difference between rigid and deformable objects:

• For rigid objects: transformations can be applied to complete object.

• For deformable objects: all BVs need to be updates separately. 
• Update is possible top-down or bottom-up.
• To avoid a complete update of all nodes in each step, different update 

strategies have been proposed.

University of  Tübingen

• Translation, rotation
Spheres

• Translation, no rotation 
(discrete orientations of k hyperplanes for all objects)

Discrete Orientation Polytopes

• Translation, rotation 
(box orientations are not fixed)

Object-Oriented Bounding Boxes 

Some object transformations can be simply applied 
to all elements  of the bounding-volume tree:

Hierarchy Update

sphere

OBB

DOP
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Hierarchy Update

Larsson and Akenine-Möller (EG 2001):
• If many deep nodes are reached, bottom-up update is faster.

• For only some deep nodes reached, top-down update is faster.  

-> Update top half of hierarchy bottom-up 

-> only if non-updated nodes are reached update them top-down.

• Reduction of unnecessarily updated nodes!

• Leaf information of vertices/faces has to be stored also in internal 
nodes -> higher memory requirements.

University of  Tübingen

Mezger et al. (WSCG 2003):

• Inflate bounding volumes by a certain distance depending on velocity.

Update is only necessary if enclosed objects moved farther than that 
distance. 

-> Fewer updates necessary.

-> More false positive collisions of BVs.

v

Hierarchy Update

University of  Tübingen

Hierarchy Traversal

Minimize probability of intersection as 
fast as possible:

• Test node with smaller volume against 
the children of the node with larger 
volume.
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Object a Object bBinary trees:
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Hierarchy Traversal

4-ary Trees:

Higher order trees: 
• Fewer nodes

• Total update costs are lower

• Recursion depth during overlap tests is lower, therefore lower 
memory requirements on stack
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Comparison – Collision Detection for
Rigid and Deformable Objects

Rigid Objects:
• use OBBs as they are usually 

tighter fitting and can be updated 
by applying translations and 
rotations.

• update complete BVH by applying 
transformations

• usually small number of collisions 
occur

Deformable Object:
• use DOPs as update costs are lower 

than for OBBs

• update by refitting or rebuilding 
each BV separately (top-down, 
bottom-up)

• high number of collisions may occur

• Self-collisions need to be detected 

• use higher oder trees (4-ary, 8-ary)

University of  Tübingen
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Example
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Example

University of  Tübingen

• BVHs are well-suited for animations or interactive applications, since 
updating can be done very efficiently.

• BVHs can be used to detect self-collisions of deformable objects while 
applying additional heuristics to accelerate this process.

• BVHs work with triangles or tetrahedrons which allow for a more 
sophisticated collision response compared to a pure vertex-based 
response.

• Optimal BVH and BV dependent on application (collision or proximity 
detection) and type of objects (rigid / deformable object)

Conclusions

University of  Tübingen

Thank you …

Thank you!

Thanks to Matthias Teschner (University of Freiburg) and Johannes Mezger 
(University of Tübingen) for contributions to the slides!
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Stochastic Methods

Gabriel Zachmann

Universität Bonn
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Motivation

¾ Absolute exactness not always necessary

¾ Real-time more important

→ Approximate collision detection

n Time-critical collision detection

n Applications:
n Whenever only qualitative result matters, e.g.,

n Games, virtual clothes prototyping, medical training, …
Set of „plausible paths“ for a cannonball.

Motivation
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Overview

1. ADB-Trees [Klein & Zachmann, 2003]

2. Stochastic Closest Features Tracking 
[Raghupathi et al., 2004; Debunne & Guy, 2004]

Motivation Motivation                     ADB-Trees                       Stochastic Closest Features         Conclusions

ADB-Trees

¾ ADB = "Average Distribution Trees"

¾ Average-case appraoch:
¾ Estimate probability of intersection of 2 sets of polygons

¾ Applicable to almost any BV hierarchy

¾ Augment BVH by simple description of polygon 
distribution at inner nodes

¾ Probability-guided BVH traversal (p-queue)

ADB-Trees
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Probability-Guided BVH Traversal

Traverse(A,B)

q.insert(A,B,1)
while q not empty

A,B ← q.pop
forall Ai, Bj

p ← Pr[ collision in Ai, Bj ]
if p ≥ pmin

return “collision”
if p ≥ 0

q.insert(Ai, Bj, p)
return “no collision”

ADB-Trees Motivation                     ADB-Trees                       Stochastic Closest Features         Conclusions

Probability-Guided BVH Traversal

Traverse(A,B)

p-queue q
q.insert(A,B,1)
while q not empty

A,B ← q.pop
forall Ai, Bj

p ← Pr[ collision in Ai, Bj ]
if p ≥ pmin

return “collision”
if p ≥ 0

q.insert(Ai, Bj, p)
return “no collision”

priority queue q;

A B

(A,B)

A1

A2
B1

B2

(A,B)

(A1,B1), p=0,9
(A1,B2), p=0
(A2,B1), p=0,5
(A2,B2), p=0

(A1,B1)

(A2,B1)

ADB-Trees
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Well-filled Cells and Collision Cells

"well-filled" cellcollision cell

ADB-Trees Motivation                     ADB-Trees                       Stochastic Closest Features         Conclusions

possible collision cellcollision cell

ADB-Trees
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Computing the Probability of Intersection

1. Partition A ∩ B by grid with s cells

2. Determine number of "well-filled"
cells from BV A: sA

3. Dito for B: sB

4. Compute probability that 
x cells are well-filled from A 
and  from B:

sA sB

s

B

A
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¾ Take curvature within cell into account:

¾ Preprocessing

¾ Estimate parameters

¾ Lookup-tables for probability functions:

ADB-Trees
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Result

¾ Time vs. error:
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Stochastic Closest Features Tracking

¾ Based on Lin-Canny (only for convex objects)
¾ Steepest descent for single pair of features

¾ Accelerated by generalized Voronoi diagram

¾ Temporal coherence

¾ Extension to non-convex, deformable objects:
¾ Non-convex → multiple pairs of (locally) closest features

¾ Deformable → feature pairs come and go

¾ Voronoi diagram not really feasible

¾ Idea
¾ Stochastically create pairs of features

¾ Converge them to locally closest features

Stochastic Closest Features
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Details

¾ Algorithm:
Do animation step
Add random pairs to list of “active feature pairs”

For each feature-pair:
Update features by local search
Remove “unwanted” pairs
If collision:

apply response to local collision area

Stochastic Closest Features Motivation                     ADB-Trees                       Stochastic Closest Features         Conclusions

¾ Updating of feature pair:
¾ No Voronoi diagram

¾ Compute pairwise distance of all 
neighbor pairs

¾ Removal of feature pairs:
¾ Distance too large (not likely closest feature)

¾ Both features of two pairs too close (redundant)

¾ Creation of feature pairs:
¾ Importance-driven (e.g., velocity-based)

¾ Supported naturally by multires model

Stochastic Closest Features

Motivation                     ADB-Trees                       Stochastic Closest Features         Conclusions

Acceleration by BV Hierarchy

¾ Use incomplete BVH to find "interesting" regions

¾ Stochastically sample those regions

Stochastic Closest Features Motivation                     ADB-Trees                       Stochastic Closest Features         Conclusions

Example Application

INRIA
Conclusions
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INRIA

Conclusions Motivation                     ADB-Trees                       Stochastic Closest Features         Conclusions

Conclusions

¾ Stochastic methods are not always error-free

¾ Good for plausible & fast simulations

¾ Interesting alternative to BVHs in specific cases

¾ Naturally yield time-critical collision detection

¾ Future work:
¾ Continuous stochastic methods

¾ Precise error bounds

Conclusions
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-

Distance Fields
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Introduction

• Physically based modeling
– Cloth, hair, etc.

• Problem
– Many contact points

• During Simulation
– Detect Collision
– Compute Collision Response

• Proximity or penetration depth
• Surface normal

Arnulph Fuhrmann - afuhr@igd.fhg.de

Distance Field Definition

• Scalar function

• =  distance to closest point on surface
• =  negative if inside object

RR: 3 →D
)(pdist
)(psign

)()()( ppp distsignD ⋅=
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Example – Distance Field 2D-Slices 

Arnulph Fuhrmann - afuhr@igd.fhg.de
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Arnulph Fuhrmann - afuhr@igd.fhg.de

Distance Field Data Structures

• Uniform 3D grid
– Queries take O(1) time
– Curved surfaces can be 

represented quite well 
– C0 continuous

• Adaptively sampled 
distance fields (ADFs) 
– [Frisken et al. ’00]
– C-1 between different levels

• can be resolved
Frisken et al. ’00

Arnulph Fuhrmann - afuhr@igd.fhg.de

Distance Field Data Structures

• BSP-tree 
– [Wu and Kobbelt ’03]
– Piecewise linear 

approximation
– Generation 

computationally 
expensive

– Discontinuities between 
cells

[Wu and Kobbelt ’03]

ADF 895 cells BSP-tree 254 cells



3

Arnulph Fuhrmann - afuhr@igd.fhg.de

Computation of Distance Fields

• Object representation
– triangular mesh

• Problem
– Computing distances for all grid points
– Naïve computation too costly

• Collision detection
– only a small band needed

Arnulph Fuhrmann - afuhr@igd.fhg.de

Computation of Distance Fields

• Propagation methods
– Fast Marching methods [Sethian ’96]
– Distance Transforms [Jones and Satherley ‘01]

• Rasterizing of distance functions
– Full distance field
– [Sud et al. ‘04], [Hoff et al. ’99]

• Bounded Voronoi Regions
– [Sigg et al. ‘03], [Breen et al. ’01]
– bounding polyhedron around Voronoi regions of edges, faces 

and vertices

Arnulph Fuhrmann - afuhr@igd.fhg.de

Scan Conversion of Bounded Voronoi 
Regions

Arnulph Fuhrmann - afuhr@igd.fhg.de
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Arnulph Fuhrmann - afuhr@igd.fhg.de

Collision Detection

• Scenario
– Deformable object A 
– Static object B

• Collision Detection
– Sample object A
– Test sample points for collision 

with B

• If both objects are deformable
– Swap and repeat 

Arnulph Fuhrmann - afuhr@igd.fhg.de

Collision Detection

• Problem
– Edges intersect object

• Solution
– Preserve ε distance at 

vertices

Arnulph Fuhrmann - afuhr@igd.fhg.de

Queries needed for collision detection

(On a uniform 3D grid)

• Distance
– Tri-linear interpolation

• Normal
– Direction given by the 

gradient

Arnulph Fuhrmann - afuhr@igd.fhg.de

What about deforming collision objects?

• Multiple distance fields

• Linked rigid objects
– One distance field per object

• Not possible yet
– Soft objects like a bending 

human arm
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Arnulph Fuhrmann - afuhr@igd.fhg.de

Other approaches for deforming objects

• [Bridson et al. ‘03]
– Clothing and animated characters
– Pre-computed ADFs for the body parts
– Can be used for several cloth 

simulations

• [Fisher and Lin ‘01]
– Deforming geometries
– Collision detection is done 

hierarchically
– Partial DF updates only
– Internal distance fields for collision 

response
[Fisher and Lin ‘01

Arnulph Fuhrmann - afuhr@igd.fhg.de

Demo Video

• Captured directly from screen

• Implemented in Java 1.4.1 and 
Java3D 1.2

• Tests made on a Intel Xeon 
Processor at 2.0 GHz

• Buddha model consist of 
390.000 triangles!

Arnulph Fuhrmann - afuhr@igd.fhg.de Arnulph Fuhrmann - afuhr@igd.fhg.de
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Arnulph Fuhrmann - afuhr@igd.fhg.de

Summary

• Distance Fields Generation
– Pre-Processing step
– Duration: Some seconds

• Collision Detection using Distance Fields 
– Most useful for deformable against rigid objects
– Efficient computation of

• Penetration depth / proximity
• Gradient (Normal)

– Easy to implement
– Robust algorithm




