EUROGRAPHICS 2005 Tutorial

Collision Handling in Dynamic Simulation Environments

M. Teschnet, B. Heidelberget, D. Manochd, N. Govindarajd, G. Zachmanfy S. Kimmerl€, J. Mezget, A. Fuhrmanfi

1 University of Freiburg, Germany
2 ETH Zurich, Switzerland
3 University of North Carolina at Chapel Hill, USA
4 University of Bonn, Germany
5 University of Tuebingen, Germany
6 Fraunhofer Institute for Computer Graphics, Darmstadt, Germany

1. Introduction vided by a collision detection algorithm is an important char-

. . . . acteristic in terms of its practicability.
In contrast to real-world objects, object representations in P k%

virtual environments have no notion of interpenetration.
Therefore, algorithms for the detection of interfering object
representations are an essential component in virtual envi-
ronments. Applications are wide-spread and can be found in
areas such as surgery simulation, games, cloth simulation,
and virtual prototyping.

Early collision detection approaches have been presented
in robotics and computational geometry more than twenty
years ago. Nevertheless, collision detection is still a very ac-
tive research topic in computer graphics. This ongoing in-
terest is constantly documented by new results presented in
journals and at major conferences, such as Siggraph and Eu-
rographics. This interest in collision detection is based on

e recent advances in dynamic physically-based simulations
which require efficient collision detection algorithms (see
Fig. 1)

e new challenging problem domains such as deformable,
time-critical, or continuous collision detection,

e advances in graphics hardware which is employed for
image-space collision detection and for the acceleration
of existing techniques.

In order to enable a realistic behavior of interacting ob-
jects in dynamic simulations, collision detection algorithms
have to be accompanied by collision response schemes.
These schemes process the collision information and com-
pute a response with the objective of resolving the collision.
For instance, distance field approaches provide the penetra-
tion depth of two objects which can easily be used for the
collision response. However, other approaches provide less
intuitive collision information, such as intersections of sur-
face representations or certain patterns of the stencil buffer
inside a GPU. Therefore, the nature of the information pro-

Figure 1: Interactive environment with dynamically deform-

ing objects and collision handling. Surface with high geo-
metric complexity and the underlying tetrahedral mesh are
shown.

(© The Eurographics Association 2005.

M. Teschner et al. / Collision Handling

2. Summary

This tutorial will discuss collision detection algorithms with
a special emphasis on the provided collision information.
The potential combination with collision response schemes
will be explained which is particular important for using
collision detection algorithms in dynamic simulation envi-
ronments. The tutorial will cover a large variety of relevant
techniques.

The tutorial starts with basic concepts, such as bounding-
volume hierarchies, spatial partitioning, distance fields, and
proximity queries. The idea of image-space collision detec-
tion is derived as a special case of spatial partitioning and
it is illustrated how graphics hardware can be used to ac-
celerate these methods. Based on the provided collision in-
formation, the potential combination with collision response
schemes will be discussed for all techniques.

The tutorial proceeds with further collision detection chal-
lenges that are particular important for dynamic simula-
tion environments. Approaches to self-collision detection, as
they can occur in deformable modeling, will be discussed.
Stochastic methods, that can be used for time-critical colli-
sion detection, will be explained. Further, continuous colli-
sion detection will be introduced which aims at solving prob-
lems related to discrete-time simulations.

3. Proposed Length

full-day tutorial

N

. Topics

Bounding-Volume Hierarchies
Spatial Partitioning

Distance Fields

Proximity Queries

Image-Space Collision Detection
Detection of Self-Collisions
Stochastic Methods

Continuous Collision Detection

5. Tutorial Syllabus

Basic Techniqueghalf day). In this part of the tutorial, four
main concepts of collision detection algorithms will be ex-
plained: bounding-volume hierarchies, spatial partitioning,
distance fields, and proximity queries. Advantages, draw-
backs, and relevance of the collision information with re-
spect to the considered application in simulation environ-
ments will be discussed.

Advanced Techniques(half day). The main topic in this
part is image-space collision detection. A variety of recent
approaches will be explained and discussed. Further, solu-
tions to specific collision detection problems inherent to dy-
namic simulation environments will be discussed, namely

self-collisions, time-critical collision detection, and continu-
ous collision detection.

6. Suggestions for Shorter Presentations

In the case of a condensed half-day tutorial, the presenta-
tions would be focused on recent advances in collision han-
dling, such as GPU-accelerated image-space collision detec-
tion, stochastic methods for time-critical collision detection,
challenges in continuous collision detection, and approxi-
mate proximity queries for consistent collision response.

7. Prerequisites

The participants should have a working knowledge of spatial
data structures, graphics hardware, and dynamic simulation
environments.

8. Organizer

Prof. Dr.-Ing. Matthias Teschner

Computer Graphics Laboratory
Computer Science Department
Albert-Ludwigs-University Freiburg

Georges-Koehler-Allee 052
79110 Freiburg im Breisgau
Germany

phone +49 761 203 8281

fax +49 761 203 8262

mail teschner@informatik.uni-freiburg.de
http http://cg.informatik.uni-freiburg.de/

9. Speakers

Matthias Teschnereceived the PhD degree in Electrical En-
gineering from the University of Erlangen-Nuremberg in
2000. From 2001 to 2004, he was research associate at Stan-
ford University and at the ETH Zurich. Currently, he is
professor of Computer Science and head of the Computer
Graphics Laboratory at the University of Freiburg. His reser-
ach interests comprise real-time rendering, scientific com-
puting, physical simulation, computer animation, computa-
tional geometry, collision handling, and human perception
of motion. His research is particularly focused on real-time
physically-based modeling of interacting deformable objects
and fluids with applications in entertainment technology and
medical simulation. Matthias Teschner has contributed to the
field of physically-based modeling and collision handling in
several papers. At Eurographics 2004, he organized a State-
of-the-Art report on collision detection. At IEEE VR 2005,

he will participate in a tutorial on collision detection.

Bruno Heidelbergereceived his MSc degree in Com-
puter Science from the Swiss Federal Institute of Technol-
ogy, Zurich, Switzerland in 2002. He is currently pursuing

(© The Eurographics Association 2005.

M. Teschner et al. / Collision Handling

his PhD as a member of the Computer Graphics Laboratory the field of GPU-accelerated collision detection in several
at ETH Zurich. His research interests are real-time computer papers, and tutorials. At Siggraph 2004, he was co-presenter
graphics, especially collision detection, collision response of a course on general purpose computation on graphics
and deformable modeling. He has published numerous pa- hardware.

pers at international conferences in the aforementioned re-
search areas and contributed to the State-of-the-Art Report
on "Collision Detection for Deformable Objects" at Euro-
graphics 2004.

Gabriel Zachmanrns professor for computer graphics at
Clasuthal University since 2005. Prior to that, he was as-
sistant professor with the computer graphics group at Bonn
University. He received a PhD in computer science from

Dinesh Manochas currently a professor of Computer Darmstadt University in 2000. From 1994 until 2001, he
Science at the University of North Carolina at Chapel Hill. was with the virtual reality group at the Fraunhofer Insti-
He received his B.Tech. degree in Computer Science and tute for Computer Graphics in Darmstadt, where he carried
Engineering from the Indian Institute of Technology, Delhi out many industrial projects in the area of virtual prototyp-
in 1987; M.S. and Ph.D. in Computer Science at the Uni- ing. Zachmann has published many papers at international
versity of California at Berkeley in 1990 and 1992, respec- conferences in areas like collision detection, virtual proto-
tively. He received Alfred and Chella D. Moore fellowship typing, intuitive interaction, mesh processing, and camera-
and IBM graduate fellowship in 1988 and 1991, respec- based hand tracking. He has also served on various interna-
tively, and a Junior Faculty Award in 1992. He was selected tional program committees.
an Alfred P. Sloan Research Fellow, received NSF Career
Award in 1995 and Office of Naval Research Young Inves-
tigator Award in 1996, Honda Research Initiation Award
in 1997, and Hettleman Prize for scholarly achievement at
UNC Chapel Hill in 1998. He has also received best pa-

Stefan Kimmerlestudied Physics and Chemistry in Tue-
bingen and San Diego. In 2000, he received his Diploma in
Physics from the University of Tuebingen. Since 2001, he
is a PhD student at the graphics research group at GRIS. In

per awards at the ACM SuperComputing, ACM Multimedia 2003 and 2004, he was an invited researcher at GRAVIR,

. . . . INRIA Rhone-Alpes in Grenoble. His main research inter-
and Eurographics conferences. His research interests include : . - .
- . o ; ests are physically-based modeling and collision detection
geometric and solid modeling, interactive computer graph-

h . . - . for deformable objects. His special interest is the simulation
ics, physically-based modeling, virtual environments, robot- . . . !

. N . . of virtual cloth. Stefan Kimmerle has contributed to the field
ics and scientific computation. His research has been spon-

sy ARO, DARPA, DOE,Honda, il NS ONR ana_ 2S5 0662101 410 oo, smiion i sevr pgers
Sloan Foundation. He has published more than 120 papers P) grap '

; . . .~ “he was co-presenter of a tutorial on the real-time simulation
in leading conferences and journals on computer graphics, g

. . . . i of cloth and of a State-of-the-Art report on collision detec-
geometric and solid modeling, robotics, symbolic and nu- .)

. - . . . tion of deformable objects.

meric computation, virtual reality, molecular modeling and
computational geometry. He has served as a program com- Johannes Mezgeeceived his Diploma in Computer Sci-
mittee member for many leading conferences on virtual real- ence from the University of Tuebingen, Germany, in 2002.
ity, computer graphics, computational geometry, geometric Since then he is PhD student and research associate at the
and solid modeling, animation and molecular modeling. He graphics research group GRIS in Tuebingen. His research
was the program co-chair for the first ACM Siggraph work- interests include collision detection and the simulation of
shop on simulation and interaction in virtual environments deforming objects. Johannes Mezger has contributed to the
and program chair of first ACM Workshop on Applied Com- field of collision detection and cloth simulation in several
putational Geometry. He was the guest co-editor of special publications.
issues of International Journal of Computational Geometry
and Applications. He is a member of the editorial boards of
IEEE Transactions on Visualization and Computer Graphics,
and Graphical Models and Imaging Processing.

Arnulph Fuhrmannstudied Computer Science at the
University of Technology in Darmstadt and received his
Diploma in 2001. Since 2001, he is a member of the Anima-
tion and Image Communication research group at the Fraun-

Naga Govindarajus currently research assistant profes- hofer Institute for Computer Graphics. His main research in-
sor of Computer Science at the University of North Carolina terests are physically based modeling, animation of clothes
at Chapel Hill. He received his B.Tech. degree in Computer and collision detection for deformable objects. In area of col-
Science and Engineering from the Indian Institute of Tech- lision detection, he has published many papers at interna-
nology, Bombay in 2001, M.S. and Ph.D. in Computer Sci- tional conferences. He has contributed to a State-of-the-Art
ence at the University of North Carolina at Chapel Hill in report on collision detection at Eurographics 2004.

2003 and 2004, respectively. His research interests include

computer graphics, computational geometry, data bases, dat
mining, graphics hardware, parallel and distributed comput-
ing. He serves as a program committee member for the Pa- This tutorial builds on lecture material from the University
cific Graphics 2005. Naga Govindaraju has contributed to of Freiburg, ETH Zurich, University of North Carolina at

%0. Course Notes Description

(© The Eurographics Association 2005.

M. Teschner et al. / Collision Handling

Chapel Hill, and the University of Bonn. Further, material
from a previous STAR presentation at Eurographics 2004, a
tutorial at IEEE VR 2005, and a course at Siggraph 2004 will
be used. Since all presenters actively contribute to the area
of collision detection, all presentations will be accompanied
by videos and software demonstrations.

Further course notes and illustrating videos can be down-
loaded using the following links:

bounding-volume hierarchies, slides:
http://cg.informatik.uni-freiburg.de/course_notes/bvh.pdf

spatial partitioning, slides:
http://cg.informatik.uni-freiburg.de/course_notes/sp.pdf

proximity queries, slides:
http://cg.informatik.uni-freiburg.de/course_notes/proximity.pdf

image-space collision detection, slides:
http://cg.informatik.uni-freiburg.de/course_notes/is.pdf

image-space collision detection, videos:
http://cg.informatik.uni-freiburg.de/movies/collision_detection_method.avi
http://cg.informatik.uni-freiburg.de/movies/collisionDetectionResultA.avi
http://cg.informatik.uni-freiburg.de/movies/collisionDetectionResultB.avi
http://cg.informatik.uni-freiburg.de/movies/collisionDetectionResultC.avi
http://cg.informatik.uni-freiburg.de/movies/collisionDetectionResultD.avi

self-collision detection, videos
http://cg.informatik.uni-freiburg.de/movies/self_collision_hand.avi
http://cg.informatik.uni-freiburg.de/movies/self_collision_torus.avi

proximity queries and spatial subdivision, videos
http://cg.informatik.uni-freiburg.de/movies/penetration_depth.avi
http://cg.informatik.uni-freiburg.de/movies/point_response.avi

fluid-deformable object interaction, video
http://cg.informatik.uni-freiburg.de/movies/fluid_deformable_interaction.avi

(© The Eurographics Association 2005.

Problem Description

Object representations in simulation environments
do not consider impenetrability.

Collision detection: Detection of interpenetrating objects.

« polygonal or non-polygonal surface

* convex, non-convex

« defined volume (closed or open surface)
« rigid or deformable objects

* pair-wise tests or multiple objects

« first contact, all contacts

« intersection, proximity, penetration depth
« static or dynamic

« discrete or continuous time

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

E. Collision Detection
grewtise- |
>

| Outline

Bounding Volumes

Bounding Volume Hierarchies BVH
Generation of BVHs

Comparison

BVHs for Deformable Objects

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Bounding Volumes

Simplified conservative surface representation
for fast approximative collision detection test

* Spheres

« Axis-aligned bounding boxes (ABB)

* Object-oriented bounding boxes (OBB)
« Discrete orientation polytopes (k-DOPs)

+ avoid checking all object primitives.

+ check bounding volumes to get the information
whether objects could interfere. Fast rejection test.

» motivated by spatial coherence: Assumption that
collisions between objects are rare

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

e Requirements
for Bounding Volumes

+ should fit the object as tightly as possible
to reduce the probability of a query object
intersecting the volume but not the object

« overlap tests for bounding volumes should be efficient
* memory efficient

« efficient computation of a bounding volume,
if recomputation is required

Spheres

sphere is represented by center ¢ and radius r.

two spheres do not overlap if (¢, —¢,)(¢, —¢,) > (r; +7,)’

= Sphere as Bounding Volume

good choice bad choice

e Axis-Aligned Bounding Box
AABB

c AABB is represented by
| center ¢ and radii rx, ry.

| rxb

C2
rys
X
1
two AABBs do not overlap in 2D if |(¢, —¢,) 0 > rx, + 71X,
0
or |(e;—¢,) 1 >1Y +rY,

good choice bad choice

ge Discrete Orientation Polytope
k-DOP

A k-DOP is “a convex polytope whose facets are determined by halfspaces

whose outward normals come from a small fixed set of k orientations.”
[Klosowski]

k-DOP is represented by

k/2 directions and k/2 pairs
of min, max values
min; (6-, 14, 18-, 26-DOPs)
max;
. X,

mim/\

max,

Two k-DOPs do not overlap, if their projections
in at least one direction do not overlap.

= 8-DOPs as Bounding Volumes

larger k's are more flexible than smaller
AABB is a 4-DOP. Is a 4-DOP an AABB?

good choice quite good choice

An OBB can be represented by the
principal axes of a set of vertices.
These axes are not fixed. They move
according to object transformations.

. 3
vertices: v veR

1
mean: H==2V;

eigenvectors of the
covariance matrix = A5
Ci="2

= OBB Examples

« principal axes of an object are not always a
good choice for the main axes of an OBB

* inhomogeneous vertex distribution
can cause bad OBBs

A,,4,,B,,B, +axesof A,B
« unit vectors

ay,a,,b,b, « 'radii' of A,B
L * unit vector

Pa=laALl+|a,4,L]

Py =0 BL|+]b,B,L|

A, B do not overlap:
L:T-LI>py+ps or 3L e{d,4,,B,B,}:|T-LI>p,+ py

Separating Axis Test SAT

» works with polytopes: line segments, triangles, boxes

* two objects A and B are disjoint if for some vector v
the projections of the objects onto the vector do not overlap.
In this case, v is referred to as separating axis.

« vector v has to be a face orientation of A or B
or a cross product of two edges of A and B.

» 3D boxes: tests with 3 + 3 + 3 - 3 axes

* B=[b, b, b,] is orientation of B
relative to A’s local basis |

« ¢ is the center of B relative to
A’s local coordinate system

* h,, hg are the extents of A, B

« v is relative to A’s basis, BTv is
the same vector relative to B

« vector v is a separating axis iff

[v-¢|>|v|-h, +[B"v|-h,

= OBB Overlapping Test in 3D

‘v-c‘>M-hA +‘BTV‘-hB

» 15 axes v have to be tested

* 3 coordinate axes of A’s orientation |

* 3 coordinate axes of B's orientation B = [by b, b;] = [4]

* 9 cross products of a coord. axis of I and a coord. axis of B
« expressions BTv can be simplified for all axes, e. g.

V=€ sz = (0,*ﬂ32 ’ﬂzz)r

B"v=B"(e,xb,)=(-£,.0,5,)

H Bounding Volumes
Summary

« spheres

« axis-aligned bounding boxes (AABB)

« oriented bounding boxes (OBB)

« discrete orientation polytopes (k-DOPs)

« ellipsoids
« convex Hulls
« swept-Sphere Volumes (SSVs)

* point Swept Spheres (PSS)
* line Swept Spheres (LSS)
« rectangle Swept Spheres (RSS)

« triangle Swept Spheres (TSS)

Lin, UNQ

LSS RSS

| 1}
= Optimal Bounding Volume
sphere ABB OBB 6-DOP convex

hull

tighter approximation

decreasing complexity and
computational expenses for overlap test

Outline

Bounding Volumes

Bounding Volume Hierarchies BVH
Generation of BVHs

Comparison

BVHs for Deformable Objects

8 "= Bounding Volume Hierarchies BVHs

« subdivsion of bounding volumes to generate a hierarchy

« improved object approximation at higher levels

layer1 C— —= layer C—— layer3

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

 bounding volume tree

(BVtree) of the object\

* nodes contain BV BV
bounding volume / /
information ‘

* leaves additionally BV BV
contain information — / %

BV for a few/one r

on object primitives

Hierarchy of Bounding Volumes

BV for the

entire objecN
'[BV
BV for parts

object primitive(s) ‘ ‘

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

C BVH Example

=)

/ \

/ \
% M « Sean Quinlan, Stanford Univ
7 I

% « Philip Hubbard, Brown Univ

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

OBB Tree

OBBs
level n

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

C Overlapping Test for BV Tree

« BV-trees speed-up the collision detection test
« if bounding volumes in a hierarchy level overlap,
their children are checked for overlapping.
If leaves are reached, primitives are checked against each other.

Overlapping Test for BV Tree

Pseudo code

1. interference check for two parent nodes (root)
2. if no interference then “no collision” else

3. all children of one parent node are checked
against children of the other parent node

4. if no interference then “no collision” else
5. if at leave nodes then “collision” else go to 3

step 3 checks BVs or object primitives for intersection

me Box-Triangle and
Triangle-Triangle Test

Box-Triangle Test

a) separating axes test requires 13 axes to be tested
(4 face normals, 3 x 3 cross products of edges)

Triangle-Triangle Test
a) separating axes test requires max. 11 axes to be tested
(2 face normals, 3 x 3 cross products of edges)
b) testing each edge of one triangle against the other triangle
for intersection -> 6 edge-triangle tests
(edge-triangle intersections occur in pairs
-> 5 tests are sufficient)

Edge-Triangle Test

X=p,+ (P —P)+ (P, —Py) M4, 20 g+, <1
x=s+A(t-s) 0<A<1 s P,

r=t-s d,=p,-p, d,=p,-p, b=s-p,

b=pd, +u,d,-Ar X
\\\
A b-(d, xd,) P, \ P4
=——| d,-(bxr
H “ro(d, xd,) 2 () t
75 —d, - (bxr)

edge intersects iff

-r-(d;xd,)#0 0<A<1 g+, <1 p,14,20

5 Characteristics of BVH

* improved object approximation at higher levels
« fast rejection query
« fast localization of object regions with potential collisions

« additional storage requirements
* generation of BVHs can be expensive

* BVHs are generally used for rigid models
where they can be pre-computed

o Computational Costs
of BV Trees

Cost function (M. Lin, UNC):

F=N,xC,+ N, xCp,, +N,xC,

tree genera- BV intersec- primitive
tion/update tion test intersection test

total cost for interference detection

number of bounding volumes updated

cost of updating a bounding volume

number of bounding volume pair overlap tests

S cost of overlap test between two bounding volumes
number of primitive pairs tested for interference
cost of testing two primitives for interference

zozm

=
S

= Optimization

F=N,xC,+ Ny, xCp,, +N,xC,

« infrequent BV updates to minimize N,
« tight-fitting bounding volumes to minimize N,
« simple intersection test for bounding volumes to minimize C,,

Better approximation

Decreasing computational expenses for overlap test

5 AABB vs. OBB Tree

approximation
of a torus

Level-2

Level-7

Level-3

Lin, UNC Chapel Hill

Object Transformations

some object transformations can be simply applied
to all elements of the bounding-volume tree:

Spheres

« translation, rotation
Axis-Aligned Bounding Boxes
« translation, no rotation

Discrete Orientation Polytopes
« translation, no rotation

(principal orientations are fixed for all objects)
Object-Oriented Bounding Boxes
« translation, rotation

(box orientations are not fixed)

Rotations

Axis-Aligned Bounding Boxes
Discrete Orientation Polytopes

+ rotation of the bounding volume is not
possible due to the respective box overlap test.
The intersection tests require fixed surface normals.

recomputation of the BV hierarchy
. preservation of the tree structure, update of all nodes
a) additional storage of the convex hull which is rotated with the object
- check if extremal vertices are still extremal after rotation
- compare with adjacent vertices of the convex hull
- “climb the hill” to the extremal vertex
b) computation of an approximate box by rotating the box and
checking the rotated box for extremal values

N =

= Close Proximity

quality of higher-level
BV approximation
influences collision

detection performance
in case of close proximity Problem Spheres

quality of higher-level
OBB

BV approximations is

not very critical

in case of overlapping BV
expensive primitive tests
have to be performed

ABB, k-DOP

Outline

Bounding Volumes

Bounding Volume Hierarchies BVH
Generation of BVHs

Comparison

BVHs for Deformable Objects

u Construction of a BV Tree

Bottom-Up

« start with object-representing primitives

« fit a bounding volume to each primitive

« group primitives or bounding volumes recursively

« fit bounding volumes to these groups

« stop in case of a single bounding volume at a hierarchy level

Top-Down

« start with object

« fit a bounding volume to the object

« split object or bounding volume recursively

« fit bounding volumes

« stop, if all bounding volumes in a level contain less than n primitives

Construction of a BV Tree

Parameters

« bounding volume

« top-down vs. bottom-up

* what to subdivide / group: object primitives or bounding volumes
« how to subdivide / group object primitives or bounding volumes
* how many primitives in each leaf of the BV tree

« re-sampling of the object ?

Goals

« balanced tree

« tight-fitting bounding volumes , :ﬁ p
+ minimal redundancy _— %

(primitives in more than one BV per level)

ge Construction of a BV Tree
Spheres

Hubbard, C. O’Sullivan:

« approximate triangles with spheres and build the tree
bottom-up by grouping spheres

« cover vertices with spheres and group them

« resample vertices prior to building the tree
(homogeneous vertex distribution reduces redundancy)

* build the tree top-down by using an octree

« compute the medial axis and place spheres on it

medial axis
based

octree based

Outline

Bounding Volumes

Bounding Volume Hierarchies BVH
Generation of BVHs

Comparison

BVHs for Deformable Objects

14

Comparison of CD Libraries

« time to compute a collision for two spheres with radius 1 cm
« translation represents the distance of both centers
* QuickCD [Klosowski], RAPID [Gottschalk], SOLID [Bergen]

w0 - - 3 =

10,000 triangles
per sphere

8-DOP —
OBB e
ABB _—

2 2 1 o 2 2
Transtation [er

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

n
o Collision Detection Libraries
SOLID RAPID QuickCD
Axis-aligned Object-oriented k discrete
bounding box bounding box orientation
polytope
P A
van den Gottschalk Klosowski
Bergen etal. etal
Eindhoven University of University of
University North Carolina New York
1997 1995 1998
University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory
=I
= Outline

Bounding Volumes

Bounding Volume Hierarchies BVH
Generation of BVHs

Comparison

BVHs for Deformable Objects

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

o BVHs for Deformable
Collision Detection

* in case of deformable objects,
BVH has to be updated frequently

* hierarchy generation significantly
influences performance

* AABBs are commonly used

* AABBs can be updated efficiently
compared to OBB, k-DOP, spheres

» however, AABBs do not provide an
optimal model approximation

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Hybrid Hierarchy Update

« proposed by Larsson / Akenine-Moeller, Eurographics 2001
* AABB hierarchy
« initial hierarchy generation as pre-processing

* lazy hierarchy update during run-time 3
* bottom-up update starting at depth n/2
« very efficient AABB update based on
AABBs of children n/2

VAN
« update of nodes in depth n/2+1 to n as needed % i '; § ;

« this update is only performed if necessary

a Implementation
of Hierarchy Update

« after pre-processing each nodes knows
which vertices influence its bounding box

« object is traversed once to update 3
nodes (box information) in layer n/2

* bottom-up merging of AABBs
* Merge (b1, b2) N/2 [
Box.Pos = Min(b1.Pos, b2.Pos)
Box.Size = Max(b1.Pos+b1.Size, 4
b2.Pos+b2.Size)-Box.Pog
5

b2Size-

62 Pas

————hkl Sze————

:bl.Pes:

o Hierarchical Bounding
Volumes - Summary

* bounding volume tree (BV tree) based on spheres or boxes
* nodes contain bounding volume information
* leaves additionally contain information on object primitives

« isolating interesting regions by checking bounding volumes
in a top-down strategy

« construction of a balanced, tight-fitting tree with minimal redundancy
« transformation of BV trees dependent on the basic bounding volume

« optimal bounding box hierarchy dependent on application
(e. g. close proximity problem)

[1]

|

= References

« S. Quinlan, “Efficient Distance Computation Between Non-Convex Objects,”
Proc. Int. Conf. on Robotics and Automation, pp. 3324-3329, 1994.

« P. M. Hubbard, “Approximating Polyhedra With Spheres for Time-Critical
Collision Detection,” ACM ToG, 15/ 3, pp. 179-210, 1996.

« S. Gottschalk, M. C. Lin, D. Manocha, “OBBTree: A Hierarchical Structure
for Rapid Interference Detection,” Proc. SIGGRAPH’96, ACM Computer
Graphics, New York, NY, USA, pp. 171-180, 1996.

« G. van den Bergen, “Efficient Collision Detection of Complex Deformable
Models using AABB Trees,” Journal of Graphics Tools, 2 / 4, pp. 1-13, 1997.

« J. T. Klosowski et al., “Efficient Collision Detection Using Bounding Volume
Hierarchies of k-DOPs,” IEEE Trans on Vis and Computer Graphics, 4 / 1,
pp. 21-36, 1998.

« Larsson, Akenine-Moeller, “Collision Detection for Continuously
Deforming Objects,” Proc. Eurographics, 2001.

 G. van den Bergen, “Collision Detection in Interactive 3D Environments,”
Elsevier, Amsterdam, ISBN: 1-55860-801-X, 2004.

. Acknowledgements

 Parts of this slide set are courtesy
of Bruno Heidelberger, ETH Zurich.

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

AREN Collision Detection -
EEEEEE . oy .
or Spatial Partitioning
University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory
cmf -
mEEEE Outline

« introduction to spatial data structures

* binary space partitioning trees

« voxel grids

¢ spatial subdivision with graphics hardware

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

= Bounding Volume Hierarchies

(1) Bounding volumes (2) Bounding volume tree

\

Sphere Axis-Aligned Bounding
Box (AABB)
@ @ B e
/ N\ 7 \
Object-Oriented Discrete Orientation % m - -
Bounding Box (OBB) Polytope (kDOP) . Q
(3) Collision detection test
€8 %o

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Spatial Partitioning - Idea

¢ space is divided up
into cells

« object primitives are
placed into cells

¢ object primitives He|
within the same cell are
checked for collision l%’

¢ pairs of primitives that do
not share the same cell
are not tested (trivial reject)

1]
C BVHSs vs. Spatial Partitioning
Bounding Volume Spatial Partitioning
Hierarchy
P AVpS
fvid
Model partitioning Space partitioning
" .
= Spatial Data Structures
voxel grid octree k-d tree BSP-tree

« cells maintain references to primitives intersecting the cell
« information is updated for each object transformation

« octree, k-d tree, and BSP-tree are object-dependent

« voxel grid is object-independent

Voxel Grid

¢ space partitioning into (uniform) rectangular,
axis-aligned cells

¢ primitives per cell are found by

— scan conversion of primitives to the grid or

— scan conversion of AABBs of the primitives
« fast cell access
¢ optimal cell size?

— large cells increase the number of primitives per cell

— small cells cause spreading of primitives to a large number of cells
« less efficient in case of non-uniform primitive distribution

Octree and k-d Tree

« hierarchical structures

¢ space partitioning into rectangular, axis-aligned cells
¢ root node corresponds to AABB of an object

« internal nodes represent subdivisions of the AABB

« leaves represent cells which maintain primitive lists

octree k-dimensional binary tree

Octree and k-d Tree

« uniform or non-uniform subdivision

¢ adaptive to local distribution of primitives
— large cells in case of low density of primitives
— small cells in case of high density

¢ dynamic update
— cells with many primitives can be subdivided
— cells with less primitives can be merged

Outline

« introduction to spatial data structures
« binary space partitioning trees
« voxel grids

BSP Tree

¢ binary space partitioning tree
« hierarchical structure

¢ space is subdivided by means of
arbitrarily oriented planes

¢ generalized k-d tree
¢ space partitioning into convex cells

« discrete-orientation BSP trees DOBSP
(finite set of plane orientations)

BSP Tree for Rendering

¢ [Henry Fuchs et al. 1980] proposed
a visible surface algorithm using a pre-computed BSP

2 Te-i__ 2b ., 1
- < 2a
, \ 3 e 7\\z~ y \
/ / S SN
C A 7\ 7\
v\/’ 2b 2a
original scene scene partitioning BSP tree

BSP Tree for Collision Detection

¢ BSP trees can be used for
inside / outside classification of
closed polygons

N\
FARA
7\ 7\

out in out in

original scene scene partitioning solid-leaf
BSP tree

[|]
C BSP Tree for Rendering
Py
« for a given viewpoint 3/
— render far branch .
— render root (node) polygon \4 /
— render near branch AV .
¢ recursively applied to sub-trees .\4\1
» back to front rendering viewpoint
¢ example: viewpoint is in 1-)
¢ rendering of 1+, 1, 1- y \
« rule recursively applied to 1+ and 1- 3 4
« viewpoint is in 3+ -> rendering of 3, 2b /\ J/ \
e viewpoint is in 4- -> rendering of 2a, 4 2b 2a
BSP tree
= .
= Collision Query

e query point is inside J\
+ .
3(3a
7\ +/\
out 4 out 2
+/ -
out in out In

¢ query point is outside L

3% \Sa
A RAS
\- /\

out in out in

BSP Tree Construction

« keep the number of nodes small
« keep the number of levels small

¢ introduce arbitrary support planes
(especially in case of convex objects,
where all polygon faces are in the same half-space
with respect to a given face)

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Outline

« introduction to spatial data structures
* binary space partitioning trees
« voxel grids

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Related Approaches

¢ [Levinthal 1966]
— 3D grid (“cubing”)
— analysis of molecular structures

— neighborhood search
to compute atom interaction

« [Rabin 1976]
— 3D grid + hashing Cyrus Levinthal, MIT
— finding closest pairs

e [Turk 1989, 1990]
— rigid collision detection
— 3D grid + hashing

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Deformable Collision Detection

¢ [Teschner, Heidelberger et al. 2003]

— collisions and self-collisions for

deformable tetrahedral meshes T
LA

uniform 3D grid

— non-uniform distribution
of object primitives
- hashing
— no explicit 3D data structure

— analysis of optimal cell size

NCCR Co-Me

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

EE
nERans Algorithm - Setup
implicit uniform grid: hash function:

| | H(cell) = hash table index

hash table:

EEEEEERE

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

SR Algorithm — Stage 1

« all vertices are hashed according to their cell:

>

u

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

S Algorithm — Stage 2

« all tetrahedrons are hashed according to
the cells touched by their bounding box

>
T T~

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

SR Algorithm — Stage 3

« vertices and tetrahedrons in the same
hash table entry are tested for intersection:

I °
A) - no collision
i
—h
B) ‘9 collision
—+eoo-o
S S S TN

él“) ‘9 self-collision

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

H Vertex-in-Tetrahedron Test

(a) Barycentric coordinates: (b) Oriented faces:

- Barycentric coordinates faster

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

C Algorithm — Summary

» stages:
— hash all vertices
— hash all tetrahedrons
— intersection test within each hash table entry

* parameters:
— grid cell size
— grid cell shape
— hash table size
— hash function

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm - Parameters

implicit uniform grid: hash function:

| | H(cell) = hash table index

hash table:
T EEEEEE S
“— < >
cell shape cell size hash table size

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

= Grid Cell Size

* [Bentley et al. 1977] suggest a cell size equal to the size of the
bounding box of an object primitive
¢ [Teschner, Heidelberger et al. 2003]

|
f{
: "
o) |

P *,‘

test scenario

Collision detection D]
o BbegBEEEEEE

L] z 3 4
ol s/ average e gt

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Colliskon detection (ms)

~

-

-

w

; Hash Table Size

larger hash table reduces hash collisions

2g 1000 2000 3000 4000 50048 test scenario

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

; Performance

[Teschner, Heidelberger et al. 2003]
collision and self-collision detection

objects tetras vertices max time
[ms]
100 1000 1200 6
8 4000 1936 15
20 10000 4840 34
2 20514 5898 72
100 50000 24200 174

Pentium 4, 1.8GHz testscenarios

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

m
| .
e Hash Function
H(, j, k) := (i xp; xor jxp, xor k xp;) mod n
ij, k . cell coordinates
pP1, P2 Pz : large primes
n : hash table size
University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory
ot . .
H-M Uniform Voxel Grids

collision and self-collision detection of tetrahedral meshes
no explicit spatial partitioning

(AABB and cells are not explicitly represented)

hash map

performance dependent on number of object primitives
performance independent of number of objects

algorithm can work with various object primitives

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Uniform Voxel Grids

simple and efficient technique

especially interesting for deformable, n-body, and
self-collision detection

in case of non-uniform or sparse spatial distribution of object
primitives, hashing is a good choice

parameters have

to be investigated

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

References

C. Levinthal, “Molecular model-building by computer,” Scientific American,
pp. 42-52, June 1966.

J. L. Bentley, D. F. Stanat, E. H. Williams, “The complexity of fixed-radius
near neighbor searching,” Inf. Process. Letters, vol. 6, 209-212, 1977.

G. Turk, “Interactive collision detection for molecular graphics,” TR90-014,
University of North Carolina at Chapel Hill, 1990.

S. Bandi, D. Thalmann, “An adaptive spatial subdivision of the object
space for fast collision detection of animating rigid bodies,” Proc. of
Eurographics, pp. 259-270, 1995.

A. Gregory, M. Lin, S. Gottschalk, R. Taylor, “H-COLLIDE: A framework
for fast and accurate collision detection for haptic interaction,” TR98-032,
University of North Carolina at Chapel Hill, 1998.

S. Melax, “Dynamic plane shifting BSP traversal,” Proc. Graphics Interface,
pp. 213-220, 2000.

M. Teschner, B. Heidelberger, M. Mueller, D. Pomeranets, M. Gross,
“Optimized Spatial Hashing for Collision Detection of Deformable Objects,”
Proc. Vision, Modeling, Visualization VMV'03, pp. 47-54, Nov 2003.

G. van den Bergen, “Collision Detection in Interactive 3D Environments,”
Elsevier, Amsterdam, ISBN: 1-55860-801-X, 2004.

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Acknowledgements

 Parts of this slide set are courtesy
of Bruno Heidelberger, ETH Zurich.

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

[|]
u .. .
L Image-Space Collision Detection
N
AN
A 17
) “v/ W
bl
'.‘%/
University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory
=l
L Outline
¢ motivation
¢ algorithms
¢ performance
¢ application
 discussion

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

= Graphics Hardware for
2D Collision Detection

frame buffer is a uniform grid

« Kenneth Hoff, UNC
« stencil-buffer for collision detection

« clear stencil buffer
% >< « increment stencil buffer for each
rendered object
@/ « intersection for stencil buffer value larger 1

stencil value 1
. stencil value 2

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

= Collision Detection
with Graphics Hardware

« exploit rasterization of object primitives

as intersection test

« benefit from graphics hardware acceleration

Image
Plane
o)

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

1]
. -
o Closed Objects
exit point
entry point
inside \
region outside region
« number of entry points equals the number of exit points
« in case of convex objects, one entry point and one exit point
« inside and outside are separated by entry or exit point
« entry point is at a front face
« exit point is at a back face
« front and back faces alternate
University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory
. .. .
= Collision Detection

with Graphics Hardware

Idea

« computation of entry and exit points can be accelerated
with graphics hardware

« computation corresponds to rasterization of surface primitives
« all object representations that can be rendered are handled
« parallel processing on CPU and GPU

Challenges
« restricted data structures and functionality

Drawbacks
« approximate computation of entry and exit points

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

[Baciu, Wong 1997]
hardware-assisted collision detection for
convex objects

Early approaches

- T %

[Shinya, Forgue 1991] & 4 t >
image-space collision detection for uﬁ:«-lt . ..f:‘-‘{
I (AT

convex objects &

[Myszkowski, Okunev, Kunii 1995]
collision detection for concave objects
with limited depth complexity

awewn e ol

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

More approaches

[Lombardo, Cani, Neyret 1999]
intersection of tool with deformable tissue
by rendering the interior of the tool

[Vassilev, Spanlang, Chrysanthou 2001]
image-space collision detection applied to
cloth simulation and convex avatars

[Hoff, Zaferakis, Lin, Manocha 2001]
proximity tests and penetration
depth computation, 2D

(1]
| |
= Recent approaches
@ P
[Knott, Pai 2003] ‘-m'u f
intersection of edges with surfaces = ,,f_ ;

[Govindaraju, Redon, Lin, Manocha 2003]
object and sub-object pruning based on
occlusion queries

[Heidelberger, Teschner 2004] |
explicit intersection volume and i
self-collision detection based on LDIs “'

Image-Space Collision Detection
[Knott, Pai 2003]

« render all query objects (e. g. edges) to depth buffer

« count the number f of front faces that occlude the query object
« count the number b of back faces that occlude the query object
« ifff- b ==0then there is no collision

1 occluding front faces

1 occluding back face

® no collision
S

I
>

2 occluding front faces
o = front face 1 occluding back face
0 = back face ® collision
® = query point

Image-Space Collision Detection

« clear depth buffer, clear stencil buffer
« render query objects to depth buffer
« disable depth update
« render front faces with stencil increment
— if front face is closer than query object, then stencil buffer is incremented
— depth buffer is not updated
— result: stencil buffer represents number of occluding front faces
» render back faces with stencil decrement
— if back face is closer than query object, then stencil buffer is decremented
— depth buffer is not updated
— result: stencil buffer represents difference of occluding front and back faces
« stencil buffer not equal to zero ® collision

Image-Space Collision Detection

works for objects with closed surface
works for n-body environments
works for query objects that do not overlap in image space
numerical problems if query object is part of an object
— offset in z-direction required

[Video]

Image-Space Collision Detection
[Baciu 2000]

RECODE — REndered COllision DEtection

works with pairs of closed convex objects A and B
one or two rendering passes for A and B

algorithm estimates overlapping z intervals per pixel

collision collision no collision

First Rendering Pass

¢ clear depth buffer
 clear stencil buffer
« enable depth update
« render back faces of A with stencil increment
— if nothing has been rendered ® stencil=0
— if something has been rendered ® stencil=1
— depth buffer contains depth of back faces of A
« disable depth update
» render B with stencil increment
— if stencil==1 and B occludes back face of A ® stencil+=1
— depth buffer is not updated
— stencil-1 = number of faces of B that occlude A

First Rendering Pass

first pass collision query

stencil 0 ® no collision z
stencil 1 ® no collision + z
— no fragment of B occludes AP T

back face of A (2 cases) A, B, B,
stencil 2 ® collision B: AI AI B: z
— front face of B occludes ; :‘ f 'P :b 2
back face of A (2 cases) A By A, By
stencil 3® second pass B B + A z
— front and back face of B oo e B .
occlude back face of A AR ¥ g
(3 cases) B,f A B,b A,b .

Second Rendering Pass

« render back faces of object B, count occluding faces of A
— corresponds to first pass with A and B permuted
— only 3 cases based on the result of the first rendering pass

» stencil 1 ® no collision + —t—t z
— no fragment of A occludes By By Ar Ay
back face of B (1 case)
» stencil2® collision —t— t > Z
— front face of A occludes B AB, Ay
back face of B (2 cases) +—+ } } > Z

A B B, A

« done

Second Rendering Pass
[Myszkowski 1995]

« render front faces of object A, count occluding faces of B
— corresponds to first pass, front faces are rendered instead of back faces
— only 3 cases based on the result of the first rendering pass

» stencil 3® no collision + —t—t z
— front and back face of B By By Ar Ay
occlude front face of A
» stencil2® collision —t— t > Z
— front face of B occludes B AB, Ay

front face of A

e stencil 1 ® collision

— no fragment of B occludes
front face of A

—t + + > Z
A; By B, A

« done

= Image-Space Collision Detection for

Concave Objects [Myszkowski 1995]

« collision detection for pairs of concave objects

A and B with limited depth complexity (number of entry/exit points)
« faces have to be sorted with respect

to the direction of the orthogonal projection (e. g. BSP tree)

« objects are rendered in front-to-back or back-to-front order
« alpha blending is employed:
COIOrframebuffer: COIOrobjec(+ a XCOlorframebuffer
« color of Ais zero, color of B is 21,
k is the number of bits in the frame buffer,
a=05

Image-Space Collision Detection
for Concave Objects

e example:k =8
e color A=0, color B =27
* sequence of faces B; A, A, B, B; B, rendered back to front:
- ¢, = 00000000,
— render B,: ¢, = 27 + a x¢;,; = 10000000, + 0.5 00000000, = 10000000,
- render B,: ¢;, = 10000000, + 0.5 x10000000, = 11000000,
- render B,: ¢;, = 10000000, + 0.5 x11000000, = 11100000,
- render A,: ¢;, = 00000000, + 0.5 x11100000, = 01110000,
- render A;: ¢;, = 00000000, + 0.5 x01110000, = 00111000,
render B,: ¢, = 10000000, + 0.5 x00111000, = 10011100,
. resultlng bit sequence represents order of faces of A (0) and B (1)
« odd number of adjacent zeros or ones indicates collision

Image-Space Collision Detection
[Heidelberger 2003]

« works with pairs of closed arbitrarily-shaped objects

« three implementations

— n+1 hardware-accelerated rendering passes
where n is the depth complexity of an object

— n hardware-accelerated rendering passes
— 1 software rendering pass
« three collision queries
— intersection volume (based on intersecting z intervals)
— vertex-in-volume test
— self-collision test
« basic idea and implementation for convex objects
has been proposed by Shinya / Forgue in 1991

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

me Image-Space Collision Detection
for Concave Objects
* example:
Image ! frame
Plane buffer
(xy) (color)
University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory
=l
= Layered Depth Image

« compact, volumetric object representation [Shade et al. 1998]
« represents object as layers of depth values
« stores entry and exit points

Layer 1
Layer 2
Layer 3
Layer 4

ZL
>
>
>
> >
>
4 — >
)
%ﬁi > [alelz]z,
»
»
. z
O = entry point Layered Depth
0 = exit point Image

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm Overview

Algorithm consists of 3 stages:

Stage 1: Check for bounding box intersection

)
-

a) Very fast detection of b) Overlapping area defines
trivial “no collision” cases volume of interest (Vol)
forstep2 &3

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

C Algorithm Overview

Stage 2: Generate the layered depth images (LDI)

d

s

jd{d
LDI,

Step 3: Perform the collision tests
a) test object primitives of one object against LDI of the other
b) combine both LDI to get overlapping volume
c) self-intersection test

Sl
) S EE

LDl

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

C Algorithm Overview

volume

l

collision
queries

volume of interest Vol

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

. - -
= Algorithm Overview
Stage 1 Stage 2 Stage 3
Volume-of-interest ~ LDI generation Collision query
/
T~
D
viewing direction a) LDI intersection b) Vertex-in-volume
—
c) Self-collision
University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory
=l
= Volume of Interest
Vol = BoundingBox(Object 1) C BoundingBox(Object 2)
1. evaluation of trivial rejection test: Vol == @ - no collision!
2. choice of opposite render directions for LDI generation

outside ‘ _
i~ (G
T = >

possible enlargement of Vol to guarantee valid directions

outside faces are outside the object
-> guarantees that first intersection point is an entry point

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

5 LDI Generation on the GPU
Depth Peeling

object is rendered once for each layer in the LDI

« two separate depth tests per fragment are necessary:

— fragment must be farther than the one in the previous layer (d,)

— fragment must be the nearest of all remaining fragments (d, & d,)

example: pass #3 1

%ﬂr

—¢

S~~~
Y >
J Pl

AL A

Ll
~
P
222
Q|
(=}
s

-> second depth test is realized using shadow mapping
extended depth-peeling approach [Everitt 2001]

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Shadow Mapping

Idea:

— for each fragment to be rendered:
check if it is visible from the light source

Algorithm:

— render scene from the light source:
store all distances to the visible (=lit)
fragments in a “shadow map”

— render scene from the camera: (@
compare the distance z of each camera
fragment to the light with the Frame
value z* in the shadow map:

z = z* > fragment is lit
z > z* - fragment is shadowed 3:% Shadow Map (')

Light

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

' Shadow Mapping
as Depth Test

Differences to regular depth test:
— shadow mapping depth test is not tied to camera position
— shadow map (depth buffer) is not writeable during depth test
— shadow mapping does not discard fragments

Depth test setup for LDI generation:

— fragment must be farther away than fragment in previous
depth layer > shadow map test

— fragment must be the nearest of all remaining fragments >
regular depth test

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Pass #2

Multipass LDI Generation

Pass #1<ear > GPU | CPU

z-buffer LDI #1
#pixels

>0 read back

Cear>

LDI #2
>0

| read back

Pass #i - #n cop, o LDI #i - #n

Pass #n+1

read back

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Result of LDI Generation

« multipass LDI generation results in
an ordered LDI representation of the Vol

2

5 3 5]
& @ .

Vol ordered LDI

« requires one rendering pass per depth layer
« requires shadow mapping functionality

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Collision Detection Test

test object primitives of one object against LDI of the other
object (and vice versa)

« vertex-in-volume test

example:

Collision € [dg]d[x]d}]
No collision €
No collision € -

lo
A <—

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

LDI Combination

« intersect both LDI to get the overlapping volume
« provides an explicit intersection volume

« other boolean operations (union, difference) are also possible
-> constructive solid geometr)«(CSG)

dJdld |
CREH
Fc{dAd | {
1d id.} L P— N
LDI, \ &—>5
o0
pa dld7
LDlyc,
LDl,¢, =LDI, G LD,

2

J

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Collision queries

Vertex-in-volume test Explicit intersection volume

T~ T~
SR o = o

°

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Self-collision query

« check for incorrect ordering of front and back faces
« if front and back faces do not alternate -> self collision

LDI

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm Summary

(1) Volume of interest (3) Collision detection test

o—0 »F

-y > bkl
00 > bk

or LDlyc,

e S

e—%—

or self-collision

(2) LDI generation

? LDI,

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Problems

object can not be rendered to shadow map (see differences to
depth buffer) > additional copy process necessary

« limited precision of depth buffer leads to singularities near edges
between front and back faces:
n; I @

I
>

example: V4

I
>

0 = valid entry point?
0 = valid leaving point? No! > corrupt LDI!

- handle front and back faces in separate passes

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Unordered LDI Generation

« alternative method for LDI generation

* GPU generates unsorted LDI
« fragments are rendered in the same order in each rendering pass
« stencil buffer is used to get n-th value in the n-th pass

« CPU generates ordered LDI

« depth complexity is known for each fragment
(how many values are rendered per pixel)

53
1|3 2|2
Vol unsorted LDI (GPU)

sorted LDI (CPU)

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

10

Unordered LDI Generation

GPU| CPU

Pass 1 | frame buffer

stencil buffer
Test: GREATER Ref: 1
Fail: INCR _Pass: INCR

depth buffer
Test: DISABLED

Pass n | frame buffer

@=n=nm) stencil buffer
Test: GREATER Ref:n
Fail: KEEP_Pass: INCR

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

depth
complexities

Idi layer 1

Mmax

Limitations

« performance is dependent on:
— depth complexity of objects in volume of interest
— read back delay for simple objects
— rendering speed for complex objects

« requires graphics hardware

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

5 Ordered LDI Generation
on CPU

Motivation

« buffer read-back from GPU
can be performance bottleneck

* GPU requires multiple passes
« CPU can store fragments directly into LDI

Simplified software-renderer
« rasterization of triangle meshes
« frustum culling
« face clipping
« orthogonal projection

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

LDI Generation - Summary

Ordered LDI (GPU) Unordered LDI (GPU) Ordered LDI (CPU)

rasterize
* n+1 passes * n passes * 1 pass
« complex setup « simple setup « simple setup
« two depth tests « no depth test « no depth test
« shadow map « stencil buffer
* OpenGL extensions « plain OpenGL 1.4

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

11

o Performance - Intersection Volume

« hand with 4800 faces

« phone with 900 faces

« two LDIs

« intersection volume
for collision detection

« analysis of front / back face
ordering for self-collision

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

o Performance — Intersection Volume

method collision self collision overall
min / max min / max min / max

ordered (GPU) 28137 40/54 68/91

unordered (GPU, CPU) 9/12 12/18 21/30

software (CPU) 3/4 517 8/11

hand with 4800 faces

3 GHz Pentium 4, GeForce FX Ultra 5800 phone with 900 faces

measurements in ms

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

= Performance — Vertex-in-Volume

« santa with 10000 faces
« 20000 particles
* one LDI

« test vertices against
inside regions of the LDI

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

method 520k faces 150k faces 50k faces
100k particles 30k particles 10k particles
ordered (GPU) 450 160 50
unordered (GPU, CPU) 225 75 25
software (CPU) 400 105 35

LDI resolution 64 x 64
3 GHz Pentium 4, GeForce FX Ultra 5800 measurements in ms

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

12

L[]
T
®
==
@)
=
3
Q
>
(@)
D

I
—
O
=
D
[%2]
=k
[
=
o
>

* mouse with 15000 faces
« hat with 1500 faces
« two LDIs

« intersection volume
for collision detection

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

method 32 x32 64 x 64 128 x128
ordered (GPU) 24 26 51
unordered (GPU, CPU) 8 9 17
software (CPU) 2 3 6
mouse with 15000 faces
3 GHz Pentium 4, GeForce FX Ultra 5800 hat with 1500 faces

measurements in ms

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Applications — Cloth Modeling

LDI

3 orthogonal
dilated LDIs

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Real-Time Cloth Simulation
with Collision Handling

real-time movie
3GHz Pentium 4

Rotc Roty [TV IO olly
stable collision handling

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

13

E' Real-Time Cloth Simulation
with Collision Handling

real-time movies
3GHz Pentium 4

fots oy, ST

concave transforming object concave deforming object

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

C Summary

* image-space technique
« detection of collisions and self-collisions
« handling of rigid and deformable closed meshes
* no pre-processing
« CPU: 5000/ 1000 faces at 100 Hz
« GPU: 520000 faces / 100000 patrticles at 4 Hz
« application to cloth simulation
« limitations
« closed meshes
* accuracy
« collision information for collision response

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Image-Space Collision Detection
with a Box [Lombardo 1998]

« collision detection of a surgical tool and an anatomical structure
» tool is modeled as a box

« viewing volume of a camera is specified based on this box
(near, far, left, right, top, bottom)

¢ anatomical structure is rendered in terms of this camera
« if something has been rendered ® collision
« if nothing has been rendered ® no collision

- @ collision
op
left

right — isi
botto no collision

near far

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

2 Intersection Detection for
Deformable Objects

Bounding Volume Hierarchies
- efficient or lazy update of BV hierarchies
- hierarchy update is essential for performance

Spatial Partitioning with Hashing
- detects self-collisions
- appropriate for deformable objects or many objects

Spatial Partitioning with Graphics Hardware
- rendering of objects provides spatial partitioning
- rendering result can be employed for collision detection
- LDIs can be used to approximately represent objects
for further processing

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

14

References

* M. Shinya, M. Forgue, “Interference Detection through rasterization,”
Journal of Visualization and Computer Animation, vol. 2, pp. 132-134, 1991.

« K. Myszkowski, O. Okunev, T. Kunii, “Fast collision detection between
complex solids using rasterizing graphics hardware,” The Visual
Computer, vol. 11, no. 9, pp. 497-512, 1995.

« J. C. Lombardo, M.-P. Cani, F. Neyret, “Real-time Collision Detection
for Virtual Surgery,” Proc. of Comp. Anim., pp. 82-91, 1999.

« G. Baciu, S. K. Wong "Image-Based Techniques in a Hybrid Collision
Detector," IEEE Trans on Visualization and Computer Graphics, Jan 2002.

* D. Knott, D. Pai: “Cinder: Collision and interference detection in real-time
using graphics hardware,” Proc. Graphics Interface, 2003.

 B. Heidelberger, M. Teschner, M. Gross, “Volumetric Collision
Detection for Deformable Objects,” Proc. VMV03, pp. 461-468, 2003.

« B. Heidelberger, M. Teschner, M. Gross, “Detection of Collisions and Self-
collisions Using Image-space Techniques,” Proc. WSCG'04, pp. 145-152,
2004.

15

Proximity Queries

Simulation in Computer Graphics
University of Freiburg

WS 04/05

Acknowledgements

= parts of this slide set are courtesy of
Bruno Heidelberger, ETH Zurich

= parts of this slide set are based on
G. van den Bergen, “Collision Detection
in Interactive 3D Environments,”
Elsevier, Amsterdam, ISBN: 1-55860-801-X, 2004.

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Outline u

= introduction
= Minkowski sum

= distance computation
Gilbert-Johnson-Keerthi algorithm (GJK)

= penetration depth computation
expanding-polytope algorithm (EPA)

= approximate distance

= approximate consistent penetration depth

= demos

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Proximity Query

= for a pair of objects

= compute their distance
(find a pair of closest points)

« compute their penetration depth
(minimal translation to separate two interfering objects)

S

distance penetration depth

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Application J

wa

= distance
« collision candidates
= continuous collision detection

Va

= penetration depth

= penalty-based collision response
» computation of time of contact
F~d
D\O 6) ® contactatt,
d

t 1 t, d,

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Outline

= introduction
= Minkowski sum

= distance computation
Gilbert-Johnson-Keerthi algorithm (GJK)

= penetration depth computation
expanding-polytope algorithm (EPA)

= approximate distance

= approximate consistent penetration depth

= demos

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Minkowski Addition u

= A B
=

« A+B={x+y:x1 Ayl B}

(A+t)+(B+t) = (A+B) +t,+1, L.
O

= representation of swept objects

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Configuration Space Obstacle

= A B
=

« CSO(AB)=A-B=A+(-B)={x-y:x1 Ayl B}

= to realize A-B,
the reflection of B is added to A

L

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Proximity Queries - Examples

A
A A
d p
A B B
CsO CsO CsO
p
o o
d
[¢]
University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

1]
.. . H
CSO and Proximity Queries =
= iff A and B intersect,
they have a common point x4 =y withx;-y; =0
« ® OT CSO(AB) iff A and B intersect
= d (A,B) distance between A and B
d(AB)=min{ox-yg:x1 Ayl B}
= p (A,B) penetration depth of A and B
p (AB)=inf{gx gc:x1 CSO(AB)}
University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory
. o
Convex Objects J

= if Aand B are convex, then A+B and CSO(A,B) are convex

= proof:
o letwy =X Y Wy = X+ Yo, Xy, X 1 ALYy, T Bowg,w,T A+ B
= A+Bis convex iff | jwy+1,w,1 A+B,1,;+1,=1,1,,1,%0
= Aisconvex b | x;+1,%1 A
= Bisconvex b |y, +1,y,1 B
s Xty oy, =Xy)+ (% +yp) = 1wy + 1w,
= P lw,+lw,l A+B
= b A+Bis convex

= important for computing proximity queries on CSOs
for convex objects

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Convex Polytopes

= Aand B are polytopes, e. g. closed triangulated surfaces
= conv (A) - convex hull of A
= vert (A) - set of vertices of A

= A+ B=conv (vert(A)+vert(B))

= computing the convex hull for all pair wise sums of
vertices of A and B gives the Minkowski sum of A and B

= important for computing A + B for convex polytopes

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Proximity Queries - AABBs J

axis-aligned boxes A=[p4,9¢],B =[p,, q,]

CSO (A, B)=1[p1,a1]1-[p2,921=[P1- G, A1 - P2]
Aand Bintersectiff O 1 [py-q,, g1 - P21

intersecting AABBs in 1D

P2 9z

pfq2<0 0 qu2>0

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Proximity Queries - AABBs J

= axis-aligned boxes

A=[cy-hy,cy+hy], B=[c,-hy,co+ hy], hy,hy >0

= CSO (A B)=[cq-cy-(hy +hy),ci-crt(hy +hy)]

. 01 CSO (A B)iffc; - c,] <h,+h,

(see BVH slides)

= intersection test for spheres can be derived

in a similar way

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Summary H

Minkowski sum or configuration space obstacle CSO
can be used for proximity queries

if origin is not contained in CSO,
then the distance of two objects is given by
the distance of the CSO to the origin

if origin is contained in CSO, the penetration depth
is given by the distance of the CSO to the origin

useful characteristics for CSO of convex polytopes

intersection tests for AABBs and other basic primitives
can be derived from CSO

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Outline

= introduction
= Minkowski sum
= distance computation

Gilbert-Johnson-Keerthi algorithm (GJK)

= penetration depth computation

expanding-polytope algorithm (EPA)

= approximate distance
= approximate consistent penetration depth
= demos

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Overview a

= for a given convex polytope C withO | C,
GJK computes the point v (C) closest to the origin O

« [IV(©)[l=min([Ix]||:xT C)

= iff C=CSO (A, B), then GJK computes the distance
d (A, B) of two non-intersecting convex objects A and B

« d(A,B)=||v(CSO(A,B))||

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Support Mapping

= A support mapping of a polytope A is a function s,
that maps a vector v to a vertex of A.

= s, (V)T vert (A) withv xs, (v) =max (vxa:al vert(A))

= The vertex s, (v)is
the support point of A with respect to v.

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

. [1]
Support Mapping - Example 5
sg(V,)
sg (V4)
sg(-v4)
S5 (-v,)

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Support Mapping for =
Convex Polytopes

= represent the convex polytope as an adjacency graph
= start with an initial guess

= “climb the hill’ by searching the adjacency graph
for better solutions b hill climbing

= p = cached support vertex
= repeat
« optimal = true
. forq1 adj(p)do
« if v Xq > v xp then { p = g, optimal = false }
= until optimal

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Step 1

= vy=v(conv(WyE {we))=Vv(conv (wy))

= Wy =Spp(-Vy)

« W, =“smallest’ X with Xi W, E {w,} such that v, T conv(X)
= Wi = {we}

A-B

Wo

[¢]
Wi

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

1]
e 1 . H

GJK Initialization — Step O J

= iterative approximation of d (A, B)

« GJK starts with an arbitrary voT A-B

and a set of vertices W, = /&
A-B
Wo
o
= Wo=Spp (Vo)
University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

1]
]

Step 2 =

= v, =v(conv (W, E{w}))=v(conv(wy, w;))

= Wy =spg(Vz)

« W, =“smallest’ X with Xi W, E {w;} such thatv, 1 conv(X)
= Wy ={wo, w;}

A-B

Wo

[¢]
Wi

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Step 3

= V3=V (conv (W, E {wy})) =V (conv(wp, wy,w,))

= W3 =Spp(-V3)

= W, =“smallest’ X with Xi W, E {w,} such that v, 1 conv(X)
= Wy={w,}

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

“smallest” X u

= Vi = v (conv (wp, Wy, Wy)) X ={wp, Wy, Wy}
= Vi=loWot lywy+ 1wy withl gt 4+ =1, 11 41,30

= if | ;=0 then the corresponding w; can be removed
from X such that v; = v (conv (X))

GJK Algorithm

= V = arbitrary pointin A -B

= W=Z&

= W=spg (V)

= while v not close enough to v (A-B)
. v=v(conv(WE {w}))
. W=smallestX| WE {w}suchthatv conv (X)
s WESpg (V)

= return|jv||

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Wy
= example:
IV1=|0W1+|1W2 Vi
= P vy=v(conv(wyw,))
= P X={wy,w,}
Wo
Wy
University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory
1]
]

Convergence and Termination J

o Vi ITE T I
o if [Vit 11 = Il v [l then v = v (A-B)

= for polytopes, GJK computes v, =v (A-B)
in a finite number of iterations

= for non-polytopes, the error of || v || is bound by
[vic= v (AB) [P £ vic [12 - viexwi

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Summary

= GJK computes the distance of two non-intersecting objects
= iterative process
= main loop performs three steps on a simplex

= computation of the distance of the simplex to the origin

= support mapping based on this distance
= adaptation of the simplex based on the support point

= GJK converges to the correct solution

= GJK computes the distance in a finite number
of iterations for polytopes

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Outline

= introduction
= Minkowski sum

= distance computation
Gilbert-Johnson-Keerthi algorithm (GJK)

= penetration depth computation
expanding-polytope algorithm (EPA)

= approximate distance

= approximate consistent penetration depth

= demos

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Step 0

= Vo=V (X)

= Wy =Spg (Vo)
= expand X such that it contains w

Wo

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

1]
:]
Introduction C
= EPA computes the penetration depth of two objects
= iterative process
= works with an CSO that contains the origin
= starts with a simplex (triangle in 2D, tetrahedron in 3D)
that contains the origin and whose vertices are on the
boundary of the CSO
= the initial simplex is subdivided (expanded) by EPA
to approximate the CSO
= the distance of the expanded polytope to the origin
corresponds to the penetration depth
University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory
um
Step 1 =

= vVi=Vv(X)
= Wy =spg(Vy)
= expand X such that it contains w;

N N

1 Wi

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Step 2

= V=V (X)

= Wy =Spp(Va)
= expand X such that it contains w,

~

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Outline

= introduction
= Minkowski sum

= distance computation
Gilbert-Johnson-Keerthi algorithm (GJK)

= penetration depth computation
expanding-polytope algorithm (EPA)

= approximate distance

= approximate consistent penetration depth

= demos

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

. . 1]
Convergence and Termination 5
= Vit 112 vl
= for polytopes, EPA computesv, =v (A-B)
in a finite number of iterations
. . o
Approximate Distance — Step 1 ===

= two polytopes A and B
= start with an arbitrary vertex v’, with v’, T vert (A)
= compute nearest vertex vg with vg 1 vert (B)

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Approximate Distance — Step 2

= compute nearest vertex v, 1 vert (A) with respect to vg
= || va-Vg || is the approximate distance of A and B

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Outline

= introduction
= Minkowski sum

= distance computation
Gilbert-Johnson-Keerthi algorithm (GJK)

= penetration depth computation
expanding-polytope algorithm (EPA)

= approximate distance

= approximate consistent penetration depth

= demos

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

1]
.. -
Characteristics =
= better approximation for larger distances
and convex objects

= bad approximation in case of concave objects

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

. . o
Motivation n

= compute consistent penetration depth information

for all intersecting points of a tetrahedral mesh

= can be used to compute penalty forces which provide

realistic collision response for deformable tetrahedral
meshes

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Challenges J

= inconsistent penetration depth information due to
discrete simulation steps and object discretization

T AT

4

inconsistent consistent inconsistent consistent

= inconsistent penetration depth results in oscillation
artifacts or non-realistic collision response

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm — Stage 2 J

= border points, intersecting edges, and intersection points
are detected ® extension of spatial hashing

K

vﬁé&*‘

‘ ® border point
‘eA \ intersection edge
' ‘V‘v e intersection point

\ intersection normal

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

1]
:]
Algorithm — Stage 1 J
= object points are classified as colliding
or non-colloding points ® slides on spatial hashing
@ colliding point
O non-colliding point
University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory
. o
Algorithm — Stage 3 J

= penetration depth d(p) of a border point p is
approximated using the adjacent intersection
points x; and normals n;

1

w(xi,p) = ——
lIxi —pll

S (w(xi,p) - (xi — p) i)
d(p) =
£) TS

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Algorithm — Stage 4 =

= consistent penetration depth information at points p; is
propagated to other colliding points p

1
wp;p) = ———
[lp; —pll

Q]

\
.A“ o1 (u(psp) - (P = P) - x(py) + d(p))))
V‘v 2_17:1 WP, p)

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

|
]
Results nE
= consistent collision response
E
= inconsistent collision response

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Results - Video

Consistent Penetration
Depth Estimation
for Deformable
Collision Response

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Summary

= consistent penetration depth information in case of
« discrete object representation
= discrete time simulation
= addresses the problem of discontinuities in magnitude
and direction of the penetration depth

= provides realistic penalty-based collision response

0¥ Y @

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

°12

Outline u

= introduction
= Minkowski sum

= distance computation
Gilbert-Johnson-Keerthi algorithm (GJK)

= penetration depth computation
expanding-polytope algorithm (EPA)

= approximate distance

= approximate consistent penetration depth

= demos

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

= deformable modeling based on constraints
= collision detection based on spatial hashing
= collision response based on consistent

Interacting Deformable Objects

penetration depth computation

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

References a

= E. G. Gilbert, D. W. Johnson, S. S. Keerthi, “A Fast
Procedure for Computing the Distance Between Complex
Objects in Three-Dimensional Space,” IEEE Journal of

Robotics and Automation, vol. 4, no. 2, pp. 193-203, 1988.

= G. van den Bergen, “Collision Detection
in Interactive 3D Environments,”
Elsevier, Amsterdam, ISBN: 1-55860-801-X, 2004.

= B. Heidelberger, M. Teschner et al., “Consistent
Penetration Depth Estimation for Deformable Collision
Response,” Proc. VMV, Stanford, USA, 2004.

University of Freiburg - Institute of Computer Science - Computer Graphics Laboratory

Fast Collision Detection among
Deformable Objects using Graphics
Processors

Naga K. Govindaraju Dinesh Manocha

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

' Collision Detection

© Well studied

& Computer graphics, computational geometry
etc.

© Widely used in games, simulations,
virtual reality applications
@ Often a computational bottleneck

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

e

' Outline

@ Overview
© Interactive Collision Detection
© Conclusions and Future Work

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

" Interactive Collision Detection

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

" Interactive Collision Detection

@ Visibility to reduce number of pair-wise overlap tests

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

" raphics "rocessing "'nits (-1"LU's)

© Well-designed for visibility computations
& Rasterization — image-space visibility
© Massively parallel

& Render millions of polygons per second
© Well suited for image-based algorithms

© High growth rate

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

by, Interactive Collision Detection

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

: Graphics Processing Units

Card Million triangles/sec
Radeon 9700 Pro 325
GeForce FX 5800 350
Radeon 9800 XT 412
GeForce FX 5950 356
GeForce FX 6800 600

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

7. -raphics “rocessing "nits (- 1"Us)

© Well-designed for visibility computations
© Rasterization — image-space visibility
© Massively parallel

& Render millions of polygons per second
& Well suited for image-based algorithms

© High growth rate

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

!!HS |OI' !eome!rlc

1Y Computations: Issues

@ Precision
© Frame-buffer readbacks

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

!!HS: !eome!rlc

Y Computations

>

© Used for geometric applications
© Minkowski sums [Kim et al. 02]

© CSG rendering [Goldfeather et al. 89, Rossignac et al.
90]

© Voronoi computation [Hoff et al. 01, 02, Sud et al.
04]

& Isosurface computation [Pascucci 04]
© Map simplification [Mustafa et al. 01]

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

[Draw stream |
GPU |of triangles CPU

Visibility of
j triangles

m D D D Pixelgrgessing

: Vertex Processing Setup Engine Engines i
Engines Stream of Setup of e e | H

transformed setup Alpha test
Verﬂces commanas, Stencil test i E
and state iE

Depth test E

Stream of Stream of visible pixels

vertices

count of visible pixgls

Draw stream
GPU |of triangles CPU
Visibility of
j triangles
Stre_am of Stream of visible pixels
‘Vemces HHHH
m D D D Pixel Processing
: Vertex Processing Setub Enaine Engines i
Engines Stream of it Setup of
transformed setup Alpha test
E Venices commanas, \M‘i E
H and state HE
: IEEE Floating IEEE Floating L__Deptntest |
i Point (32-bit) Point (32-bit)

@ Frame-Buffer Readback

@ Involve stalls
& Affect throughput

© Slow!

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

T —
@ Frame-Buffer Precision

Stream of visible pixels

Resolution along X, Y,Z
‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ X — 12 bits fixed precision
DOoooooog Y — 12 bits fixed precision
Pixel Processing
Engines Z — 24 bits fixed precision

On CPU — 32-bit or 64-bit
floating-point precision

Limited Resolution!

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

W

T. Readback Performance

Data Courtesy: www.techreport.com
June 2004

3D Image Download Benchmark
GeForce 6800GT

Pertium 4 XE 34GHz - 915G | 221 99
Pertium 4 XE 3.45Hz - 925X] | 221 74
Pertium 4 XE 3.4GHz - 875P : 207 3
0 100 200 300 400 500
MBisecond

Readback of 1Kx1K frame-buffer takes 18 ms over PCI-Expres
Graphics driver — 61.45

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Performance

(log scale)

100

®MTris /s
W ME / s (norm)
A CPUint2000 {norm) |

*
GPU Growth V

TP0 Growth Rate

AGP Bandwidth Growth
Rate

1898 1899 2000 2001 2002 2003
Courtesy: Anselmo Lastra
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Interactive collision detection
between complex objects
©Large number of objects
©High primitive count
©Non-convex objects

©O0pen and closed objects

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

7 Outline

© Interactive Collision Detection
e

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

~ Non-rigid Motion

A

—d

20

© Deformable objects
@ Changing topology
© Self-collisions

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

T Related Work

© Object-space techniques
© Image-space techniques

21

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

!lmlgllons O| !!Jec!-!pace

T Techniques

© Considerable pre-processing

© Hard to achieve real-time
performance on complex deformable
models

23
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

P
@ Object-Space Techniques

© Broad phase — Compute object pairs in close
proximity
& Spatial partitioning
& Sweep-and-prune
© Narrow phase — Check each pair for exact
collision detection
& Convex objects
& Spatial partitioning
& Bounding volume hierarchies
Surveys in [Kiosowski 1998, Redon et al. 2002,
Lin and Manocha 2003]

22

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

!O"ISIO“ EE!GC!IO“ using

T Graphics Hardware

© Primitive rasterization — sorting in
screen-space
© Interference tests

24
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

P
@ Image-Space Techniques

“Use of graphics hardware

@ CSG rendering [Goldfeather et al. 1989, Rossignac et
al. 1990]

© Interferences and cross-sections [Shinya and Forgue
1991 , Rossignac et al. 1992, Myszkowski 1995,
Baciu et al. 1998]

© Minkowski sums [Kim et al. 2002]

© Cloth animation [Vassilev et al. 2001]

@ Virtual Surgery [Lombardo et al. 1999]

@ Proximity computation [Hoff et al. 2001, 2002]

25

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

v. Collision Detection: Outline

@ Overview
© Collision Detection: CULLIDE

© Inter- and Intra-Object Collision
Detection: Quick-CULLIDE

© Reliable Collision Detection: FAR
© Analysis

27
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

!lml!allons O| lmage-!pace

T Techniques

© Pairs of objects

@ Stencil-based; limited to closed
models

© Image precision
© Frame buffer readbacks

26

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

0w Overview

:3)/'

@ Potentially Colliding Set (PCS)
computation

© Exact collision tests on the PCS

28
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

" Algorithm

29

Object-Level

Subobject-
Level Exact Tests
Pruning
J \
' \
GPU-based PCS computation Using CPU

Pruning

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

' Potentially Colliding Set (PCS)

31

@ T

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

' Potentially Colliding Set (PCS)

30

__——PCS

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

" Algorithm

32

Object-Level

Pruning

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

' Visibility Computations

Z

—d

Lemma 1: An object O does not
collide with a set of objects S if O is
fully visible with respect to S

Visibility of Objects

|
- |

33

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

1 View

© An object is fully
visible if it is
completely in front of
the remaining objects

34
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

© Geometric Interpretation

Sufficient but not a necessary
condition for existence of
separating surface with unit
depth complexity

PCS Pruning

AT

35
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Lemma 2: Given n objects
o,0,..,0,, an object O; does not
belong to PCS if it does not
collide with O,,...,0,.,0,,,...,0,

@ Prune objects that do not collide

36
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

' PCS Pruning

Z

—d

0, 0, .. 0,00, .. 0,0,

37
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

" PCS Computation: First Pass

Render

'Q
v

0, 0, ...0,00,, .. 0,0,

39

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

' PCS Computation

Z

—d

© Each object tested against all objects
but itself

© Naive algorithm is O(n?)

@ Linear time algorithm

@ Uses two pass rendering approach
© Conservative solution

38
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

" PCS Computation: First Pass

Yes. Does not
collide with
0,,0,,...,0,4

v

40

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

" PCS Computation: First Pass

M

Render

'Q
v

Ol 02 sen Ol_l Ol o|+1 sen On_l On

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

PCS Computation: Second Pass

|
2

z _ o o
/({e_s\.(Does not

collide with
Ois15+-0p-1:0n

43

Render

Oi Oi+1 On-1 On

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

" PCS Computation: Second Pass

Render

&
<

0, 0, ...0,00,, .. 0,0,

42
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

PCS Computation: Second Pass

\ -

Render

&
<

01 02 sen Ol_l Ol o|+1 sen On_l On

44

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

' PCS Computation

Z

—d

45

Fully Visible Fully Visible
0, 0, ... 0,80, ... Oy, O,

A

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

47

Subobject-
Level
Pruning

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

—d

' PCS Computation

Z

46

0,8)0;...0,.

i+1 """ on-z on-l

0, 05 ... 0,y Oy - O,

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

' CULLIDE Algorithm

Z

—d

48

— e E£xact Tests

Exact overlap
tests using CPU

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

@ Full Visibility Queries on GPUs

© We require a query
© Tests if a primitive is fully visible or not
© Current hardware supports occlusion
queries
@ Test if only part of a primitive is visible or not
© Our solution
& Change the sign of the depth function

49

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

P —
v. Bandwidth Analysis

© Read back only integer identifiers
& Computation at high screen resolutions

51
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

@ Full Visibility Queries on GPUs

Depth function
GEQUAL LESS
All fragments | Pass Fail
Fail Pass
Occlusion Query not
query supported

©Examples - HP_Occlusion_test, NV_occlusion_query

50

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

v. Live Demo: CULLIDE

© Laptop
© 1.6 GHz Pentium IV CPU
@ NVIDIA GeForce FX 700 GoGL
© AGP 4X

52
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

v. Live Demo: CULLIDE

© Environment
@ Dragon — 250K polygons
@ Bunny — 35K polygons
© Average frame rate — 15 frames per
second!

53

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

T
v, Quick-CULLIDE

@ Improved two-pass algorithm

© Utilize visibility relationships among
objects across different views

55
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

ln!eracllve !O"ISIO“ Ee!ec!lon:

T° Outline

e
e

@ Inter- and Intra-Object Collision
Detection: Quick-CULLIDE

e
e

54

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

T’ Sets

© Decompose PCS into four disjoint sets
& FFV (First pass Fully Visible)
© SFV (Second pass Fully Visible)
@ NFV (Not Fully Visible in either passes)
© BFV (Both passes Fully Visible)

@ Visibility sets have five interesting
properties!

56
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

' Visibility Sets: Properties

57

Lemma 1: FFV and SFV are collision-
free sets

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

" PCS Computation: First Pass

59

Render

'Q
v

Ol 02 sen O|'1 OI rr O_]

Y

Fully Visible

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

" PCS Computation: First Pass

58

Render

'
v

0, 0, .. 0,0..0

| . Opy O,

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

' Visibility Sets: Properties

60

Lemma 2: It is sufficient to test
visibility of objects in FFV in second
pass only

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

" PCS Computation: First Pass

61

0, 0, ...0,00,, .. 0,0,

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

" PCS Computation: First Pass

63

Not Colliding
0,0, ... 0,4 O,

Collision tested
in Second pass

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

" PCS Computation: First Pass

62

Render

'
v

Ol 02 Oi-l Oi

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

' Visibility Sets: Properties

64

Lemma 3: It is sufficient to render
objects in FFV in first pass only!

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

" PCS Computation: First Pass

65

0, 0, ...0,00,, .. 0,0,

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

" PCS Computation

Render

&

Not Colliding

I- Oi Oi+1 On—1 On

67

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

" PCS Computation: First Pass

66

Render

'
v

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

' Visibility Sets: Properties

68

Lemma 4: It is sufficient to test the
visibility of objects in SFV in first pass
only!

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

o0

' Visibility Sets: Properties

69

Lemma 5: It is sufficient to render
objects in SFV in second pass only!

UuICK-

. Advantages

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

7

© Pairs of overlapping triangles in an
object that are not neighboring

70

© Better culling efficiency
© Lower depth complexity than CULLIDE
© Always better than CULLIDE
© Faster computational performance

© Lower number of visibility queries and rendering
operations

© Can handle self-collisions

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

72

© Pairs of overlapping triangles in an
object that are not neighboring

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

' Self-Collisions

73

Artifacts

© Occur in most deformable simulations
. .

Image Courtesy: Baraff and Witkin, SIGGRAPH 2003

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

' Contacts: Classification

(a)

(b) L (c)

75

~

Touching Contacts Penetrating Contact

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

" Our Solution

74

@ Classification of contacts between
triangles in an object
© Touching contacts
© Penetrating contacts

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

e

' Solution

76

© Ignore touching contacts
© Consider only penetrating contacts

© Redefine fully visible

© We pass a fragment when a touching contact
occurs

© Pass all fragments with depth < corresponding
depths in frame-buffer

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

' Live Demo: Quick-CULLIDE

Z

—d

7

© Laptop
© 1.6 GHz Pentium IV CPU
& NVIDIA GeForce FX 700 GoGL
© AGP 4X

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

¢ Outline

79

e
e
e

© Reliable Collision Detection: FAR
e

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

' Live Demo: Cloth Simulation

78

© Cloth — 20K triangles

© Average frame rate — 13 frames per
second!

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

¢ Algorithms

80

© Image sampling
© Depth buffer precision

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

' Image Sampling

Z

—d

© Occurs when a primitive is nearly parallel
to view direction

81

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

' Depth Buffer Precision

Z

—d

© Intersecting points are sampled but
precision is not sufficient

I Intersecting
point

. /
C = pixel center

Viewport

83

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

' Image Sampling

Z

—d

© Primitives are rasterized but no intersecting
points are sampled by hardware

| |~ Intersecting
2 point

. /
C = pixel center

Viewport

82

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

" Our Solution

© Sufficiently fatten the triangles
© Use Minkowski sums

Minkowski Sum AB= A@® B
={a+b: a€A bEB}

84

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Minkowski Sum: Example

85
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

) Reliability

Under orthographic transformation O, (/1o rasicrization of Minkowsts
sum @ = Q@ S, where Q is a point in 3-D space that projects inside a
pixel X and S is a sphere centered at origin bounding a pixel, samples X
with at least two fragments bounding the depth value of Q.

) Reliability

Lemma 1: Under orthographic transformation O, the
rasterization of Minkowski sum & = Q®S, where Q
/s a point in 3-D space that projects inside a pixel X
and S is a sphere bounding a pixel centered at the
origin, generates two samples for X that bound the

depth value of Q.

86
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

) Reliability

Under orthographic transformation O, the rasterization of Minkowski sum
° = 0@ 5 where Q is a point in 3-D space that projects inside a
pixel X and S is a sphere centered at origin bounding a pixel, samples X
with at least two fragments bounding the depth value of Q.

|z_ Qo

Pixel X

+

+

88
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

87
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

) Reliability

Under orthographic transformation O, the rasterization of Minkowski sum
@ = Q® S, where Q is a point in 3-D space that projects inside a pixel X
and S is a sphere centered at origin bounding a pixel, =:/7p/25 X
with at least two fragments bounding the depth value of Q.

Qo

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

) Reliability

Under orthographic transformation O, the rasterization of Minkowski
sum Q° = Q @®S, where Q is a point in 3-D space that projects inside a
pixel X and S is a sphere centered at origin bounding a pixel, samples X

with at least two fragments bounding the depth value of Q.

- @

-+

) Reliability

E

Under orthographic transformation O, the rasterization of Minkowski
sum Q° = Q @®S, where Q is a point in 3-D space that projects inside a
pixel X and S is a sphere centered at origin bounding a pixel, samples X

with at least two fragments bounding the depth value of Q.

Qo

20
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

91
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

) Reliability

Under orthographic transformation O, the rasterization of Minkowski
sum Q° = Q @®S, where Q is a point in 3-D space that projects inside a
pixel X and S is a sphere centered at origin bounding a pixel, samples X

with at least two fragments Ho.1cing the depth value of Q.

Sample Depths

92
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

) Reliability

Under orthographic transformation O, the rasterization of Minkowski sum
@ = Q@ S, where Q is a point in 3-D space that projects inside a pixel X
and S is a sphere centered at origin bounding a pixel, samples X with at

Jeast two fragments bounding the depth value of Q.

Sample Depths

93

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

) Reliability

| N
x
T

95

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

) Reliability

94

Lemma 2: Given a primitive P and its Minkowski sum
P =P @S. Let X be a pixel partly or fully covered by
the orthographic projection of P.

P, ={p € P, pprojects inside X},
Min-Depth(P, X) = Minimum depth value in P,
Max-Depth(P, X) =Maximum depth value in P,.
The rasterization of P2 generates at least two
fragments whose depth values bound both
Min-Depth(P, X) and Max-Depth(P, X) for each pixel X.

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

) Reliability

E

96

P, is the portion of P projecting inside pixel X

(

+— 4 4
Pixel X

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Reliability

E

97

S is a sphere centered at origin bounding pixel X

(

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Reliability

929

then the rasterization of the Minkowski sum P,°
generates two fragments

Sample Depths|

Pixel X

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Reliability

98

Pixel X

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Reliability

100

and the fragments bound depth values in P,

Pixel X

Sample Depths|

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

) Reliability

Theorem 1. Given the Minkowski sum of two
primitives with S, P;° and P,°. If P, and P,
overlap, then a rasterization of their Minkowski
sums under orthographic projection overiaps in
the viewport.

101

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

) Reliability

If P, and P, intersect in 3-D,

P,and P,
: intersect in 3-D

Pixel X

103

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

) Reliability

[

102

Given two primitives P, and P,
1
1 1
1 1
1 1
P, L_% Py

+— 4 4
Pixel X

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

) Reliability

104

and we compute their Minkowski sums with a pixel-sized
sphere centered at origin

Pixel X

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

v Reliability

rasterization of the Minkowski sums overlap in image-space

Py

105

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

-P2
b
P1
z
| -
1
I 3 l
—~+—1 ¢ 1 4

Pixel X

v Reliability

Corollary 1: Given the Minkowski sum of two
primitives with B, P;° and Py°. If a rasterization
of P> and Py under orthographic projection do
not overlap in the viewport, then P, and P, do
not overiap in 3-D.

Useful in Collision Culling: apply fattened
primitives P;° in CULLIDE

106

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

- Bounding Offsets of a Triangle

108

© Exact Offsets

© Three edge-aligned cylinders, three spheres,
two triangles

© Can be rendered using fragment programs
© Expensive!

@ Oriented Bounding Box (OBB)

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

" OBB Construction

109

’ Union of OBBs

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

' Live Demo: FAR

111

© Laptop
© 1.6 GHz Pentium IV CPU
& NVIDIA GeForce FX 700 GoGL
@ AGP 4X

110
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

' Live Demo: FAR

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

@ Environment
© Tree — 4000 triangles
© Leaf — 200 triangles, 200 leaves
© Scene — 44K triangles
© Average frame rate — 15 frames per
second!

112
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

113

® @ 0@

© Analysis
© Performance
@ Pruning efficiency
& Precision

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

7 Analysis: Performance

A

—d

(in ms)

Collision Time

a* 10

p
L

L]

% 30 4w s s 7 s s 100

3

Collision time
Vvs.
number of objects

NV30 GPU
Pentium IV 2GHz
CPU

Number of Obiects
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

7 Analysis: Performance

A

—d

© Based on pruning algorithm in
CULLIDE

@ Factors
© Qutput size
© Rasterization optimizations
© Number of objects
@ Number of triangles per object
© Image resolution

114

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

~ Analysis: Performance

Collision time
vs.

B number of polygons
c T
EG.S
é [
§5,5
; NV30 GPU
' Pentium IV 2 GHz
45 CPU

%J(l 300 400 500 600 T0O 80O
MNumber of Polvaons per Obiect
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

7 Analysis: Performance

Collision time

65/ VS.
— screen resolution
g s
%6,5-
50
§4.S--

NV30 GPU
4 Pentium IV 2 GHz
35 CPU

700 800 S00 1000 1100 120C
Screen Resolution {Res.xBes)....... ., .._..... CAROLINA at CHAPEL HILL

- Comparison: FAR and I-COLLIDE
A
2500
Culling Performance Comparison
I
2000 - I
£ |
[|
B 1500 - !
= {
o 1
] i .I
=
‘& 1000 - 11
g | !
O; I CPU Culling Algorithm™ |
500 - " i
- jw""“";)
I I
0 L .I._.J . 7 S —--—-—E'!“P
0 100 200 300 400 500 600 700 800 900 1000 1100 1200
Frame Number
e The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

—d

.~ Analysis: Pruning Efficiency

b))

118

© Input complexity
© Relative object configurations

© Pruning efficiency in
© Object-Level Culling
© Subobject-Level Culling

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Analysis: Accuracy

120

© CULLIDE and S-CULLIDE: Image resolution
© FAR: IEEE 32-bit floating-point precision

© Comparison:
@ FAR vs. CULLIDE

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

hy. Accuracy: FAR vs. CULLIDE

Pruning Curve .
using FAR

.

Pruning Curve
using CULLIDE

121
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

. Conclusions

© Designed efficient algorithms for solving
@ interactive collision detection,
& shadow generation
© Applied them to complex 3-D
environments

© Compared to prior state-of-the-art
algorithms
& Significant speedups in some cases

123
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

v. Outline

e
e

© Conclusions and Future Work

122
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

by. Advantages

© Generality

@ Accuracy

© IEEE 32-bit floating-point precision for collision
computations

© Low Bandwidth

@ No readbacks

124
The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

" Advantages

125

© Significant Culling

© Practicality

© Designed on commodity hardware
© Assumes availability of occlusion queries

" Limitations

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

" Future Work

127

@ Collision Detection
& Pair computation

& More applications — continuous collision
detection, shadow volumes

@ Reliable self-collisions for general and
specialized models

@ New programmability features

@ Precision
© Shadow and self-collision algorithms are limited by
image-precision
@ Accuracy can be improved
© Pair computation
© Algorithms compute potential sets

126

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

" Future Work

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

© Shadow generation
© Soft shadow generation

128

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

v Future Work

© Visibility algorithms for
@ Line-of-sight
& Database operations [Govindaraju et al. 2004]
© Data mining [Govindaraju et al. 2005a]
@ 3-D sorting [Govindaraju et al. 2005b]
© Order-statistics

129

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

N Acknowledgements

© Army Research Office

@ National Science Foundation
© Naval Research Laboratory
@ Intel Corporation

© NVIDIA Corporation

© Paul Keller and Stephen Ehmann for driver
support

131

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

N Acknowledgements

© Student collaborators
© Brandon Lloyd
@ Avneesh Sud
© Stephane Redon (Post-Doctoral Researcher)
© UNC Walkthrough, Gamma

130

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

]
w Thank You

© Questions or Comments?
naga@cs.unc.edu
http://gamma.cs.unc.edu/CULLIDE

http://gamma.cs.unc.edu/RCULLIDE
http://gamma.cs.unc.edu/QCULLIDE

132

The UNIVERSITY of NORTH CAROLINA at CHAPEL HILL

Tutorid:
Real-Time Collision Detection for
Dynamic Virtual Environments

Bounding Volume Hierarchies

Stefan Kimmerle Johannes Mezger
WSI/GRIS
University of Tubingen

e Introduction
* Bounding Volume Types
e Hierarchy
 Hierarchy Construction
 Hierarchy Update
 Hierarchy Traversa
e Comparison Rigid-Deformable Objects
« Examples and Conclusion

University of Tibingen

University of Tibingen

Problem of Collision Detection:

Object representations in simulation environments
do not consider impenetrability.

The problem is encountered in

« computer-aided design and machining (CAD/CAM),
« robotics,

« automation, manufacturing,

« computer graphics,

« animation and computer simulated environments.

izr=

University of Tibingen

University of Tibingen

Definition of Bounding Volume Hierarchy (BVH):

Each node of atree is associated with a subset of primitives
of the objects together with a bounding volume (BV) that
encloses this subset with the smallest instance of some
specified class of shape.

University of Tibingen

* Introduction
e Bounding Volume Types
Hierarchy
 Hierarchy Construction
 Hierarchy Update
 Hierarchy Traversa
Comparison Rigid-Deformable Objects
Examples and Conclusion

University of Tibingen

Use these BVs as simplified surface represen-
tation for fast approximate collision detection test:

Examples of BVs:
* Spheres
« Discrete oriented polytopes (k-DOPs)
Axis-aligned bounding boxes (AABB) %
« Object-oriented bounding boxes (OBB)

« Check bounding volumes to get the information
whether bounded objects could interfere.

« Avoid checking all object primitives against each other.

« Assumption that collisions between objects are rare.

University of Tibingen

Two spheres do not overlap if

University of Tibingen

good choice bad choice

University of Tibingen

Different k-DOPs:

6-DOP

(AABB) 14-DOP

18-DOP 26-DOP

oop

University of Tibingen

Discreteoriented polytopes (k-DOP) are ageneralization of axis aligned
bounding boxes (AABB) defined by k hyperplanes with normas in discrete
directions(n: Ny ; i {03

k-DOP is defined by k/2 pairs
of min, max vauesin k directions.

min,

&

oop

University of Tibingen

optimal choice also good choice

&

oop

University of Tibingen

Object oriented bounding boxes (OBB) can be represented by
the principal axes of a set of vertices. These axes have no
discrete orientation. They move together with the object.

The axes are given by the Eigenvectors
of the covariance matrix:

Centre of vertices X;: -
Covariance matrix: - [j.k=1.3]

o8B

OBB overlap test:

A

T:L

2 A and B do not overlap if: _

Problem: Find direction of L

o8B

University of Tibingen

« Principal axes of an object are not always a
good choice for the main axes of an OBB!
« Inhomogeneous vertex distribution
can cause bad OBBs.

o8B

University of Tibingen

University of Tibingen

>

Better approximation,
higher build and update costs

sphere AABB DOP OBB convex hull

Smaller computational costs
for overlap test

University of Tibingen

* Introduction
Bounding VVolume Types
Hierarchy
 Hierarchy Construction
 Hierarchy Update
 Hierarchy Traversa
Comparison Rigid-Deformable Objects
Examples and Conclusion

University of Tibingen

To further accelerate collision detection:

« use hierarchy over bounding volumes

« nodes contain bounding
volume information

* leaves additionally contain Py
information on object (
primitives

N

l.'\k _//'
7
DN\ DN\
P\, V% 7
P
77N RN

Parameters

« Bounding volume

 Type of tree (binary, 4-ary, k-d-tree, ...)

 Bottom-up/top-down

« Heuristic to subdivide/group object primitives
or bounding volumes

« How many primitives in each leaf of the BV tree

Goals

* Balanced tree
« Tight-fitting bounding volumes
* Minimal redundancy
(primitives in more than one BV per level)

University of Tibingen

University of Tibingen

-

%

Bottom-Up

« Start with object-representing primitives

« Fit a bounding volume to given number of primitives
 Group primitives and bounding volumes recursively

« Stop in case of asingle bounding volume at a hierarchy level

Top-Down

« Start with object

« Fit a bounding volume to the object

« Split object and bounding volume
recursively according to heuristic

« Stop, if al bounding volumesin alevel

contain less than n primitives

University of Tibingen

Top-Down Node-split:
¢ Split k-DOP using heuristic:
¢ Try to minimize volume of children (Zachmann VRST02).
« Split dlong the longest side of the k-DOP (Mezger et al.

WSCGO03).
¢ The SPu.currg woiltin N S o NENS remain
per leaf.

Bottom-Up Node-grouping:
¢ Group nodes using heuristic:

« Try to get round-shaped patches by improving a shape factor
for the area (Volino et al. CGF94).

e Group until all elements are grouped and the root node
of the hierarchy is reached.

University of Tibingen

University of Tibingen

Updating is necessary in each time step dueto
movement/defor mation of simulated object.

Difference between rigid and deformable objects:

* For rigid objects: transformations can be applied to complete object.

* For deformable objects: al BV's need to be updates separately.
¢ Update is possible top-down or bottom-up.
¢ To avoid a complete update of al nodesin each step, different update
strategies have been proposed.

WA
e =
Some object transformations can be simply applied

to al elements of the bounding-volume tree:

Spheres

« Trandation, rotation

sphere

Discrete Orientation Polytopes

« Trandation, no rotation
(discrete orientations of k hyperplanes for al objects) DoP

Object-Oriented Bounding Boxes
« Trandation, rotation
(box orientations are not fixed)

University of Tibingen

University of Tibingen

Larsson and Akenine-Méller (EG 2001):
* If many deep nodes are reached, bottom-up update is faster.

* For only some deep nodes reached, top-down update is faster.

-> Update top haf of hierarchy bottom-up
-> only if non-updated nodes are reached update them top-down.

* Reduction of unnecessarily updated nodes!

* Leaf information of vertices/faces has to be stored also in interna
nodes -> higher memory requirements.

Mezger et d. (WSCG 2003):
¢ Inflate bounding volumes by a certain distance depending on velocity.

bd farther than that

distance.

-> Fewer updates necessary.
-> More false positive collisions of BV's.

University of Tibingen

University of Tibingen

oV Collision test: ®
Minimize probability of intersection as @ @

fast as possible:

* Test node with smaller volume against @ @
the children of the node with larger
volume. @ @

(&) (&)

University of Tibingen

Callision test: @

(3 @ G ()
(60 @ @ (&

Higher order trees:

* Fewer nodes
« Total update costs are lower

« Recursion depth during overlap tests is lower, therefore lower
memory requirements on stack

University of Tibingen

« Introduction
« Bounding Volume Types
e Hierarchy
 Hierarchy Construction
 Hierarchy Update
 Hierarchy Traversa
e Comparison Rigid-Deformable Objects
Examples and Conclusion

Rigid Objects:

use OBBs asthey are usually
tighter fitting and can be updated
by applying trand ations and
rotations.

update complete BVH by applying
transformations

usudly small number of collisions
occur

Deformable Object:

use DOPs as update costs are lower
than for OBBs

update by refitting or rebuilding
each BV separately (top-down,
bottom-up)

high number of collisions may occur
Sdf-collisions need to be detected
use higher oder trees (4-ary, 8-ary)

University of Tibingen

University of Tibingen

* Introduction
« Bounding Volume Types
e Hierarchy
 Hierarchy Construction
 Hierarchy Update
 Hierarchy Traversa
« Comparison Rigid-Deformable Objects
e Examples and Conclusion

University of Tibingen

University of Tibingen

Interactive Cutting
and Sewing

L

/-/ﬁ RAS] Thank you ...

Thank you!

Thanks to Matthias Teschner (University of Freiburg) and Johannes Mezger
(University of Tiibingen) for contributions to the slides!

Conclusions

« BVHs are well-suited for animations or interactive applications, since
updating can be done very efficiently.

« BVHs can be used to detect self-collisions of deformable objects while
applying additional heuristics to accelerate this process.

« BVHs work with triangles or tetrahedrons which allow for a more
sophisticated collision response compared to a pure vertex-based
response.

« Optimal BVH and BV dependent on application (collision or proximity
detection) and type of objects (rigid / deformable object)

University of Tibingen

University of Tibingen

* Stochastic Methods

Gabriel Zachmann
Universitat Bonn

i Motivation

m Absolute exactness not always necessary
m Real-time more important

® Approximate collision detection

,plausible paths" for a cannonball. !
] Games V|rtual clothes prototyping, medical tralnlng,

Motivation ADB-Trees Stochastic Closest Features Conclusions

1. ADB-Trees [Klein & Zachmann, 2003]

2. Stochastic Closest Features Tracking
[Raghupathi et al., 2004; Debunne & Guy, 2004]

Motivation ADB-Trees Stochastic Closest Features Conclusions

i ADB-Trees

ADB = "Average Distribution Trees"

Average-case appraoch:
m Estimate probability of intersection of 2 sets of polygons

Applicable to almost any BV hierarchy

Augment BVH by simple description of polygon
distribution at inner nodes

Probability-guided BVH traversal (p-queue)

Motivation ADB-Trees Stochastic Closest Features Conclusions

Probability-Guided BVH Traversal

Traverse(A,B)

g.insert(A,B,1)
while g not empty
A,B- g.pop
forall A, B
p - Pr collision in A, B;]
if p3 pmin
return “collision”
ifp30
g.insert(A, B; p)
return “no collision”

Motivation ADB-Trees Stochastic Closest Features Conclusions

Probability-Guided BVH Traversal

priority queue q; Traverse(A,B)
I
p-queue q
(A,B, p=0,9 g.insert(A,B,1)
(AB) &1331 Bzg,s |while g not empty
(A2,Bp), p=0 AB- g.pop

forall A, B

AT B p - Pr[collision in A, B,]
> | ifp3 pm |
~ \\ ; return “collision”
> ifp3 0
& v [g.insert(A, B; p) |
i return “no collision”
Motivation ADB-Trees Stochastic Closest Features Conclusions

Well-filled Cells and Collision Cells

"wedhfsiiea' cetll

Motivation ADB-Trees Stochastic Closest Features Conclusions

possibiigianltisibn cell

Motivation ADB-Trees Stochastic Closest Features Conclusions

Computing the Probability of Intersection

1. Partition A C B by grid with s cells

2. Determine number of "well-filled" ;
cells from BV A: s, /_\

m Take curvature within cell into account:

m Preprocessing a
m Estimate parameters i

z<min{sq.sp

max }{Pr[c(AmB) > z]-(1—(1-LB(ANB))®)}

m |Lookup-tables for probability functions:

Motivation

Pr.]

ADB-Trees Stochastic Closest Features Conclusions

. NS
3. Dito for B: sg X *.4/
4. Compute probability that B
x cells are well-filled from A
and from B:
z-1 (Sf
Prlc(ANB) za]l=1- 3%
t=0
Motivation ADB-Trees Stochastic Closest Features Conclusions
Result
car
03 in=0.99)
. . — pmin=0.
= Time vs. error: % — pmin-0.0
£ 0,2 — pmin=0.80)
@
EO0L
0 ———————
@ 12 13 14 15 16 17 18 19 2
i] SsE
i 8- — pmin=
0 61
<]
5 *
24
0

1,2 13 14 15 16 1,7 18 19 2
distance

Motivation ADB-Trees Stochastic Closest Features Conclusions

i Stochastic Closest Features Tracking

m Based on Lin-Canny (only for convex objects)

m Steepest descent for single pair of features
m Accelerated by generalized Voronoi diagram
m Temporal coherence

m Extension to non-convex, deformable objects:

= Non-convex ® multiple pairs of (locally) closest features
m Deformable ® feature pairs come and go
= Voronoi diagram not really feasible

m Idea

Motivation

m Stochastically create pairs of features
m Converge them to locally closest features

ADB-Trees Stochastic Closest Features Conclusions

Details

m Algorithm:
Do animation step
Add random pairs to list of “active feature pairs”
For each feature-pair:
Update features by local search
Remove “unwanted” pairs
If collision:
apply response to local collision area

Stochastic Closest Features

m Updating of feature pair:
= No Voronoi diagram
m Compute pairwise distance of all
neighbor pairs
m Removal of feature pairs:
m Distance too large (not likely closest feature)
= Both features of two pairs too close (redundant)
m Creation of feature pairs:
= Importance-driven (e.g., velocity-based)
m Supported naturally by multires model

Stochastic Closest Features

Acceleration by BV Hierarchy

m Use incomplete BVH to find "interesting" regions
m Stochastically sample those regions

BVHA @ @svHB

C0OEOB®

Stochastic Closest Features

Example Application

Conclusions

INRIA

Conclusions

i Conclusions

m Stochastic methods are not always error-free

m Good for plausible & fast simulations

m Interesting alternative to BVHs in specific cases
m Naturally yield time-critical collision detection

= Future work:

m Continuous stochastic methods
m Precise error bounds

Conclusions

Collision Detection for Deformable Objects

Distance Fields

Arnulph Fuhrmann

Fraunhofer Institute for Computer
Graphics

Darmstadt, Germany

Fraunhatar

Outline

¢ Introduction

« Distance Field Generation

¢ Collision Detection using Distance Fields

¢ Conclusion

Arnulph Fuhrmann - afuhr@igd.fhg.de

Introduction

¢ Physically based modeling
— Cloth, hair, etc.

¢ Problem
— Many contact points

¢ During Simulation
— Detect Collision
— Compute Collision Response
« Proximity or penetration depth
 Surface normal

Arnulph Fuhrmann - afuhr@igd.fhg.de

Distance Field Definition

¢ Scalar function

D:R°® R
« dist(p) = distance to closest point on surface
« sign(p) = negative if inside object

D(p) = sign(p) >dist (p)

Arnulph Fuhrmann - afuhr@igd.fhg.de

Fraunkatar,
Gapty

ot
ettt

Example — Distance Field 2D-Slices

Arnulph Fuhrmann - afuhr@igd.fhg.de

Fraunkatar,
Gapty

ot
ettt

Outline

Introduction

Distance Field Generation

Collision Detection using Distance Fields

¢ Conclusion

Arnulph Fuhrmann - afuhr@igd.fhg.de

Fraunkatar,

Galtcta
ettt

Distance Field Data Structures

¢ Uniform 3D grid
— Queries take O(1) time
— Curved surfaces can be
represented quite well
— CO°continuous

« Adaptively sampled
distance fields (ADFs)
— [Frisken et al. '00]

— C'between different levels

« can be resolved

Frisken et al. '0

Arnulph Fuhrmann - afuhr@igd.fhg.de

Fraunkatar,

Galtcta
ettt

Distance Field Data Structures

e BSP-tree
— [Wu and Kobbelt '03]
— Piecewise linear
approximation
— Generation
computationally
expensive

— Discontinuities between ADF 895 cells BSP-tree 254 cell§
cells

| [Wu and Kobbelt '03]]

Arnulph Fuhrmann - afuhr@igd.fhg.de

Computation of Distance Fields Computation of Distance Fields

« Object representation * Propagation methods

— triangular mesh — Fast Marching methods [Sethian '96]

— Distance Transforms [Jones and Satherley ‘01]
¢ Rasterizing of distance functions

— Full distance field

— [Sud et al. ‘04], [Hoff et al. '99]
¢ Bounded Voronoi Regions

— [Sigg et al. ‘03], [Breen et al. '01]

+ Collision detection — bounding polyhedron around Voronoi regions of edges, faces
— only a small band needed and vertices

* Problem
— Computing distances for all grid points
— Naive computation too costly

Arnulph Fuhrmann - afuhr@igd.fhg.de £ Arnulph Fuhrmann - afuhr@igd.fhg.de

Scan Conversion of Bounded Voronoi

Regions y
/ .
P T, * Introduction
4
. l//n
e4m ¢ Distance Field Generation
/£
. . n,
4
< ¢ Collision Detection using Distance Fields
N~
SR « Conclusion

Arnulph Fuhrmann - afuhr@igd.fhg.de £ Arnulph Fuhrmann - afuhr@igd.fhg.de

Collision Detection

e Scenario
— Deformable object A !
— Static object B

e Collision Detection
— Sample object A
— Test sample points for collision
with B

« If both objects are deformable
— Swap and repeat

Arnulph Fuhrmann - afuhr@igd.fhg.de

Collision Detection

¢ Problem
— Edges intersect object

Queries needed for collision detection
(On a uniform 3D grid)

« Distance \
— Tri-linear interpolation

¢« Normal
— Direction given by the
gradient

Arnulph Fuhrmann - afuhr@igd.fhg.de

¢ Solution
— Preserve e distance at
vertices
Y Arnulph Fuhrmann - afuhr@igd.fhg.de
Fraunhate

What about deforming collision objects?
« Multiple distance fields

¢ Linked rigid objects
— One distance field per object

« Not possible yet

— Soft objects like a bending
human arm

Arnulph Fuhrmann - afuhr@igd.fhg.de

Other approaches for deforming objects

¢ [Bridson et al. ‘03]
— Clothing and animated characters
— Pre-computed ADFs for the body parts

— Can be used for several cloth
simulations

¢ [Fisher and Lin ‘01]
— Deforming geometries
— Collision detection is done
hierarchically
— Partial DF updates only

— Internal distance fields for collisiof [Fisher and Lin ‘0

response

Arnulph Fuhrmann - afuhr@igd.fhg.de

Fraunhatar

Demo Video

Captured directly from screen

Implemented in Java 1.4.1 and
Java3D 1.2

Tests made on a Intel Xeon
Processor at 2.0 GHz

Buddha model consist of
390.000 triangles!

Arnulph Fuhrmann - afuhr@igd.fhg.de

Distance Fields for Rapid
Collision Detection in
Physically Based Modeling

Fraunhofer Institut

Graphische
Datenverarbeitung

Outline

Introduction

Distance Field Generation

Collision Detection using Distance Fields

Conclusion

Arnulph Fuhrmann - afuhr@igd.fhg.de

Summary

« Distance Fields Generation
— Pre-Processing step
— Duration: Some seconds

¢ Collision Detection using Distance Fields
— Most useful for deformable against rigid objects
— Efficient computation of
« Penetration depth / proximity
+ Gradient (Normal)

— Easy to implement
— Robust algorithm

Arnulph Fuhrmann - afuhr@igd.fhg.de

