6/2/07

W 9 N
<Tg.

~ ~
¢ a
B
2 " mmam

Collision Detection as a
Fundamental Technology in
VR Based Product Engineering

Prof. Gabriel Zachmann

Clausthal University, Germany
zach@tu-clausthal.de

27 Advanced Study Institute on "Product Engineering:

Tools and Methods based on Virtual Reality Technology"
Chania, Creete, 30 May — 6 June 2007

"m Motivation %!

MWg / aoi

Collision Detection Pipeline

(Application |

A

Scene Graph

Collision
Front-End

Collision
Matrix

50

Collision
Obj.s

i

Coll.
Handler

N

Set transform.
in scene graph

Intro

hd

Exact Coll. Neighbor Neighbor
Detection Filtering 2 Filtering 1
/
@ Ol
/
S — S —
A -

Narrow phase

A
"
'

Broad Iphase

BoxTrees

6/2/07

Examples of Common Bounding Volumes

7

Cylinder Box, AABB (R*-trees)

Convex hull
[Weghorst et al., 1985] [Beckmann, Kriegel, et al., 1990] [Lin et. al., 2001]
Sphere Prism OBB (oriented bounding box)
[Hubbard, 1996] [Barequet, et al., 1996]

[Gottschalk, et al., 1996]

S

k-DOP / Slabs I'section of
[r\S/IphenEal ?2;';] [Zachmann, 1998] several BVs
anocha,

)

BoxTrees

Restricted Boxtrees / SKD-Trees

= Observation: on most sides, child boxes almost touch parent box

= Combination of kd-tree and AABB / generalization of kd-tree

lower child box upper child box

parent 5
[<— box

= Minimal storage: 2 floats, 2 axes IDs, 1 pointer

BoxTrees

6/2/07

m Overlap Tests

= Re-alignment:
= 12 FLOPs

= SAT:
= 82 FLOPs

SAT lite:

= 24 FLOPs
= Sphere test:
= 29 FLOPs

BoxTrees

Constructing Restricted Boxtrees

= Approach: top-down
= Compute BV covering input
= Splitinput into two subsets
= Splitting criterion:
= Expected traversal cost:
CX,Y)=4c+ Y P(X;, Y)C(X;, Y))
ij=1,2

~ Y P(X;, Y)NN;
ij=1,2

BoxTrees

6/2/07

6/2/07

i i

® Estimation of P(X;,Y)):

ANBj#0) & p;eA; & B;j

V(A,' D Bj) = ;
P(Alr Bj) - V(A) D V(B) | ;7757757777:V
i .
| i “~locus of all
_VAD+V(B) i i | otiensets

and B, intersect

T V(A + Vv(B)

= Overall criterion: split set of polygons so as to minimize

V(X1)N1 + V(X2)No

BoxTrees

. . (4
Construction Algorithm ’ !
= Represent polygons by points <> g~

b,yA, 4
= Compute axis of largest variance (PCA) V- SN

= Sort along that axis

= Sweep plane along that axis, /

looking for minimum of split heuristic
= Split set of polygons /
= Complexity:

T(n) = T(an)+T((1—a)n)+nlogn € O(nlog? n)

BoxTrees

i

= Results

= Suite:
= Platform:

= Pentium Il
1GHz

= Construction

Door lock (BMW)

0O
o
=
~
[a]
o
c
=
=3
®
o
<
é

6
51 headlight—
lock——
car
é 4 sphere
s 2
1
00 20 40 60 80 100 120
pgons / 1000
BoxTrees ReSu I tS
£ Resul .
= Results A
BVH Bytes / BV
Restricted Boxtree 8
Sphere Tree 20
AABB Tree 28
OBB Tree 52
24-DOP-Tree 100 o
1.4 T T Gastle LITIAL T T < @
12 do---T \ ,
i o] h e 4
op | A b
06 - 1)20(‘07)& ''''' (i‘l““ (»,Ll-l
distance

BoxTrees

6/2/07

6/2/07

Object-Space Coll. Detection on the GPU ‘!

= Background on streaming architectures (and GPUs):

= Stream Programming Model =
"Streams of data passing through computation kernels."

= Stream = ordered, homogenous set of data of arbitrary type
= Kernel = program to be performed on each element of the input stream

= Sample stream program:

{

stream A, B, C;

kernelfunc1(input: A,
output: B);

kernelfunc2(input: B,
output: C);

T
ele
1
SCan
I
ele
1
|suIay
T
ele
1

GPU

20

Application to Collision Detection

= Elementary operation during traversal is overlap test of BVs
= Different pairs of BVs on same level can be tested independently
®= |dea: implement as fragment program
= Texture = set of pairs of BVs to be tested
= Output = new texture
= Problem:
= Conceptually 1 execution unit per output element
= "0"s are still in the output

= Need to "pack" output texture tightly after each level

GPU

6/2/07

iy, [;

= Assumption (for sake of simplicity):
= 1D Array (texture)
= Element = pair of BVs
= Result of 1 overlap test = overlap status for 2 child pairs

1. Step: calculate overlap status for all potential child pairs

W input

2. Build a tree by summing up overlap counts

= corresponds to a mip-map; total size O(n)

I s B e

1 1 0 1 1 0 1

GPU

L7,

3. Successively construct the output array

Il e

1 1 0 1 1

GPU

L7,

3. Successively construct the output array

GPU

6/2/07

6/2/07

20,

3. Successively construct the output array

GPU

20,

4. Copy data for child BV pairs to output array

output

GPU

10

20,

Watch the GPU '/_ﬁ

= Top left = interactive scene

= Other panels = textures

Intro BoxTree GPU Hardware ADB-Trees Point Clouds Kinetization Benchmark Outlook

Dedicated Hardware for Coll.Det.

universitdtbonn

= General problem of "general purpose" computations on the GPU
— competition among resources

— Ancw| now ||

!B EREE|
| —
5 l 5
o @
| Axie- o
= — =
=3
=

| W B ———

= FPGA board (Xilinx Virtex Il Pro) for prototyping

Intro BoxTree GPU Hardware ADB-Trees Point Clouds Kinetization Benchmark Outlook

6/2/07

11

6/2/07

¢
Results - !

150 b o I ‘ sot‘:tware‘
140 = FPGA-accelerated

time (msec)
©
o

20 e kS

06 07 08 09 1 11 12 13 14 15 16
distance

= FPGA implementation has no cache yet(!)
= FPGA is much slower than ASIC (100 MHz, slow mem interface)
= With FPGA, the CPU is completely idle

Hardware

m Stochastic Collision Detection § !

= An Experiment

=

Set of "plausible paths" for a cannonball.

ADB-Trees

12

HKW Motivation %

= Observation: absolute accuracy is often not necessary

— New notion: approximative collision detection

= Goal: continuous and controlled balancing between running
time and accuracy

= Benefit: time-critical computation

ADB-Trees

"Gedankenexperiment" &5

"'wazl [Hsilexl telél]

ADB-Trees

6/2/07

13

m ADB-Trees

= Average-Case approach:

= Estimate probability of intersection for whole sets of polygons (at
inner nodes of BVH)

— BVH traversal guided by probability (P-Queue)
= Modification of BVHs: store simple description

= Advantage of our approach: can be applied to (almost) any kind
of BVH / hierarchical collision detection

ADB-Trees

Probability-Guided BVH Traversal

priority queue q; Traverse(A,B)
(AB) «| | | | p-queue q

(A,By), 9 |q.insert(A,B,1)

(A.B) (A1,By), |while g not empty

B

>

N

=
TTT T
0nnn
ooo o

o

(A2,By), A,B < g.pop

forall A, B.

p < Pr[collision in A, B;] |

| if p = pmin

return “collision”
ifp=0

Ny - | g.insert(A, B, p)

\‘/31

return “no collision”

ADB-Trees

6/2/07

14

Estimating the Probability

1. Partition A N B with grid of s cells

2. Compute number of "well-filled"
cells: s,

3. Dito for B: sg

4. Compute probability that x cells
are "well-filled" from both A and B:

Priccane) zxi=1- 3" (o) %
! = G $ oo U]

ADB-Trees

2.9}

Taking curvature into account

= So far, Pr[c(A N B) > x] only yields number of collision cells,
not collisions (i.e., cells with actual intersections)

= Curvature of surfaces A and B in collision cell ...
= Low — intersection likely
= High — not likely

= Heuristic:

= Cell large/small compared to object = surface in cell can make
many/few "bends"

= Depth d(A) , d(B) of BVs A, B indicates size of cells
= "Curvature factor":

B d(A) 4+ d(B)
LB(A, B) = dMax(Obj 1) 4+ dMaX(Obj 2)

ADB-Trees

2.9}

6/2/07

15

| | —
= Overall function to estimate probability of intersection:
max { Pr[c(ANB) > x]-(1-(1-LB(ANB))*) }
x<min{sa,sg}
LB=0.5
ADB-Trees
L

Efficient Estimate

= Preprocessing:
= Partition each BV of BVH by grid
= Count number s, of well-filled cells

= Store with each node of BVH

= At runtime estimate s', ands';:

, __ Vol(AN B)

~ S
SAT SATG1(A)

= Precompute LUT for function Pr
for all possible input values

= Evaluate only forx <10

ADB-Trees

6/2/07

16

6/2/07

Results q!

car
0.3
— pmin=0.99
b — pmin=0.90
g 0.2 — pmin=0.80
~
o
E0.14
=
0 T T T T

1.2 1.3 14 15 16 1.7 1.8 19 2

10

X g

~

2 64

o

=

o4

o — pmin=0.99
24 — pmin=0.90
0 — pmin=0.80

1.2 1.3 14 15 16 1.7 1.8 19 2

distance

ADB-Trees

Point Clouds q!

= Motivation: renaissance of points as object representation
because of 3D scanners

= Goal:
= Fast collision detection between 2 given point clouds

= No polygonal reconstruction

Point Clouds

17

Definition of the surface

= |dea: assume "distance function" f from surface,
then surface S is

S={xeR3|f(x)=0}

= "Distance" function f by Weighted Least Squares:

Point Clouds

L7,

= Cause and solution:

proximity graph

= Which neighborhood graph?
— k-SIG (sphere-of-influence graph)

Point Clouds

6/2/07

18

Benefits

= Much less artifacts

= Automatic, sampling-density independent
detection of boundaries

= Automatic kernel bandwidth selection —

handles different sampling densities
automatically

00

MLS, h=5 MLS, h=10 MLS,h=14 SIG, h= autom.

orig. PC old method our method

Point Clouds

CD using Point Cloud Hierarchies

Point Cloud Collision Detection

Jan Klein, Gabriel Zachmann

Eurographics 2004 — Grencble, France

Point Clouds

6/2/07

19

@
@wa Results *!

34 g Buddha
~ — Elephant
25 5 I!‘\\ e Aphrodite
3 PV ALV ---=--Sharan
£ 2 4,
E
o 1.5
E
oo
0.5

0.5 1.0 1.5 2.0 2.5

FF -

#points: 148,689 #points: 89,036 #points: 35,700 #points: 62299 #points: 35,056 # points: 137,125 # points: 197,315

Point Clouds

Coll.Det. of PCs using Stochastic Sampling %!

= Given two point clouds A and B (or subsets thereof), construct
a sampling of
2 = {x| fa(x) = fg(x) =0}

= QOverall method:

(pub;) EA Approx. Refined
on different intersection intersection
sides of B points point

Point Clouds

6/2/07

20

6/2/07

Results &j!

25
——RST (old)
20 .
——iSearch (new)
g
e 15
-
[
£ 10
5 |
28,000 points 0 T T
0 0,5 1 1,5 2 2,5 3

distance (relatve to bbox size)

* Theoretical complexity: O(loglog N)

Point Clouds

Kinetic Bounding Volume Hierarchies &j!

= For collision detection of deformable objects ...
= .. but not just for collision detection!

= Can be applied to ray-tracing, occlusion culling, etc.

= Pre-processed hierarchy becomes invalid when object deforms

— BVH must be rebuilt or updated after deformations

Kinetization

21

6/2/07

Our Approach

= QObservation:

= Motion in the physical world is normally continuous

= Changes in the combinatorial structure of the BVHs occur only at
discrete time points

—We store only the combinatorial structure of the BVH and use an
event-based approach for updating (kinetization)

Kinetization

Kinetic Toy Example

Max

y Q

Min

Event Queue

(t1, Q, R, Max x)

t1

Kinetization

22

Theoretical analysis

® Theorem:
Assume the objects have n vertices,
and the number of intersections of each pair of flightplans is
bounded from above by a constant for the duration of the
animation.

Then the total number of events in order to update the BVH is in
nearly O(n log n).

= Remark: this bound is independent of the query frequency.

2.9}
Sh

Results
Shirt Scene (~ 100,000 triangles)
20 -
I | i L i
28 15 -
o E
ot 10 —e—Kin AABB
£ § - Bottom-Up
o2 5§
o —_
0 T -~ T T
20 80 160 320

Num in-between frames

Kinetization

2.9}
Sh

6/2/07

23

Total time incl. collision detection time

Shirt scene

o 100
8 gp |~ Kin.ANBB
E - Bottom-up
S 601
£ 40
g 20+ . —
= —

0 T T T T T T T T T

N AN D DN D AN
R AR SR A A
SR GRS IR SR Q- M

Total num triangles

Kinetization

y 20

A Benchmarking Suite

= Goal: provide standard benchmark for existing and future
collision detection algorithms
® Running time is very sensitive to
= object shapes,
= objects complexity,
= orientation,

= distance between the objects.

Benchmark

20

6/2/07

24

Approach

= Collect substantial set of different objects

%

\}& otz ©»
= Compute several LODs for each

= For every pair of objects, and every distance: pre-compute large
set of configurations (rotation / translation)

= Downloadable at http://cq.in.tu-clausthal.de/research/colldet_benchmark

Benchmark

wa‘u’w Benchmark @ Work

Benchmark

6/2/07

25

6/2/07

. g,!
Natural Interaction X

= Direct manipulation is more intuitive and
sometimes even more efficient

= Goal:
= Model and simulate the real human hand

= Interaction between virtual environment
and virtual hand

= Not necessarily physically correct but
physically plausible

= Applications:
= Virtual assembly Simulation
= 3D Sketching

= Medical surgery training

Outlook

. g,!
Implementation A

= 17k quad mesh hand model
= Skeletal representation

= OpenSG for visualization

Data Collection with VRJuggler

Physical simulation by OpenDE
= Spring model for virtual grasping

= Does not rely on heuristics to estimate user intend or grasp state

Outlook

26

Result (work in progress)

Outlook

Real-Time Camera-Based 3D Hand Tracking

= Goals
= Observe hand with cameras
= Determine global hand position and orientation in 3d-space

= Determine hand state, i.e. angles between fingers

Outlook

i

6/2/07

27

Nﬂ Challenges

= Measurement noise

= Camera lens distortion

Uncontrolled illumination

Mutual occlusions of the hand
= Large working volume

= Fast hand motion

High problem dimensionality
(~ 27 DOFs)

Outlook

Overview of the System

-
o

1. Lens distortion

D .
7 correction 1. Edge detection
" "'v 2. Noise filtering 2. Skin color
4, 3. badillumination segmentation
correction

Calibration

Outlook

6/2/07

28

Preliminary Results

Indoor, neon light,

Our
method

white skin

Indoor, daylight,
white skin

Indoor, daylight,
white skin

Outdoor, daylight,
dark skin

. ki
J
Y s
s
\- =
K. &

Outlook

i

6/2/07

29

6/2/07

References § !

http://zach.in.tu-clausthal.de/papers/

http://cg.in.tu-clausthal.de/publications.shtml

30

