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Bounding Volume Hierarchies

= BVHs are standard DS for collision detection ...
= .. but not just for collision detection!

= Can be applied to ray-tracing, occlusion culling,
etc.

= Pre-processed hierarchy becomes invalid
when object deforms

— BVH must be rebuilt or updated after
deformations
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Brute Force Update and Variants ’
= Problems of Brute-Force Updates: = Q y:‘é
= Many update operations 9 gi
= No use of temporal coherence : frame 2

= Other approaches:
= Hybrid updates [van den Bergen, 1998]
= Inflation and lazy updates of the BVs [Mezger et al. 2003]
= Restriction of deformation schemes [James and Pai, 2004]
= Intrinsic collision test on the GPU [Wong and Baciu 2005]
= Chromatic decompositions [Govindaraju et al. 2005]

= BVH reconstruction [Saarbriicken, 2006]

Intro

Our Approach ‘:!

= Observation:
= Motion in the physical world is normally continuous

= Changes in the combinatorial structure of the BVHs occur only at
discrete time points

—We store only the combinatorial structure of the BVH and use an
event-based approach for updating (kinetization)

Kinetic BVHs




Kinetic Toy Example

Event Queue
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= Advantages

= Fewer update operations
= Valid BVHs at every point in time
= Independent of query sampling frequency
= Can handle all kinds of objects

= polygon soups (point clouds, and NURBS models)
= Can handle insertions/deletions during run-time
= Can handle all kinds of animated deformations

= Only a flightplan is required for every vertex

= These flightplans may change during simulation

Kinetic BVHs
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Recap: Kinetic Data Structures

= KDS are a framework for designing and analyzing algorithms for
objects in motion [Basch et al. 1997]

= KDS framework leads to event-based algorithms that "sample"
the state of parts of a system only as often as necessary for a
special task (e.g. a bounding box)
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ﬁﬁ& KDS terminology

® The task is called the attribute
= A KDS consists of set of certificates
= Certificate failures are called events = event queue

= If the attribute changes at the time of an event, the event is called
external, otherwise internal

o P/niz.x'_.y _____________
T

: \ Y Pax x
(Limm%l P Py :

| 2

| P L

I I

I I

Kinetic BVHs

1/26/08



Quality of a KDS

= AKDS is compact, if it requires only little space
= Space = number of certificates

= Little = should not exceed static data structure by "too much"

= AKDS is responsive, if we can update it quickly in case of a
certificate failure

= Depends on number of certificates
= Quickly = e.g. O( log( number of certificates) )
= AKDS is local, if one object is not involved in too many events
= Depends on number of certificates
= Not too many = e.g. O( log( number of certificates) )

= A KDS is efficient, if the ratio of internal events to external events
is reasonable

= Desirable is: O(1) or less

Kinetic BVHs

Kinetic AABB Tree

= Kinetization of the AABB tree

= Pre-processing: Build the tree by any algorithm suitable for static
AABB trees

= For a theoretical analysis, it is only required that the height of the BVH
is logarithmic

= Store with every node the indices of those points that determine
the BV (the "realizing points")

= Initialize the event queue

Kinetic BVHs
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The Events

= | eaf Event:

® Inner node event:

= |s determined by only 2 points of
its 2 children

= Flightplan Update Event

Kinetic BVHs
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The Simulation Loop

while simulation runs

while e.timestamp < t

process event e

render scene

determine time t of next frame

e < min event in event queue

e < min event in event queue

check for collisions (or cast ray, or ...)

Kinetic BVHs
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Event Handling at Run-Time )
= Leaf Events: v
* At the bottom of the AABB: [ v :
P ;‘;”; X :

Event Queue
(t1, Q, R, Max x)

= Propagation through the tree: . MRax

Event Queue
(t1, Q, S, Max x)

t3
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Analysis 5!

= Theorem 1:
Given a 2-manifold mesh with n vertices.
The kinetic AABB tree is compact ( num. certificates = O(n) ),
local ( O(log n) ), responsive (one event = O(log n) ) and
efficient.
Furthermore, the kinetic AABB tree is a valid BVH at every
point in time.

= Theorem 2:
Given n vertices, we assume that each pair
of flightplans intersect at most s times.
Then, the total number of events is in nearly O(n log n).

= Remark: this bound is independent of the query frequency.

Kinetic BVHs
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The Kinetic Boxtree

= Problem: the kinetic AABB tree needs up to 6 events for every BV
= |dea: a kinetic BoxTree

= A.k.a.: bounding interval hierarchy (BIH), SKD tree

= Property: combination of k-d tree and AABB

= Advantage: uses less memory than the kinetic AABB tree

= Only 1 "splitting plane" per BV = only 1 event per BV

AABB tree BoxTree

Kinetic BVHs

i

20,

Event Computation

% o

= 1D example:
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= Analysis:
The kinetic BoxTree is compact, local and efficient.
But not responsive.
Kinetic BVHs
B
s Test Scenes ’ !
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Kinetic Separation Lists for Continuous Coll.Det. 5

= Continuous collision detection = determine earliest time of contact

= Conventional approach: swept volumes

Frame 2

z e

= Problems:
= Same as for static BVH updates

= Swept volumes are too large

Kinetic Continuous Coll.Det.
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= |dea:

1. Maintain the list of nodes of the bounding-volume test tree (BVTT)
where the simultaneous traversal stopped

2. Kinetize this list = "kinetic separation list"

t1
= Toy example: » 1
L
.
= Advantages: N N
= Continuous collision detection o O
Separation-List Al

is reduced to the discrete problem
of determining changes in the separation list

= Collisions are automatically reported in the correct order

= Inter-object and self-collision detection

Kinetic Continuous Coll.Det.
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%Ilﬁ Initialization of the Kinetic Separation List (KSL) ‘:

= Travere the 2 BVHs of the 2 objects as usual

= For self collision detection: Test object against itself
= Compute separation list and initial events:

= Separation list = set of pairs of nodes

= Pair of nodes € separation list < A 1
- BVs have been reached by traversal AND %
- BVs do not overlap OR nodes are leaves

= Example: w
@/jgﬁih 4§§h4
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Kinetic Continuous Coll.Det.

The Events ‘:

= Pair of BVs is in the KSL, will overlap
. t1
attime t:
8 <_42':‘T
N,

Separation-List

= Pair of parent BVs does overlap, will
cease to overlap at time t: e

%

Separation-List

Kinetic Continuous Coll.Det.
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Event Handling During Run-Time @:!

= BVs begin to overlap at time t:
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Kinetic Continuous Coll.Det.

= Parent BVs will cease to overlap at time t:
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Kinetic Continuous Coll.Det.

= Topology of BV changes, i.e., extent is realized by other vertices:

q

Analysis

= Worst case:

= Theorem 1:
In the worst case, our kinetic separation list is local (O(n) ),
responsive ( O(1) ), efficient, and, arguably, compact ( O(n?) ).

= Theoream 2:
In the average case, our kinetic separation list is local (O(1) ),
responsive ( O(1) ), efficient, and compact ( O(n) ).

Kinetic Continuous Coll.Det.
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i Kinetic Ray Tracing of Animated Scenes

= Work in Progress
= Current challenge: animated scenes

= Current approaches: re-build acceleration data structure

= kd-tree, grid /
/

Kinetic Ray Tracing

Overview of Our Approach

= |dea: Kinetic Grid of Frusta —~
4 G . - 00

= Maintain sorted list of polygons NI
for each pixel frustum

y —

- - 00— 0
-——
- swap pair of polygons A > - —eo

- delete / insert polygon

= Events:

= Problem: Ordering polygons in a frustum (e.g. by kinetic ray
casting) leads to high-order polynomials and "ugly" events

—Track intersection points of polygons with the frusta
= Two Tasks:
= Event-based polygon tracking

= Kinetic sorting within frusta

Kinetic Ray Tracing

1/26/08

16



NKW Event-Based Polygon-Tracking

Kinetic Ray Tracing

Kinetic Sorting within a Frustum

Kinetic Ray Tracing
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Advantages

® Independent of rendering frequency

= E.g., rendering in slow motion without extra cost for updates or
intersection tests

= Antialiasing for free

= No complicated mix of different data structures for dynamic and
static objects

= Static objects simply emit no events
= Can handle insertions/deletions during run-time
= Can handle all kinds of animated deformations

= Only a flightplan is required for every vertex

= These flightplans may change during simulation

Kinetic Ray Tracing

Analysis

= Assumptions:

= Num intersection between polygons and frusta is bounded

= Num intersection of flightplans and frusta borders is bounded
= Event-based polygon tracking:

= Compactness and total number of events: O(n)

= Locality and Responsiveness: O(1)
= Kinetic sorting within frusta:

= Compactness: O(n)

= Locality and Responsiveness:
O(logn) (kinetic tournament) or O(1) (kinetic heap)

= Num. events: O(nlogn) (kin. tournament) or O(nlog2n) (kin. heap)

Kinetic Ray Tracing
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Conclusions

= Novel, event-based data structures (KDS) for
= Updating BVHs
= Continuous collision detection and self-collision detection
= Ray tracing
= BVH update is in O(nlogn)
= Dito for Kinetic Grid of Frusta
= Uncoupling of data structure updating from query frequency
= Computational effort for coll.det. independent of num. in-betweens
= Dito for ray casting of primary rays

= Coll. det. is up to 50 times faster than swept volume approach in
practically relevant scenarios

Conclusion

Future Work

= Use our kinetic data structures also for other kinds of primitives
like NURBS

= Extend to scenarios with unknown flightplans
= Kinetic Light-buffers (for shadow rays)

= Improve performance of kinetic sorting within frusta by using
kinetic heaters or kinetic hangers

= Integrate other kinetic data structures (like the kinetic AABB-Tree)
for secondary rays

= Improve quality of anti-aliasing

= Parallelization

Conclusion
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