Kinetic BV Hierarchies
and Collision Detection

Gabriel Zachmann
Clausthal University, Germany
zach@tu-clausthal.de

Bonn, 25. January 2008

Bounding Volume Hierarchies

= BVHs are standard DS for collision detection ...
= .. but not just for collision detection!

= Can be applied to ray-tracing, occlusion culling,
etc.

= Pre-processed hierarchy becomes invalid
when object deforms

— BVH must be rebuilt or updated after
deformations

Intro

1/26/08

1/26/08

. o !
Brute Force Update and Variants ’
= Problems of Brute-Force Updates: = Q y:‘é
= Many update operations 9 gi
= No use of temporal coherence : frame 2

= Other approaches:
= Hybrid updates [van den Bergen, 1998]
= Inflation and lazy updates of the BVs [Mezger et al. 2003]
= Restriction of deformation schemes [James and Pai, 2004]
= Intrinsic collision test on the GPU [Wong and Baciu 2005]
= Chromatic decompositions [Govindaraju et al. 2005]

= BVH reconstruction [Saarbriicken, 2006]

Intro

Our Approach ‘:!

= Observation:
= Motion in the physical world is normally continuous

= Changes in the combinatorial structure of the BVHs occur only at
discrete time points

—We store only the combinatorial structure of the BVH and use an
event-based approach for updating (kinetization)

Kinetic BVHs

Kinetic Toy Example

Event Queue

(t1, Q, R, Max x)

tl

Kinetic BVHs

Max
X Q
y Q

Min

i

= Advantages

= Fewer update operations
= Valid BVHs at every point in time
= Independent of query sampling frequency
= Can handle all kinds of objects

= polygon soups (point clouds, and NURBS models)
= Can handle insertions/deletions during run-time
= Can handle all kinds of animated deformations

= Only a flightplan is required for every vertex

= These flightplans may change during simulation

Kinetic BVHs

&
A

1/26/08

Recap: Kinetic Data Structures

= KDS are a framework for designing and analyzing algorithms for
objects in motion [Basch et al. 1997]

= KDS framework leads to event-based algorithms that "sample"
the state of parts of a system only as often as necessary for a
special task (e.g. a bounding box)

o P/niz.x'_.y _____________
T

: \ Y Pax x
(Limm%l P P :

| 2

| P T

I I

I I

Kinetic BVHs

ﬁﬁ& KDS terminology

® The task is called the attribute
= A KDS consists of set of certificates
= Certificate failures are called events = event queue

= If the attribute changes at the time of an event, the event is called
external, otherwise internal

o P/niz.x'_.y _____________
T

: \ Y Pax x
(Limm%l P Py :

| 2

| P L

I I

I I

Kinetic BVHs

1/26/08

Quality of a KDS

= AKDS is compact, if it requires only little space
= Space = number of certificates

= Little = should not exceed static data structure by "too much"

= AKDS is responsive, if we can update it quickly in case of a
certificate failure

= Depends on number of certificates
= Quickly = e.g. O(log(number of certificates))
= AKDS is local, if one object is not involved in too many events
= Depends on number of certificates
= Not too many = e.g. O(log(number of certificates))

= A KDS is efficient, if the ratio of internal events to external events
is reasonable

= Desirable is: O(1) or less

Kinetic BVHs

Kinetic AABB Tree

= Kinetization of the AABB tree

= Pre-processing: Build the tree by any algorithm suitable for static
AABB trees

= For a theoretical analysis, it is only required that the height of the BVH
is logarithmic

= Store with every node the indices of those points that determine
the BV (the "realizing points")

= Initialize the event queue

Kinetic BVHs

1/26/08

The Events

= | eaf Event:

® Inner node event:

= |s determined by only 2 points of
its 2 children

= Flightplan Update Event

Kinetic BVHs

“ Q Max

X Q
y Q

t1

Event Queue

(t1, Q, R, Max x)

Event Queue

(t1, R, P, Max x)

t1

B
X .

The Simulation Loop

while simulation runs

while e.timestamp < t

process event e

render scene

determine time t of next frame

e < min event in event queue

e < min event in event queue

check for collisions (or cast ray, or ...)

Kinetic BVHs

1/26/08

1/26/08

' i w!
Event Handling at Run-Time)
= Leaf Events: v
* At the bottom of the AABB: [v :
P ;‘;”; X :

Event Queue
(t1, Q, R, Max x)

= Propagation through the tree: . MRax

Event Queue
(t1, Q, S, Max x)

t3

Kinetic BVHs

Analysis 5!

= Theorem 1:
Given a 2-manifold mesh with n vertices.
The kinetic AABB tree is compact (num. certificates = O(n)),
local (O(log n)), responsive (one event = O(log n)) and
efficient.
Furthermore, the kinetic AABB tree is a valid BVH at every
point in time.

= Theorem 2:
Given n vertices, we assume that each pair
of flightplans intersect at most s times.
Then, the total number of events is in nearly O(n log n).

= Remark: this bound is independent of the query frequency.

Kinetic BVHs

20,

The Kinetic Boxtree

= Problem: the kinetic AABB tree needs up to 6 events for every BV
= |dea: a kinetic BoxTree

= A.k.a.: bounding interval hierarchy (BIH), SKD tree

= Property: combination of k-d tree and AABB

= Advantage: uses less memory than the kinetic AABB tree

= Only 1 "splitting plane" per BV = only 1 event per BV

AABB tree BoxTree

Kinetic BVHs

i

20,

Event Computation

% o

= 1D example:

o 11

e \O

B R el - e

R Y 5

(1,2,3,4,56,7,8,9,10,11]

Kinetic BVHs

1/26/08

1/26/08

" |n 3D: X

<|¥ :
split
4 ‘ x
y
A y
y
= Analysis:
The kinetic BoxTree is compact, local and efficient.
But not responsive.
Kinetic BVHs
B
s Test Scenes ’ !

Kinetic BVHs

cr!
*m Results » I
Shirt Scene (~ 100,000 triangles)
20 -
| i L |
g § 15 -
£8
o T 10 A —o— Kin AABB
Ez -=- Bottom-Up
[o)
2B 1
\
0 T ~ T T
20 80 160 320
Num in-between frames
Kinetic BVHs
S — o q
= Total Time (incl. Collision Detection Time) A
Shirt scene
. 80
g ——Kin. AABB
E 60 1 -=Bottom-up
~
£ 40
=
sy
°
0 T T T T T T T T T

NN SO DD R A O
R AR S S R
LRGN P R

Total num triangles

Kinetic BVHs

1/26/08

10

1/26/08

Kinetic Separation Lists for Continuous Coll.Det. 5

= Continuous collision detection = determine earliest time of contact

= Conventional approach: swept volumes

Frame 2

z e

= Problems:
= Same as for static BVH updates

= Swept volumes are too large

Kinetic Continuous Coll.Det.

A g

= |dea:

1. Maintain the list of nodes of the bounding-volume test tree (BVTT)
where the simultaneous traversal stopped

2. Kinetize this list = "kinetic separation list"

t1
= Toy example: » 1
L
.
= Advantages: N N
= Continuous collision detection o O
Separation-List Al

is reduced to the discrete problem
of determining changes in the separation list

= Collisions are automatically reported in the correct order

= Inter-object and self-collision detection

Kinetic Continuous Coll.Det.

11

1/26/08

%Ilﬁ Initialization of the Kinetic Separation List (KSL) ‘:

= Travere the 2 BVHs of the 2 objects as usual

= For self collision detection: Test object against itself
= Compute separation list and initial events:

= Separation list = set of pairs of nodes

= Pair of nodes € separation list < A 1
- BVs have been reached by traversal AND %
- BVs do not overlap OR nodes are leaves

= Example: w
@/jgﬁih 4§§h4

ONYSYS)

Kinetic Continuous Coll.Det.

The Events ‘:

= Pair of BVs is in the KSL, will overlap
. t1
attime t:
8 <_42':‘T
N,

Separation-List

= Pair of parent BVs does overlap, will
cease to overlap at time t: e

%

Separation-List

Kinetic Continuous Coll.Det.

12

1/26/08

Event Handling During Run-Time @:!

= BVs begin to overlap at time t:

1 1 1

- t . L A tl
- <——2F5* = | ; :
c N i c N ’ CT N ’

Separation-List Separation-List Separation-List

OO

Kinetic Continuous Coll.Det.

= Parent BVs will cease to overlap at time t:

7\ 1 t1 1
‘:[
2 ar
A [5 /
B A
L B 3
e__(‘__ ‘_
Separation-List Separation-List
t1 1
|
2
/|
A
B 3
|

Separation-List

Kinetic Continuous Coll.Det.

13

L7,

At 1 A 1
Q |
B L 1 2 B LR Q&* 2
- 3 — 3
C
C/‘ P S
Separation-List Separation-List
A t2 1
R Q
B “— 2 i

Separation-List

Kinetic Continuous Coll.Det.

= Topology of BV changes, i.e., extent is realized by other vertices:

q

Analysis

= Worst case:

= Theorem 1:
In the worst case, our kinetic separation list is local (O(n)),
responsive (O(1)), efficient, and, arguably, compact (O(n?)).

= Theoream 2:
In the average case, our kinetic separation list is local (O(1)),
responsive (O(1)), efficient, and compact (O(n)).

Kinetic Continuous Coll.Det.

1/26/08

14

1/26/08

gj,!
Results X

. 1400 " T . T " T . .
] == Kinetic Separation List
Tlme for 1200 =p= Swept Volume -__--"!
updates and Jooom e . 1
P e -
collision check: 3 I
ELIEN] S .
400~ -
200 -
I T
3 7 9
0 a0 lnang]ggu"lﬂﬂﬂ o 80 0
800w=o T T T T
200l Hmmmm e mmmmmmmmm e e e e B
600 == Kinstic Separation List =
2500 | == Swept Volume B
g
~400 B
£
=300 1
200 —
L
100 \\-)
al 1 | T T T T
20 ED] [E] L] l_JDD 120 140 160
Interpolated Frames

Kinetic Continuous Coll.Det.

- Self COl | iSion : :;2 | el Kin‘cliu Scpmlﬂliun Lisl‘ ' ']

= L=#= Swept Volume -

=" Two animated

200 T T — T T T T T
b S —#— Kinetic Separation List -
(o]]S- =4 Swept Volume e

150 Ll b
3 -
<100 i
& -~
=] .

sof- L 4
»x”
0 | i L 5 = i
6 1 le
2 Interpolated Frames 12 B

Kinetic Continuous Coll.Det.

15

i Kinetic Ray Tracing of Animated Scenes

= Work in Progress
= Current challenge: animated scenes

= Current approaches: re-build acceleration data structure

= kd-tree, grid /
/

Kinetic Ray Tracing

Overview of Our Approach

= |dea: Kinetic Grid of Frusta —~
4 G . - 00

= Maintain sorted list of polygons NI
for each pixel frustum

y —

- - 00— 0
-——
- swap pair of polygons A > - —eo

- delete / insert polygon

= Events:

= Problem: Ordering polygons in a frustum (e.g. by kinetic ray
casting) leads to high-order polynomials and "ugly" events

—Track intersection points of polygons with the frusta
= Two Tasks:
= Event-based polygon tracking

= Kinetic sorting within frusta

Kinetic Ray Tracing

1/26/08

16

NKW Event-Based Polygon-Tracking

Kinetic Ray Tracing

Kinetic Sorting within a Frustum

Kinetic Ray Tracing

1/26/08

17

Advantages

® Independent of rendering frequency

= E.g., rendering in slow motion without extra cost for updates or
intersection tests

= Antialiasing for free

= No complicated mix of different data structures for dynamic and
static objects

= Static objects simply emit no events
= Can handle insertions/deletions during run-time
= Can handle all kinds of animated deformations

= Only a flightplan is required for every vertex

= These flightplans may change during simulation

Kinetic Ray Tracing

Analysis

= Assumptions:

= Num intersection between polygons and frusta is bounded

= Num intersection of flightplans and frusta borders is bounded
= Event-based polygon tracking:

= Compactness and total number of events: O(n)

= Locality and Responsiveness: O(1)
= Kinetic sorting within frusta:

= Compactness: O(n)

= Locality and Responsiveness:
O(logn) (kinetic tournament) or O(1) (kinetic heap)

= Num. events: O(nlogn) (kin. tournament) or O(nlog2n) (kin. heap)

Kinetic Ray Tracing

1/26/08

18

Conclusions

= Novel, event-based data structures (KDS) for
= Updating BVHs
= Continuous collision detection and self-collision detection
= Ray tracing
= BVH update is in O(nlogn)
= Dito for Kinetic Grid of Frusta
= Uncoupling of data structure updating from query frequency
= Computational effort for coll.det. independent of num. in-betweens
= Dito for ray casting of primary rays

= Coll. det. is up to 50 times faster than swept volume approach in
practically relevant scenarios

Conclusion

Future Work

= Use our kinetic data structures also for other kinds of primitives
like NURBS

= Extend to scenarios with unknown flightplans
= Kinetic Light-buffers (for shadow rays)

= Improve performance of kinetic sorting within frusta by using
kinetic heaters or kinetic hangers

= Integrate other kinetic data structures (like the kinetic AABB-Tree)
for secondary rays

= Improve quality of anti-aliasing

= Parallelization

Conclusion

1/26/08

19

