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Bounding Volume Hierarchies

 BVHs are standard DS for collision detection …

 … but not just for collision detection!

 Can be applied to ray-tracing, occlusion culling,
etc.

 Pre-processed hierarchy becomes invalid
when object deforms

→ BVH must be rebuilt or updated after
deformations
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Brute Force Update and Variants

 Problems of Brute-Force Updates:

 Many update operations

 No use of temporal coherence

 Other approaches:

 Hybrid updates [van den Bergen, 1998]

 In!ation and lazy updates of the BVs [Mezger et al. 2003]

 Restriction of deformation schemes [James and Pai, 2004]

 Intrinsic collision test on the GPU [Wong and Baciu 2005]

 Chromatic decompositions [Govindaraju et al. 2005]

 BVH reconstruction [Saarbrücken, 2006]

Intro
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Our Approach

 Observation:

 Motion in the physical world is normally continuous

 Changes in the combinatorial structure of the BVHs occur only at
discrete time points

We store only the combinatorial structure of the BVH and use an
event-based approach for updating (kinetization)

Kinetic BVHs
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Kinetic Toy Example

Kinetic BVHs
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Advantages

 Fewer update operations

 Valid BVHs at every point in time

 Independent of query sampling frequency

 Can handle all kinds of objects

 polygon soups (point clouds, and NURBS models)

 Can handle insertions/deletions during run-time

 Can handle all kinds of animated deformations

 Only a !ightplan is required for every vertex

 These !ightplans may change during simulation

Kinetic BVHs
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Recap: Kinetic Data Structures

 KDS are a framework for designing and analyzing algorithms for
objects in motion [Basch et al. 1997]

 KDS framework leads to event-based algorithms that "sample"
the state of parts of a system only as often as necessary for a
special task (e.g. a bounding box)

Kinetic BVHs
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KDS terminology

 The task is called the attribute

 A KDS consists of set of certi"cates

 Certi"cate failures are called events → event queue

 If the attribute changes at the time of an event, the event is called
external, otherwise internal

Kinetic BVHs
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Quality of a KDS

 A KDS is compact, if it requires only little space

 Space = number of certi"cates

 Little = should not exceed static data structure by "too much"

 A KDS is responsive, if we can update it quickly in case of a
certi"cate failure

 Depends on number of certi"cates

 Quickly = e.g. O( log( number of certi"cates) )

 A KDS is local, if one object is not involved in too many events
 Depends on number of certi"cates

 Not too many = e.g. O( log( number of certi"cates) )

 A KDS is ef"cient, if the ratio of internal events to external events
is reasonable
 Desirable is: O(1) or less

Kinetic BVHs
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Kinetic AABB Tree

 Kinetization of the AABB tree

 Pre-processing: Build the tree by any algorithm suitable for static
AABB trees

 For a theoretical analysis, it is only required that the height of the BVH
is logarithmic

 Store with every node the indices of those points that determine
the BV (the "realizing points")

 Initialize the event queue

Kinetic BVHs
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The Events

 Leaf Event:

 Inner node event:

 Is determined by only 2 points of
its 2 children

 Flightplan Update Event

Kinetic BVHs
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The Simulation Loop

while simulation runs

    determine time t of next frame

    e ← min event in event queue

    while e.timestamp < t

        process event e

        e ← min event in event queue

        check for collisions (or cast ray, or …)

    render scene

Kinetic BVHs
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Event Handling at Run-Time

 Leaf Events:

 At the bottom of the AABB:

 Propagation through the tree:

Kinetic BVHs
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Analysis

 Theorem 1:
Given a 2-manifold mesh with n vertices.
The kinetic AABB tree is compact ( num. certi"cates = O(n) ),
local ( O(log n) ), responsive ( one event = O(log n) ) and
ef"cient.
Furthermore, the kinetic AABB tree is a valid BVH at every
point in time.

 Theorem 2:
Given n vertices, we assume that each pair
of !ightplans intersect at most s times.
Then, the total number of events is in nearly O(n log n).

 Remark: this bound is independent of the query frequency.

Kinetic BVHs
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The Kinetic Boxtree

 Problem: the kinetic AABB tree needs up to 6 events for every BV

 Idea: a kinetic BoxTree

 A.k.a.: bounding interval hierarchy (BIH), SKD tree

 Property: combination of k-d tree and AABB

 Advantage: uses less memory than the kinetic AABB tree

 Only 1 "splitting plane" per BV → only 1 event per BV

AABB tree BoxTree

Kinetic BVHs
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Event Computation

 1D example:

Kinetic BVHs
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 In 3D:

 Analysis:
The kinetic BoxTree is compact, local and ef"cient.
But not responsive.

Kinetic BVHs
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Test Scenes

Kinetic BVHs
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Results

Kinetic BVHs
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Total Time (incl. Collision Detection Time)

Kinetic BVHs
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Kinetic Separation Lists for Continuous Coll.Det.

 Continuous collision detection = determine earliest time of contact

 Conventional approach: swept volumes

 Problems:

 Same as for static BVH updates

 Swept volumes are too large

Kinetic Continuous Coll.Det.
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 Idea:

1. Maintain the list of nodes of the bounding-volume test tree (BVTT)
where the simultaneous traversal stopped

2. Kinetize this list → "kinetic separation list"

 Toy example:

 Advantages:

 Continuous collision detection
is reduced to the discrete problem
of determining changes in the separation list

 Collisions are automatically reported in the correct order

 Inter-object and self-collision detection

Kinetic Continuous Coll.Det.
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Initialization of the Kinetic Separation List (KSL)

 Travere the 2 BVHs of the 2 objects as usual

 For self collision detection: Test object against itself

 Compute separation list and initial events:

 Separation list = set of pairs of nodes

 Pair of nodes ∈ separation list ⇔

- BVs have been reached by traversal AND

- BVs do not overlap OR nodes are leaves

 Example:

Kinetic Continuous Coll.Det.
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The Events

 Pair of BVs is in the KSL, will overlap
at time t:

 Pair of parent BVs does overlap, will
cease to overlap at time t:

Kinetic Continuous Coll.Det.
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Event Handling During Run-Time

 BVs begin to overlap at time t:

Kinetic Continuous Coll.Det.
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 Parent BVs will cease to overlap at time t:

Kinetic Continuous Coll.Det.
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 Topology of BV changes, i.e., extent is realized by other vertices:

Kinetic Continuous Coll.Det.

Intro                      Kinetic BVHs                   Kinetic Continuous Coll.Det.                     Kinetic Ray Tracing                    Conclusion

Analysis

 Worst case:

 Theorem 1:
In the worst case, our kinetic separation list is local ( O(n) ),
responsive ( O(1) ), ef"cient, and, arguably, compact ( O(n2) ).

 Theoream 2:
In the average case, our kinetic separation list is local ( O(1) ),
responsive ( O(1) ), ef"cient, and compact ( O(n) ).

Kinetic Continuous Coll.Det.
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Results

 Time for
updates and
collision check:

Kinetic Continuous Coll.Det.
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 Self Collision:

 Two animated
objs:

Kinetic Continuous Coll.Det.
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Kinetic Ray Tracing of Animated Scenes

 Work in Progress

 Current challenge: animated scenes

 Current approaches: re-build acceleration data structure

 kd-tree, grid

Kinetic Ray Tracing
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Overview of Our Approach

 Idea: Kinetic Grid of Frusta

 Maintain sorted list of polygons
for each pixel frustum

 Events:

- swap pair of polygons

- delete / insert polygon

 Problem: Ordering polygons in a frustum (e.g. by kinetic ray
casting) leads to high-order polynomials and "ugly" events

Track intersection points of polygons with the frusta

 Two Tasks:

 Event-based polygon tracking

 Kinetic sorting within frusta

Kinetic Ray Tracing



1/26/08

17

Intro                      Kinetic BVHs                   Kinetic Continuous Coll.Det.                     Kinetic Ray Tracing                    Conclusion

Event-Based Polygon-Tracking

Kinetic Ray Tracing
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Kinetic Sorting within a Frustum

Kinetic Ray Tracing
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Advantages

 Independent of rendering frequency

 E.g., rendering in slow motion without extra cost for updates or
intersection tests

 Antialiasing for free

 No complicated mix of different data structures for dynamic and
static objects

 Static objects simply emit no events

 Can handle insertions/deletions during run-time

 Can handle all kinds of animated deformations

 Only a !ightplan is required for every vertex

 These !ightplans may change during simulation

Kinetic Ray Tracing
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Analysis

 Assumptions:

 Num intersection between polygons and frusta is bounded

 Num intersection of !ightplans and frusta borders is bounded

 Event-based polygon tracking:

 Compactness and total number of events: O(n)

 Locality and Responsiveness: O(1)

 Kinetic sorting within frusta:

 Compactness: O(n)

 Locality and Responsiveness:
O(log n) (kinetic tournament) or O(1) (kinetic heap)

 Num. events: O(n log n) (kin. tournament) or O(n log² n) (kin. heap)

Kinetic Ray Tracing
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Conclusions

 Novel, event-based data structures (KDS) for

 Updating BVHs

 Continuous collision detection and self-collision detection

 Ray tracing

 BVH update is in O(n log n)

 Dito for Kinetic Grid of Frusta

 Uncoupling of data structure updating from query frequency

 Computational effort for coll.det. independent of num. in-betweens

 Dito for ray casting of primary rays

 Coll. det. is up to 50 times faster than swept volume approach in
practically relevant scenarios

Conclusion
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Future Work

 Use our kinetic data structures also for other kinds of primitives
like NURBS

 Extend to scenarios with unknown !ightplans

 Kinetic Light-buffers (for shadow rays)

 Improve performance of kinetic sorting within frusta by using
kinetic heaters or kinetic hangers

 Integrate other kinetic data structures (like the kinetic AABB-Tree)
for secondary rays

 Improve quality of anti-aliasing

 Parallelization

Conclusion


