
1/26/08

1

Kinetic BV Hierarchies
and Collision Detection

Gabriel Zachmann
Clausthal University, Germany
zach@tu-clausthal.de

Bonn, 25. January 2008

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Bounding Volume Hierarchies

 BVHs are standard DS for collision detection …

 … but not just for collision detection!

 Can be applied to ray-tracing, occlusion culling,
etc.

 Pre-processed hierarchy becomes invalid
when object deforms

→ BVH must be rebuilt or updated after
deformations

Intro

1/26/08

2

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Brute Force Update and Variants

 Problems of Brute-Force Updates:

 Many update operations

 No use of temporal coherence

 Other approaches:

 Hybrid updates [van den Bergen, 1998]

 In!ation and lazy updates of the BVs [Mezger et al. 2003]

 Restriction of deformation schemes [James and Pai, 2004]

 Intrinsic collision test on the GPU [Wong and Baciu 2005]

 Chromatic decompositions [Govindaraju et al. 2005]

 BVH reconstruction [Saarbrücken, 2006]

Intro

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Our Approach

 Observation:

 Motion in the physical world is normally continuous

 Changes in the combinatorial structure of the BVHs occur only at
discrete time points

We store only the combinatorial structure of the BVH and use an
event-based approach for updating (kinetization)

Kinetic BVHs

1/26/08

3

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Kinetic Toy Example

Kinetic BVHs

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Advantages

 Fewer update operations

 Valid BVHs at every point in time

 Independent of query sampling frequency

 Can handle all kinds of objects

 polygon soups (point clouds, and NURBS models)

 Can handle insertions/deletions during run-time

 Can handle all kinds of animated deformations

 Only a !ightplan is required for every vertex

 These !ightplans may change during simulation

Kinetic BVHs

1/26/08

4

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Recap: Kinetic Data Structures

 KDS are a framework for designing and analyzing algorithms for
objects in motion [Basch et al. 1997]

 KDS framework leads to event-based algorithms that "sample"
the state of parts of a system only as often as necessary for a
special task (e.g. a bounding box)

Kinetic BVHs

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

KDS terminology

 The task is called the attribute

 A KDS consists of set of certi"cates

 Certi"cate failures are called events → event queue

 If the attribute changes at the time of an event, the event is called
external, otherwise internal

Kinetic BVHs

1/26/08

5

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Quality of a KDS

 A KDS is compact, if it requires only little space

 Space = number of certi"cates

 Little = should not exceed static data structure by "too much"

 A KDS is responsive, if we can update it quickly in case of a
certi"cate failure

 Depends on number of certi"cates

 Quickly = e.g. O(log(number of certi"cates))

 A KDS is local, if one object is not involved in too many events
 Depends on number of certi"cates

 Not too many = e.g. O(log(number of certi"cates))

 A KDS is ef"cient, if the ratio of internal events to external events
is reasonable
 Desirable is: O(1) or less

Kinetic BVHs

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Kinetic AABB Tree

 Kinetization of the AABB tree

 Pre-processing: Build the tree by any algorithm suitable for static
AABB trees

 For a theoretical analysis, it is only required that the height of the BVH
is logarithmic

 Store with every node the indices of those points that determine
the BV (the "realizing points")

 Initialize the event queue

Kinetic BVHs

1/26/08

6

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

The Events

 Leaf Event:

 Inner node event:

 Is determined by only 2 points of
its 2 children

 Flightplan Update Event

Kinetic BVHs

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

The Simulation Loop

while simulation runs

 determine time t of next frame

 e ← min event in event queue

 while e.timestamp < t

 process event e

 e ← min event in event queue

 check for collisions (or cast ray, or …)

 render scene

Kinetic BVHs

1/26/08

7

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Event Handling at Run-Time

 Leaf Events:

 At the bottom of the AABB:

 Propagation through the tree:

Kinetic BVHs

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Analysis

 Theorem 1:
Given a 2-manifold mesh with n vertices.
The kinetic AABB tree is compact (num. certi"cates = O(n)),
local (O(log n)), responsive (one event = O(log n)) and
ef"cient.
Furthermore, the kinetic AABB tree is a valid BVH at every
point in time.

 Theorem 2:
Given n vertices, we assume that each pair
of !ightplans intersect at most s times.
Then, the total number of events is in nearly O(n log n).

 Remark: this bound is independent of the query frequency.

Kinetic BVHs

1/26/08

8

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

The Kinetic Boxtree

 Problem: the kinetic AABB tree needs up to 6 events for every BV

 Idea: a kinetic BoxTree

 A.k.a.: bounding interval hierarchy (BIH), SKD tree

 Property: combination of k-d tree and AABB

 Advantage: uses less memory than the kinetic AABB tree

 Only 1 "splitting plane" per BV → only 1 event per BV

AABB tree BoxTree

Kinetic BVHs

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

1

2
3

5

4

6

11

7

9

10

8

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11

1, 2, 5 3, 4, 6

1, 2 5

1 2

3, 4 6

3 4

10, 11 7, 8, 9

10 11 7 8, 9

8 9

Event Computation

 1D example:

Kinetic BVHs

1/26/08

9

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

split
x

x

x

y

y

split
x

y

y

y

y

 In 3D:

 Analysis:
The kinetic BoxTree is compact, local and ef"cient.
But not responsive.

Kinetic BVHs

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Test Scenes

Kinetic BVHs

1/26/08

10

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Results

Kinetic BVHs

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Total Time (incl. Collision Detection Time)

Kinetic BVHs

1/26/08

11

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Kinetic Separation Lists for Continuous Coll.Det.

 Continuous collision detection = determine earliest time of contact

 Conventional approach: swept volumes

 Problems:

 Same as for static BVH updates

 Swept volumes are too large

Kinetic Continuous Coll.Det.

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

 Idea:

1. Maintain the list of nodes of the bounding-volume test tree (BVTT)
where the simultaneous traversal stopped

2. Kinetize this list → "kinetic separation list"

 Toy example:

 Advantages:

 Continuous collision detection
is reduced to the discrete problem
of determining changes in the separation list

 Collisions are automatically reported in the correct order

 Inter-object and self-collision detection

Kinetic Continuous Coll.Det.

1/26/08

12

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Initialization of the Kinetic Separation List (KSL)

 Travere the 2 BVHs of the 2 objects as usual

 For self collision detection: Test object against itself

 Compute separation list and initial events:

 Separation list = set of pairs of nodes

 Pair of nodes ∈ separation list ⇔

- BVs have been reached by traversal AND

- BVs do not overlap OR nodes are leaves

 Example:

Kinetic Continuous Coll.Det.

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

The Events

 Pair of BVs is in the KSL, will overlap
at time t:

 Pair of parent BVs does overlap, will
cease to overlap at time t:

Kinetic Continuous Coll.Det.

1/26/08

13

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Event Handling During Run-Time

 BVs begin to overlap at time t:

Kinetic Continuous Coll.Det.

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

 Parent BVs will cease to overlap at time t:

Kinetic Continuous Coll.Det.

1/26/08

14

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

 Topology of BV changes, i.e., extent is realized by other vertices:

Kinetic Continuous Coll.Det.

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Analysis

 Worst case:

 Theorem 1:
In the worst case, our kinetic separation list is local (O(n)),
responsive (O(1)), ef"cient, and, arguably, compact (O(n2)).

 Theoream 2:
In the average case, our kinetic separation list is local (O(1)),
responsive (O(1)), ef"cient, and compact (O(n)).

Kinetic Continuous Coll.Det.

1/26/08

15

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Results

 Time for
updates and
collision check:

Kinetic Continuous Coll.Det.

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

 Self Collision:

 Two animated
objs:

Kinetic Continuous Coll.Det.

1/26/08

16

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Kinetic Ray Tracing of Animated Scenes

 Work in Progress

 Current challenge: animated scenes

 Current approaches: re-build acceleration data structure

 kd-tree, grid

Kinetic Ray Tracing

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Overview of Our Approach

 Idea: Kinetic Grid of Frusta

 Maintain sorted list of polygons
for each pixel frustum

 Events:

- swap pair of polygons

- delete / insert polygon

 Problem: Ordering polygons in a frustum (e.g. by kinetic ray
casting) leads to high-order polynomials and "ugly" events

Track intersection points of polygons with the frusta

 Two Tasks:

 Event-based polygon tracking

 Kinetic sorting within frusta

Kinetic Ray Tracing

1/26/08

17

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Event-Based Polygon-Tracking

Kinetic Ray Tracing

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Kinetic Sorting within a Frustum

Kinetic Ray Tracing

1/26/08

18

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Advantages

 Independent of rendering frequency

 E.g., rendering in slow motion without extra cost for updates or
intersection tests

 Antialiasing for free

 No complicated mix of different data structures for dynamic and
static objects

 Static objects simply emit no events

 Can handle insertions/deletions during run-time

 Can handle all kinds of animated deformations

 Only a !ightplan is required for every vertex

 These !ightplans may change during simulation

Kinetic Ray Tracing

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Analysis

 Assumptions:

 Num intersection between polygons and frusta is bounded

 Num intersection of !ightplans and frusta borders is bounded

 Event-based polygon tracking:

 Compactness and total number of events: O(n)

 Locality and Responsiveness: O(1)

 Kinetic sorting within frusta:

 Compactness: O(n)

 Locality and Responsiveness:
O(log n) (kinetic tournament) or O(1) (kinetic heap)

 Num. events: O(n log n) (kin. tournament) or O(n log² n) (kin. heap)

Kinetic Ray Tracing

1/26/08

19

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Conclusions

 Novel, event-based data structures (KDS) for

 Updating BVHs

 Continuous collision detection and self-collision detection

 Ray tracing

 BVH update is in O(n log n)

 Dito for Kinetic Grid of Frusta

 Uncoupling of data structure updating from query frequency

 Computational effort for coll.det. independent of num. in-betweens

 Dito for ray casting of primary rays

 Coll. det. is up to 50 times faster than swept volume approach in
practically relevant scenarios

Conclusion

Intro Kinetic BVHs Kinetic Continuous Coll.Det. Kinetic Ray Tracing Conclusion

Future Work

 Use our kinetic data structures also for other kinds of primitives
like NURBS

 Extend to scenarios with unknown !ightplans

 Kinetic Light-buffers (for shadow rays)

 Improve performance of kinetic sorting within frusta by using
kinetic heaters or kinetic hangers

 Integrate other kinetic data structures (like the kinetic AABB-Tree)
for secondary rays

 Improve quality of anti-aliasing

 Parallelization

Conclusion

