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Why Are People Bad at Detecting Randomness? A Statistical Argument
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Errors in detecting randomness are often explained in terms of biases and misconceptions. We propose
and provide evidence for an account that characterizes the contribution of the inherent statistical
difficulty of the task. Our account is based on a Bayesian statistical analysis, focusing on the fact that a
random process is a special case of systematic processes, meaning that the hypothesis of randomness is
nested within the hypothesis of systematicity. This analysis shows that randomly generated outcomes are
still reasonably likely to have come from a systematic process and are thus only weakly diagnostic of a
random process. We tested this account through 3 experiments. Experiments 1 and 2 showed that the low
accuracy in judging whether a sequence of coin flips is random (or biased toward heads or tails) is due
to the weak evidence provided by random sequences. While randomness judgments were less accurate
than judgments involving non-nested hypotheses in the same task domain, this difference disappeared
once the strength of the available evidence was equated. Experiment 3 extended this finding to assessing
whether a sequence was random or exhibited sequential dependence, showing that the distribution of
statistical evidence has an effect that complements known misconceptions.
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Does the admission of four men and one woman to a graduate
program reflect gender discrimination, or just random variation?
Are you more likely to give a good presentation if your last
presentation went well, or are they independent of each other? Do
people who take vitamins get sick any less often than people who
do not? People often use the events they observe as data to answer
questions such as these, identifying systematic processes in the
world. Detecting such relationships depends on discriminating
them from random processes—accurately evaluating which obser-
vations are generated by a random versus systematic process.

Unfortunately, people seem to be bad at discriminating random
and systematic processes. An extensive literature documents peo-
ple’s misconceptions about randomness and their inaccuracies in
determining whether observations such as binary sequences are
randomly or systematically generated (see reviews by Bar-Hillel &
Wagenaar, 1993; Falk & Konold, 1997; Nickerson, 2002). When
asked to produce random binary sequences (such as heads and
tails), people provide excessively balanced numbers of heads and
tails, as well as too few repetitions (Wagenaar, 1972). When asked
to evaluate whether sequences are random or systematic, people
often judge randomly generated sequences as systematically bi-
ased toward heads (or tails), and as biased toward repetition.
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This pattern of errors is often summarized in terms of an
alternation bias, whereby people perceive alternations (chang-
ing from heads to tails or vice versa) as more indicative of
randomness than repetitions (repeating a head or tail), so that
sequences with an alternation rate of 0.6 or 0.7 are incorrectly
perceived as “most random” (Falk & Konold, 1997; Lopes &
Oden, 1987; Rapoport & Budescu, 1992). This bias influences
what is remembered about random sequences (Olivola & Op-
penheimer, 2008), and also affects judgments about binary
sequences outside of laboratory experiments: The gambler’s
fallacy refers to the mistaken belief that systematicity in a
randomly generated sequence will be “corrected,” such as rou-
lette players’ professed belief that a red result becomes more
likely after a run of black (Kahneman & Tversky, 1972; Tune,
1964). More controversially, people also detect hot hand effects
like streaks in sequences of sports outcomes, even when the
outcomes are independent (Alter & Oppenheimer, 2006; Gilov-
ich, Vallone, & Tversky, 1985).

The low accuracy of people’s judgments of subjective random-
ness has at times been explained as the result of flawed intuitions.
Bar-Hillel and Wagenaar (1993) suggested that “people either
acquire an erroneous concept of randomness, or fail to unlearn it”
(p. 388). A related proposal is that people’s reasoning about
randomness is not guided by laws of probability, but the heuristic
of judging how representative observations are of a random pro-
cess (Kahneman & Tversky, 1972)—a judgment of whether the
observations represent the essential characteristics of random data.
The concept of local representativeness further proposes that
people expect even small samples to closely represent the proper-
ties of randomly generated data, although small randomly gener-
ated samples often contain structure by chance. Several additional
factors have been argued to underlie errors in randomness judg-
ment: One is that a sequence’s randomness is not judged using
statistics, but from the subjective difficulty of encoding the se-
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quence into chunks (Falk & Konold, 1997), limitations on people’s
memory capacities (Kareev, 1992, 1995), and the use of ambigu-
ous or misleading instructions (Nickerson, 2002).

In this article, we provide a complementary account of people’s
poor performance in assessing randomness, focusing on the inher-
ent mathematical difficulty of this task. We empirically evaluate
whether this account explains errors in reasoning about random-
ness, over and above those caused by cognitive biases. Building on
previous work that analyzes the statistical challenges posed by
detecting randomness (Lopes, 1982; Lopes & Oden, 1987; Nick-
erson, 2002), we show that this task is inherently difficult due to
the nature of the hypotheses that need to be compared. This
analysis complements work on judgment biases by precisely spec-
ifying the statistical challenges that further contribute to inaccu-
racy, even when no biases or processing limitations are present. It
also provides a way to explore the consequences of incorporating
specific biases into ideal observer models—a property that we
demonstrate by defining a Bayesian model for detecting sequential
dependency in binary sequences that incorporates an alternation
bias.

In the remainder of the article, we explore the implications of a
simple mathematical analysis of the task of detecting randomness.
This model focuses on the abstract statistical problem posed by
this task. Taking this perspective makes it clear that random
processes are special cases of systematic processes, meaning that
they correspond to nested hypotheses. Our analysis shows that this
severely limits how diagnostic randomly generated data can be, as
these data can always be accounted for by a systematic process.
Detecting randomness is thus difficult because it is only possible to
obtain weak evidence that an outcome was generated by a random
process. This makes a simple prediction: People should perform
similarly on tasks that have similar distributions of evidence, even
when they do not involve randomness. We test this prediction
through three experiments in which people make judgments about
binary sequences.

The Statistical Challenge Underlying
Randomness Judgment

Before we present our mathematical analysis, it is important to
clarify what we mean by the ambiguous term “random.” The
psychological literature on subjective randomness makes the dis-
tinction between the randomness of products and the randomness
of processes (e.g., Lopes, 1982). For example, one can assess
whether a particular binary string is a random combination of
symbols, or evaluate whether a process that generates such binary
strings does so randomly. In this article, our focus is on the
evidence that products provide about processes. That is, having
observed a product, we can examine how much evidence that
product provides for having been generated from a random pro-
cess. This perspective is consistent with mathematical approaches
to defining the randomness of products, which are often implicitly
the consequence of a statistical inference about processes (see,
e.g., Li & Vitanyi, 1997).

It remains to define what we mean by a random process. We
assume that random processes generate outcomes from a discrete
set with uniform probability. The tasks that we consider thus have
the formal structure of deciding whether two outcomes are ran-
dom—in the sense of being equally likely to occur—or systemat-
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ic—in that one is more likely than the other. A wide range of
real-world judgments in different domains and contexts have this
abstract form. We discuss two such judgments. The first concerns
the relative frequency of two events. For example, determining
whether men and women are equally likely to be admitted to a
graduate program, whether two students perform equally well on
exams, and whether a coin is fair or biased to heads or tails. The
second concerns sequential dependence between successive
events. When there are two equally likely events, the question is
whether an occurrence of an event is followed by a repetition of
the event or an alternation to the other event. Judging randomness
therefore involves assessing whether events are random in being
sequentially independent (the outcomes of repetition and alterna-
tion are equally likely) or sequentially dependent (one outcome—
e.g., repetition—is more likely than the other). For example, if
there is no gender bias in graduate admission, is there a relation-
ship between the gender of successive admittees? For a fair coin,
are subsequent flips random (independent), or does a head (tail) on
one flip influence the next?

Consider the first scenario, examining 10 candidates to evaluate
whether admissions are gender neutral—random with respect to
being male or female. Judgment accuracy could be reduced by
misconceptions about randomness or the use of biased heuristics.
But there is also a subtle but significant statistical challenge in this
problem, which we predict will cause judgment errors even in the
absence of misconceptions and even with unlimited processing
resources. If the gender distribution is random, then P(male) is 0.5,
whereas if it is systematic, P(male) is somewhere in the range from
0 to 1. If six males and four females are admitted, this might seem
to provide evidence for a random process. But how strong is the
evidence? In fact, six males and four females could also be
produced by a systematically biased process, one in which P(male)
is 0.6, or even 0.55 or 0.7. While likely under a random process,
the observation can also be explained by a systematic process, and
so it is only weakly diagnostic of a random process and leads to
inaccuracy. The problem is that a random process is a special case
within the broad range of systematic processes, leading to an
explanation of people’s poor performance in detecting randomness
that we refer to as the nested hypothesis account.

Formalizing the Inference Problem

To formally investigate the statistical challenge present in de-
tecting randomness, we developed an ideal observer model or
rational analysis (in the spirit of Anderson, 1990) of the task. This
approach follows previous work by Lopes (1982) and Lopes and
Oden (1987) in formulating the problem as one that can be ad-
dressed using Bayesian inference and signal detection theory. This
formal framework can be applied to a range of contexts, but for the
purposes of this article, we focus on evaluating whether some data
set d of binary outcomes is random (equiprobable) or systematic
(not equiprobable). We discuss this problem in the context of
evaluating whether sequences of coin flips are random or not, a
task that affords experimental control and has been extensively
investigated in previous literature. As mentioned above, the model
we present can be used to address two aspects of randomness: (1)
evaluating whether a coin is random in being equally likely to give
heads or tails, versus weighted toward heads over tails (or vice
versa), and (2) even if heads and tails are equally likely, evaluating
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whether a coin is random in being equally likely to repeat or
alternate flips (sequential independence), versus more likely to
repeat or to alternate (sequentially dependent).

The hypotheses under consideration are represented as follows:

h,: The data were generated by a random process. For exam-
ple, P(heads) = 0.5 or P(repetition) = 0.5.

h,: The data were generated by a systematic process. For
example, P(heads) (or P(repetition)) follows a uniform dis-
tribution between 0 and 1.!

Bayesian inference provides a rational solution to the problem of
evaluating these hypotheses in light of data. In this case, we can
write Bayes’s rule in its “log odds” form:

P(|d)
P(hyd) %

P(d|h)
P(d|hy)

P(h))
+logP(ho). €8

This equation says that the relative probability of a random (4,) or
systematic (h,) process after seeing data d (denoted by
P(hy 1 d)

log———) depends on how likely the data d are under a random
P(hy | d)

log

hy)

rocess versus a systematic process (log———
p y p (log P hy)

), and how likely

1
P(h)
purposes of this article, the key term in Equation 1 is the log
P(d | hy)
P(d | hy)’
idence the data provide for &, versus h,.2

To demonstrate the results of taking this approach, we consider
a case where the observed data consist of 10 outcomes (10 head/
tail coin flips or 10 repetitions/alternations). The number of heads
(repetitions) in each batch of 10 follows a binomial distribution.
For sequences from a random process, the probability of a head
(repetition) is 0.5. For systematic processes, it ranges uniformly
from O to 1. This task is sufficiently specified to compute the log
likelihood ratio introduced in Equation 1, which provides a quan-
titative measure of the evidence a data set provides for a random
process (see Appendix A for details). We mainly consider the case
of evaluating whether sequences reflect a coin for which heads and
tails are equally likely (vs. weighted to one over the other),
although the results also apply to the mathematically equivalent
task of evaluating sequential independence in repetitions and al-
ternations.

either process was before seeing the data (log ). For the

likelihood ratio log which quantifies the strength of ev-

Randomly Generated Data Sets Provide Only Weak
Evidence for Randomness

The key results of our ideal observer analysis are presented in
Figure 1. Figure 1a shows how likely different data sets of 10 flips
are to be generated by each process, as a function of the number of
heads in the data set. The horizontal axis gives the number of heads
and tails in a data set of 10 flips. The vertical axis gives the
probability of a data set being generated, where the black line
represents P(d | h,) (the probability the data set would be generated
from a fair/random coin), and the gray line represents P(dlh,) (the
probability the data set would be generated from a systematically

1475
Nested Non-Nested
05 —e—h0: Random —e=h0: Tail bias
- = (a) ==*=h1: Biased (b) —s—h1: Head bias
)
T
58
[
oz
2 0 0
012345678910 012345678910
Number of Heads Number of Heads
0.5 0.5
< (c
& (c) (d)
-
e
25
32
s
[
o 0 0
-10 0 10 -10 0 10
Log Likelihood Ratio (LLR) Log Likelihood Ratio (LLR)
- 1 1
£
5 (e (f)
T
‘s 05 0.5
2
2
o
-1
e o 0
= 0 05 1 0 05 1
Probability of False Alarm on h0 Probability of False Alarm on h0
Figure 1. The statistical challenge posed by randomness detection. The

left column shows model predictions for the nested problem of randomness
judgment: discriminating whether events like head/tail flips or repetition/
alternation of flips are equiprobable or systematically biased. The right
column shows the model predictions for the non-nested problem of dis-
criminating the direction of systematic bias. Plots show the probability
distribution over sequences for (a) nested and (b) non-nested hypotheses,
the distribution of evidence (measured by the log likelihood ratio or LLR)
for each of the (c) nested and (d) non-nested hypotheses, and the receiver
operating characteristic curves produced by a signal detection analysis for
the (e) nested and (f) non-nested discrimination tasks.

biased coin). Data sets with little or no systematic bias are likely
to come from a random process (e.g., SH5T, 6H4T, where the first
number refers to the number of heads and the second to the number
of tails), while data sets with a wide range of systematic bias are
likely under a systematic process (e.g., 0H10T to 10HOT).? How-
ever, all of the data sets likely to be generated by a random process
are also reasonably likely to come from a systematic process, while

! Intuitively, it might seem the hypothesis of systematicity should ex-
clude the hypothesis of randomness (e.g., P(heads) between 0 and 1 except
for 0.5). Representing the hypothesis of systematicity in this way is
mathematically equivalent to the current formulation and makes no differ-
ence to any of our conclusions.

2 This log likelihood ratio has been used in other mathematical defini-
tions of randomness (Griffiths & Tenenbaum, 2001) and has also been
proposed as a measure of the representativeness of an observation relative
to a hypothesis (Tenenbaum & Griffiths, 2001).

3 Note that because such a broad range of data sets are likely under a
systematic process, a lower probability must be assigned to each of them.
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the converse is true for only some systematically generated data
sets (e.g., a random process is very unlikely to generate a sequence
with 9H1T). This is because a random process is a special case of
a systematic process (a P(heads) of 0.5 is a point in the range O to
1): A random process is contained—more formally, nested—in the
set of systematic processes.

Recall that the log likelihood ratio (LLR) (logf)g—:hI;) serves
as a quantitative measure of the relative evidence a (i)ata set d
provides for a systematic versus random process. It quantifies the
relative probability of the sequence being generated by one process
(P(d | hy) for systematic) rather than the other (P(d | h,) for ran-
dom), and the amount that the posterior probabilities change as a
result of observing d. Figure 1c shows the distribution of evidence
(the distribution of the LLR) for sequences generated from the
random process and sequences from the systematic process.

We explain the construction of these distributions to aid in their
interpretation. The distribution of the LLR for a random process
was obtained as follows. First, 5,000 sequences of 10 coin flips
were generated from the distribution associated with k. For each
of the 5,000 sequences the LLR was calculated, and these 5,000
LLRs were used to create the relative frequency plot in Figure lc
(hy: black line). The details of calculating the LLR in this case are
given in Appendix A. In Figure lc, the horizontal axis displays the
range of LLRs different sequences can have (calculated with
respect to the hypotheses about a random versus systematic pro-
cess). The vertical axis depicts how likely sequences with these
LLRs are. An analogous procedure was used to construct the
distribution of the LLR for 4,: 5,000 sequences were generated
from a systematic process (for each sequence, P(heads) was ran-
domly sampled from a uniform distribution between 0 and 1), and
the LLRs of all 5,000 sequences were calculated and used to create
a relative frequency plot (h,: gray line).

Figure lc shows that the majority of randomly generated se-
quences have small negative LLRs (e.g., the LLR of SHST is
—1.0). While a negative LLR indicates that the sequence is more
likely to be generated by a random than systematic process, the
size or magnitude of the LLR indicates how much more likely this
is. The greater the magnitude of the LLR for a sequence, the
stronger the evidence the sequence provides for one process over
the other. Sequences with LLRs near to zero provide little evidence
as either process is likely to generate them. While there are some
systematically generated sequences with small LLRs, there are
many that have large positive LLRs (e.g., the LLR of 10HOT is
4.5) and so provide strong evidence for a systematic process.
Throughout this article, the LLR provides a precise quantitative
measure of the evidence a data set provides for one process versus
another. The results illustrate that one consequence of a random
process being nested in a range of systematic processes is that
randomly generated data can provide only weak evidence for a
random process. As a result, we should expect people to perform
poorly when detecting randomness.

Comparison to Non-Nested Hypotheses

Throughout this article, we spell out the distinctive challenges of
judgments about nested hypotheses (and by extension randomness
judgments) by comparing them to judgments about non-nested
hypotheses. We examine non-nested hypotheses whose probability
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distributions over data sets have a similar shape to one another and
only partially overlap. Such non-nested hypotheses appear more
frequently than nested hypotheses in the tasks typically analyzed
by psychologists, and are often assumed in signal detection tasks
like deciding whether an item on a memory test is old or new or
identifying a perceptual stimulus in a noisy environment (Green &
Swets, 1966).

One judgment about binary outcomes that involves non-nested
hypotheses concerns which outcome the generating process is
biased toward. A simple version of this might compare the hy-
potheses that a coin is biased toward heads (h,: P(heads) = 0.3)
versus biased toward tails (4,: P(heads) = 0.7).* Figure 1b shows
how likely different sequences of 10 coin flips are under these two
processes. Again, the horizontal axis depicts particular sequences
(e.g., 2HST, 4HOT), and the vertical axis gives the probability of
the sequence being generated by a process biased toward tails (h:
black line) and a process biased toward heads (h,: gray line). A
comparison of the nested hypotheses in Figure la and the non-
nested hypotheses in Figure 1b reveals key differences. While
sequences that are likely under both non-nested hypotheses (e.g.,
SHS5T, 6H4T) are ambiguous, neither process is nested within the
other, and so each process can generate sequences that are very
unlikely to come from the other process.

The distribution of LLRs for sequences generated from non-
nested hypotheses is shown in Figure 1d and was constructed using
a similar procedure to Figure lc. First, 5,000 sequences were
generated from a process biased toward tails (P(heads) = 0.3) and
5,000 from a process biased toward heads (P(heads) = 0.7). The

(d 1 hy)

———. It should be
P(d | hy)
noted that these are not the same probabilities used for the nested
hypotheses, because h, now represents a bias toward tails instead
of a fair coin (P(heads) = 0.3, not 0.5), and &, represents a bias
toward heads instead of any bias (P(heads) = 0.7, not a uniform
distribution from 0 and 1). The formula for the LLR is provided in
Appendix A. The relative frequency plot in Figure 1d shows the
distribution of the sequence LLRs, where the horizontal axis
depicts the LLRs of particular sequences (calculated with respect
to the hypotheses of a tail bias vs. head bias), and the vertical axis
depicts how likely sequences with these LLRs are.

Although the LLR of a sequence is calculated with respect to
different hypotheses in Figures 1c and 1d, the LLR still permits a
direct comparison of the strength of the available evidence. The
LLR is valuable as an abstract and context-independent quantifi-
cation of the evidence a data set provides in discriminating any two
given hypotheses. For example, the sequence SH5T has an LLR of
—1.0 with respect to whether the generating coin was fair or biased
(and an LLR of 0 with respect to whether it was biased to tails or
heads), while the sequence 4H6T has an LLR of —1.7 with respect

LLR of each sequence was computed as log

*The conclusions of this analysis are not significantly changed by
manipulating these particular probabilities (e.g., using P(heads) of 0.25 or
0.35) as long as it represents a reasonable bias. For example, P(heads) =
0.52 is a less plausible representation of participants’ belief that a coin is
biased toward heads than P(heads) = 0.70. Representing bias over a
uniform interval (e.g., P(heads) ranges uniformly from 0.5 to 1) also
produces equivalent results, as is later demonstrated in the model in
Figure 2.
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to whether the generating coin was biased to tails or heads (and an
LLR of —0.8 with respect to whether the coin is fair or biased).

A comparison of Figures 1c and 1d demonstrates the distinctive
statistical challenge that stems from the nested nature of random-
ness detection. Whereas the distribution of evidence for these
nested hypotheses is asymmetric and substantially weaker for the
nested random process, the distribution of evidence for non-nested
hypotheses is symmetric, and a broad range of sequences provides
strong evidence for the process that generated them. Randomness
detection not only differs from many standard judgment tasks in
requiring people to draw on concepts of and reasoning about a
random process, but also in involving nested hypotheses and
therefore having severe limits on the amount of evidence an
outcome can provide.

Difficulty of Discrimination as Reflected in Receiver
Operating Characteristic (ROC) Curves

To quantify judgment accuracy for nested and non-nested hy-
potheses we draw on tools from signal detection theory (Green &
Swets, 1966). Signal detection theory is useful in quantifying the
difficulty of judgment tasks across a range of situations. Lopes
(1982) and Lopes and Oden (1987) argued that it can be particu-
larly useful for understanding randomness judgment, particularly
in comparing human reasoners to a normative standard. We ex-
amine the receiver operating characteristic or ROC curves for
nested and non-nested judgments. To infer from a sequence
whether A, or h, is true, a reasoner must adopt a decision criterion
based on the evidence—for example, they could report 4, when-
ever the LLR is below zero and /2, when it is above. However, the
criteria adopted can vary across prior expectations of the likeli-
hood of h, and h,, different costs and rewards for errors and
correct responses, and individuals. We use the ROC curve because
it provides a broad view of how difficult or easy it is to use a
sequence to discriminate two processes, without relying on a
specific judgment criterion. The ROC curve for discriminating the
nested random and systematic processes is shown in Figure le, and
the ROC curve for discriminating the two non-nested systematic
processes in Figure 1f.

The details of how these curves were constructed are provided
in Appendix B, but the curve in Figure le plots the relative
proportion of hits (correct identifications of systematically gener-
ated data sets) on the vertical axis against the proportion of false
alarms (misclassification of randomly generated data sets as sys-
tematic). If only a single criterion was used (e.g., an LLR of 0), this
curve would collapse to a single point that plots the predicted hit
rate against the false alarm rate. However, we calculated the hit
rate and false alarm rate for many criteria that cover a broad range
(from conservative to liberal in reporting /,) to produce these
curves. Each ROC curve therefore gives a broad and criterion-
independent picture of an ideal observer’s ability to use the evi-
dence available to discern which process generated a sequence.
Curves that are closer to a right angle demonstrate good discrim-
inability of the two processes, while curves that are closer to the
diagonal reflect reduced ability: Increasing hits requires large
increases in false alarms.

Even if misconceptions about random processes are absent and
cognitive resources are not taxed, the ROC curves show that
discrimination accuracy is inherently lower for the nested than the
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non-nested hypotheses, which is caused by the weaker distribution
of evidence. The ROC curves also emphasize that randomness
judgment involves an inherent tradeoff between accurately identi-
fying random processes and accurately identifying systematic pro-
cesses—increasing detection of systematicity necessitates mistak-
enly claiming that randomly generated data reflect a systematic
process. Since the weak evidence reduces discriminability, reason-
ers will be especially prone to erroneously detecting structure
when the data are randomly generated—the key phenomenon
identified in past research.

Considering Other Non-Nested Hypotheses

One concern with our analysis may be that the non-nested
hypotheses are rendered easier to discriminate by selective choice
of the parameter values of P(heads) or P(repetition) of 0.3 and 0.7.
To address this concern, we confirmed that the challenge posed by
nested hypotheses was also apparent when compared to another
choice of non-nested hypotheses. We took P(heads) (P(repetition))
ranging from O to 0.5 for A, and 0.5 to 1 for i,. This case also
demonstrates that the relevant contrast between nested and non-
nested hypotheses is not simply comparing a point hypothesis to a
set of values versus comparing two point hypotheses, because both
of the non-nested hypotheses contain an interval set of values. The
derivation of the model predictions is given in Appendix A. As
Figure 2 shows, changing the assumptions about the non-nested
hypotheses does affect the distribution of the LLR (evidence) but
does not produce the asymmetric distribution of evidence associ-
ated with nested hypotheses.

Nested Non-Nested
=, =e=h0: Random —e—h0: Repetition bias
x 05 0.5
-] =*—h1: Dependence —*=h1: Alternation bias
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Figure 2. An alternative pair of non-nested hypotheses. The left column
replicates the nested model from Figure 1. The right column shows the
non-nested model where systematic processes are distributed over intervals
0to 0.5 and 0.5 to 1. Plots show the distributions of the log likelihood ratio
(LLR) for these (a) nested and (b) non-nested processes, and receiver
operating characteristic curves for discriminating (c) nested and (d) non-
nested processes.
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Summary

The ideal observer analysis elucidates the precise nature of the
inherent statistical difficulty in detecting randomness—it is a
nested hypothesis. Discriminating a random process (like P(heads)
or P(repetition) of 0.5) from a systematic process (P(heads) or
P(repetition) has another value between 0 and 1) is a difficult
statistical task because randomly generated data are also reason-
ably likely to have come from systematic processes. Calculating
the distribution of the LLR of data sets generated by both kinds of
processes provides a quantitative measure of the evidence resulting
from an observation, demonstrating that randomly generated data
give relatively weak evidence for a random process. The paucity of
this evidence was clear in the comparison to the evidence that can
be provided for a systematic process, and to the evidence provided
by data sets from non-nested hypotheses. ROC curves indicated
that the information available in judging randomness was lower
than for the other tasks, such that raising correct identifications of
systematic process would necessitate higher false alarms in incor-
rectly judging that randomly generated data set reflected a system-
atic process.

Exploring the Source of Errors in Human
Randomness Judgments

Our nested hypothesis account provides a novel proposal for
why people find detecting randomness difficult. But we need
empirical evidence that people’s judgments are actually sensitive
to the statistical measures we present. Moreover, there is clear
reason to believe people have misconceptions about randomness
and processing limitations, which may eliminate or overwhelm any
effects of our statistical measures on judgment.

We conducted three experiments that investigated the extent to
which accuracy and errors depended on the statistical properties
highlighted in our analysis—the log likelihood ratio, or quantity of
evidence available—versus whether people needed to reason about
and represent a random process. Our analysis predicts that accu-
racy should be primarily a function of the evidence provided by a
sequence (the LLR), which is highly dependent on whether the
hypotheses under consideration are nested. Alternatively, the sta-
tistical model we analyzed may fail to accurately capture the
evidence available to people, or statistical considerations may play
a minimal role if errors are driven largely by people’s difficulties
in conceptualizing and reasoning about randomness.

All three experiments compared the accuracy of judgments in a
nested condition—discriminating a random from a systematically
biased process—to judgments in a non-nested condition— discrim-
inating two systematic processes. Accuracy is predicted to be
lower in the nested condition, whether because of (1) people’s
limitations in conceptualizing and reasoning about a random pro-
cess, and/or (2) the low LLRs or weak evidence available for a
nested hypothesis—as predicted by our analysis. To evaluate these
possibilities, we compared the nested and non-nested condition to
a critical matched condition. The matched condition used the same
judgment task as the non-nested condition, but the same distribu-
tion of evidence as the nested condition. Although people did not
need to reason about a random process, a model was used to
statistically equate the available evidence to that in the nested
condition. The model’s predictions about the LLR were used to
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choose the sequences in the matched condition so they provided
exactly as much evidence for discriminating the non-nested hy-
potheses as the sequences in the nested condition did for discrim-
inating random from systematic processes.

If our nested hypothesis account correctly characterizes the
statistical difficulty people face in detecting randomness, the
matched condition should have lower accuracy than the non-nested
condition. If the model captures the difficulty of the task, the
matched condition may even be as inaccurate as the nested. If the
model does not capture difficulty, or these considerations are
minimal relevant to other factors, accuracy in the matched condi-
tion should not differ from the non-nested and could even be
greater. The model can also be evaluated by assessing how well the
LLR—the model’s measure of evidence—predicts people’s accu-
racy and reaction time in making judgments on particular data sets.
The model predicts that judgments on sequences with small LLRs
(not very diagnostic) should be near chance and have slow reaction
times, with the opposite pattern for sequences with large LLRs.

While all the experiments followed this basic logic, the task in
Experiments 1 and 2 was deciding if a coin was random (heads and
tails equally likely) or biased toward heads/tails. Experiment 3
extended the model to the more complex task of deciding whether
a coin was random (independent of previous coin flips—repeti-
tions or alternations equally likely) or biased toward repetition/
alternation, allowing us to investigate whether the nested hypoth-
esis account predicts people’s judgment errors even in situations in
which people have known misconceptions about randomness.

Experiment 1: Judging Randomness in the
Frequency of Events

As mentioned above, Experiment 1 examined judgments about
whether a coin was random (equally likely to produce heads or
tails) or systematically biased (toward heads, or toward tails). It
investigated whether our nested hypothesis account provided an
accurate characterization of the source of errors in people’s ran-
domness judgments. In the non-nested condition, participants
judged whether sequences were biased toward heads or tails for 50
sequences that covered a range of evidence characteristic of biased
coins. In the nested condition, participants judged whether a coin
was fair (random) or biased for 50 sequences that covered a range
of evidence characteristic of fair and biased coins. In the matched
condition, judgments concerned whether a coin was biased toward
heads or tails, but the LLR (our model’s measure of the evidence
a sequence provided) was used to select 50 sequences that pro-
vided exactly as much evidence for a bias to heads/tails as the 50
in the nested condition provided for a fair/biased coin. Although
the tasks differed, the distribution of LLRs was thus the same in
the nested and matched conditions.

Method

Participants. Participants were 120 undergraduate students
(40 in each of three conditions), participating for course credit.

Materials. The 50 sequences in the nested and non-nested
condition were chosen to span a range of sequences that would
be generated under the nested and non-nested hypotheses. Table
1 shows the distribution of LLRs for the sequences in each
condition, as well as example sequences in each range of LLRs,
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Table 1

Distribution of the Log Likelihood Ratio (LLR) for Sequences Used in Experiment 1

Non-nested condition

LLR range —25 —10 -2 0 2 10
—10 -2 0 2 10 25
Example sequences (no. of heads) 6H, 12H 15H, 18H None None 22H, 25H 28H, 34H
Frequency 20 5 0 0 5 20
Nested condition
LLR range —25 —10 -2 0 2 10
—10 -2 0 2 10 25
Example sequences (no. of heads) None None 19H, 20H 13H, 26H 10H, 32H 4H, 39H
Frequency 0 0 29 6 8 7
Matched condition
LLR range —=25 —-10 -2 0 2 10
—10 -2 0 2 10 25
Example sequences (no. of heads) None None 19H, 20H 20H, 21H 23H, 25H 29H, 34H
Frequency 0 0 29 6 8 7

Note. The LLR is calculated with respect to the relevant non-nested or nested hypotheses in each condition. The table gives the number of sequences in
each condition that have LLRs in a particular range. Example sequences in each LLR range are provided, summarized by the number of heads (H) out of

40 coin flips.

summarized by the number of heads in the sequence. For the
nested condition, 50,000 sequences of 40 coin flips were gen-
erated by simulating a fair coin (random process) and 50,000 by
simulating coins that had P(heads) ranging uniformly from 0%
to 100% (systematic process).” The 100,000 samples were
pooled and ordered by increasing LLR, and 50 sequences were
selected that covered the range of LLR values by selecting a
sequence at every second percentile. A similar process was used
for the non-nested condition: 50,000 sequences from a coin with
P(heads) = 0.3 and 50,000 from a coin with P(heads) = 0.7
were pooled and ordered by LLR (the evidence for bias toward
heads vs. tails) and a sequence selected from every 2nd per-
centile for a total of 50.

The 50 matched sequences provided the critical test. Partic-
ipants would judge whether these sequences were biased toward
heads or biased toward tails, so the LLR was calculated with
respect to the non-nested hypotheses. However, each of the 50
matched sequences was chosen to have a similar LLR to one of
the 50 nested sequences. It was not always possible to make the
LLRs in the nested and matched condition identical, but se-
quences were selected to minimize the differences. The se-
quences in the matched and nested condition were thus matched
in the amount of evidence they provided for their respective
judgments, but these judgments were about qualitatively differ-
ent processes.

Procedure. The experiment was administered by computer.
Participants in the nested condition were instructed that they
would see sequences of coin flips, and that half of these had
come from a fair coin that produced heads and tails with
probability 50%, and the other half from a coin biased to show
heads and tails with some probability other than 50%, with all
probabilities being equally likely. For each sequence, they were
instructed to decide which process had generated it. Participants
in the non-nested and matched condition were instructed that
half of the sequences came from (1) a coin that came up heads
30% of the time (tails 70%), and the other half from (2) a coin

that came up heads 70% of the time (tails 30%). Participants
were given 16 practice trials of just five flips, followed by the
actual experiment of 50 trials of 40 flips. Each trial displayed
the sequence of heads and tails onscreen, for example,
“HTHTHTHTHHHHTTHHHHTTHTTTTHHHTTTTHHHTHHT.”
Responses were made by pressing one of two buttons, with the
button-response pairing randomly chosen for each participant.

Results

Accuracy. People’s judgment accuracy in each of the three
conditions is shown in Figure 3. An accuracy score was con-
structed for each participant as the proportion of correct inferences
out of 50, with an inference scored as correct if the participant
chose the process favored by the evidence a sequence provided (its
LLR).® Accuracy in the non-nested condition was significantly
better than in the nested and matched conditions, #(78) = 6.9, p <
001, d = 1.54; «(78) = 8.6, p < .001, d = 1.87. However,
accuracy in the matched condition did not differ significantly from
accuracy in the nested condition, #(78) = —1.6, p = .12, d =
—0.30. When the distribution of evidence for judging random-
ness and judging direction of bias is equated, people make just
as many errors and performance is not significantly different. In
fact, accuracy was numerically lower in the matched condition,
so any potential differences run counter to the prediction that
the model is not sufficient to capture the difficulty of the task.
This provides evidence that the nested hypothesis account ac-
curately characterizes the statistical challenge inherent in this
randomness judgment.

3 P(heads) for each of the 50,000 sequences was randomly chosen, with
all values between 0 and 1 equally likely.

®This is equivalent to the process with higher posterior probability,
when the prior probabilities of &, and &, are equal. Accuracy could also
have been evaluated in other ways—such as based on matching the true
generating process. We use such an approach in Experiment 2, which has
complementary advantages and disadvantages.
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Model predictions: Degree of belief. Figure 4 shows the
proportion of people choosing &, for each of the 50 sequences, as
well as the posterior probability of /&, according to the model’s
analysis of the judgment—the precise degree of belief in &, that is
warranted by the evidence the data provide.” The sequences are
ordered from left to right by increasing LLR. The key pattern
illustrated in Figure 4 is that there is a striking quantitative corre-
spondence between the proportion of people who choose a process
and the model’s degree of belief in that process, according to the
LLR of the data set. The correlations for the non-nested, nested,
and matched conditions are, respectively, r(48) = .99, .94, and .92,
providing compelling evidence that the model accurately captures
the statistical difficulty in detecting randomness.

Model predictions: Reaction time. All reaction time analy-
ses were carried out on data that were first scaled for outliers
(reaction times greater than 10 s were replaced by a value of 10 s).
Reaction time data confirm the pattern of difficulty in judgments:
People were faster to make judgments in the non-nested condition
than either the nested condition, #(78) = 2.5, p < .02, d = 0.56, or
matched condition, #78) = 2.7, p < .01, d = 0.60, although
reaction time for the matched condition was not significantly
different from the nested condition, #78) = —0.33,p = .74, d =
—0.07.

Reaction time was also analyzed as a function of individual
sequences (or rather, their LLRs) to obtain detailed model predic-
tions. There was a clear linear relationship between the time people
needed to make a judgment about a sequence and the magnitude of
the evidence that sequence provided (the size of the LLR). The
correlations between the time to make an inference from a se-
quence and the absolute value of the LLR of the sequence were
r(48) = —.82 (non-nested), —.84 (nested), and —.75 (matched).
The smaller the magnitude of the LLR, the longer the time to make
a judgment, the larger the LLR, the quicker an inference was made.
The close match between data and model illustrates that the
sequences which provide only weak evidence are the sequences
that people find inherently difficult to evaluate and spend more
time processing.

Discussion

Experiment 1 provided evidence for the nested hypothesis ac-
count. Although judgments about a random process (fair coin)
were less accurate than similar task judgments about non-nested
hypotheses (head/tail bias), this was due to the weak evidence

1
0.8 =
)
®© 06
e
=
8 0.4
<
0.2
0 1 . :
Non-Nested Nested Matched

Figure 3. Judgment accuracy as a function of task and evidence in
Experiment 1. Error bars represent one standard error.
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Figure 4. Results of Experiment 1, showing the proportion of people
reporting that a sequence was generated by /1, and the posterior probability
of h, for that sequence. i, represented a systematically biased process for
the nested condition and a bias to heads for the symmetric and matched.
Sequences are ordered by increasing evidence for ;. LLR = log likelihood
ratio.

available rather than people’s erroneous intuitions about random-
ness. The matched condition required judgments about non-nested
hypotheses, eliminating the role of biases about randomness in
erroneous judgments. But it also equated the amount of evidence
sequences provided to the evidence available in the nested condi-
tion. This eliminated the significant differences, so that the nested
and matched conditions were equally accurate. These results sug-
gest that judgments about randomness are more inaccurate than
judgments about two kinds of systematic processes not only be-
cause they involve reasoning about randomness, but because judg-
ments about randomness are judgments about nested hypotheses.

Across a range of sequences, the proportion of people who
judged a random process to be present closely tracked the rational
degree of belief an ideal observer would possess based on the
statistical evidence available. There was also a close correspon-
dence between the strength of evidence and the difficulty of
making a judgment, as measured by reaction time. The results
suggest that the assumptions of the model about how processes are
mentally represented and related to data provides a good account
of participants’ difficulty and errors in judging randomness, by
closely capturing the uncertainty in the evidence available. In
particular, the high correlations between model and data suggest
that people are very sensitive to the evidence a sequence provides
for a process and are good at judging how likely it is that a
particular process generated a sequence.

The proportion of people selecting a particular process corre-
sponded closely to the posterior probability of this process. This
kind of “probability matching” might seem inconsistent with the
assumption of rationality behind our model: The rational action
should be to deterministically select the process that has highest
posterior probability. There are several possible explanations for
why this is not the case. Even if the evidence available is constant
across participants, the particular criterion each uses for a judg-

7 The model assumes that h, (a random process) and /4, (a systematic
process) are equally likely a priori (the instructions provided to participants
also indicate that this is the case), and so the posterior probability depends

only on the LLR: It is equal to T OF
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ment may vary. Also, participants do not necessarily have direct
access to a quantitative measure of the evidence in a stimulus, but
may process a noisy function of this evidence. As the evidence
becomes stronger, both an ideal observer’s confidence and partic-
ipants’ correct responses increase, because they are sensitive to the
same statistical information, even if different procedures or pro-
cesses map this information to a particular judgment. Vulkan
(2000) and Shanks, Tunney, and McCarthy (2002) have provided
further discussion of issues relating to this kind of probability
matching.

Experiment 2: Dissociating Random Processes and
Nested Hypotheses

One reason Experiment 1 provided support for our nested hy-
pothesis account was that the nested and matched conditions were
equally accurate despite differing in whether participants had to
reason about randomness. But a drawback of this difference is that
the comparison of the nested condition to the matched (and non-
nested) condition does not isolate being nested as a critical feature,
as opposed to involving reasoning about randomness. Experiment
2 addressed this issue by extending Experiment 1 in two ways.

The first was that the nested judgment was compared to a
judgment that was both non-nested and required reasoning about a
random process. This random non-nested condition required dis-
criminating a random coin (P(heads) = 0.5) from a biased coin
that produced heads 80% of the time. Although this condition
also requires detecting a random process, the nested model
predicts a more informative distribution of evidence and higher
accuracy since the hypothesis of randomness is not nested
within the alternative hypothesis. The matched condition was
similarly adapted to provide a more direct comparison to the
nested condition by using the random non-nested judgment
task, but statistically matching the evidence to that in the nested
condition, which we now label the random nested condition.

The second extension was that we included two conditions that
allowed us to independently manipulate whether participants made
judgments about random (vs. only systematic) processes, and
whether the judgments were nested (vs. non-nested). The system-
atic non-nested condition did not require reasoning about a random
process, but was chosen to be statistically similar to the random
non-nested condition. It required discrimination of a process with
P(heads) = 0.4 from one with P(heads) = 0.7. The systematic
nested condition was statistically similar to the random nested
condition. It required evaluating whether a sequence was generated
by a systematically biased coin with P(heads) = 0.4 or a biased
coin with P(heads) between 0 and 1.

The result of these two extensions is a 2 (judgment: requires vs.
does not require consideration of a random process) X 2 (statistical
structure: nested vs. non-nested) design. Our nested hypothesis
account predicts a main effect of statistical structure—where ac-
curacy is lower for nested than non-nested hypotheses—but no
effect of whether the judgment involves consideration of a random
process. Alternatively, if the involvement of random processes is
what makes a task hard, accuracy should be lower whenever
people have to use their concept of randomness or apply a heuristic
in evaluating a random process. Finally, if the statistical structure
of the task is irrelevant, we should see no difference between the
nested and non-nested judgments.
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Two further changes were made to complement Experiment 1.
To more directly target intuitions about randomness, participants
in the random conditions were instructed to judge whether a
sequence reflected a random coin. Experiment 1 framed the task as
identifying whether the coin had a 50% probability of heads, which
was logically equivalent but may not have directly tapped intu-
itions about randomness. Also, Experiment 1 selected sequences
with a broad range of LLRs and so had to use the ideal observer
model to assess accuracy. Experiment 2 chose the sequences to
reflect the distribution associated with each of the generating
processes, keeping track of which sequences were generated from
each process so that this information could be used in scoring
responses. Using both of these methods for selecting sequences
and scoring accuracy ensures that our findings are not an artifact of
any particular method.

Method

Participants. Participants were 90 undergraduate students
who participated for course credit and 110 members of the general
public recruited through Amazon Mechanical Turk (http://www
.mturk.com) who received a small amount of financial compensa-
tion. Participants were randomly allocated to condition, resulting
in 40 participants in each of five conditions.

Materials. The systematic non-nested (P(heads) = 0.4 vs.
0.7), random non-nested (P(heads) = 0.5 vs. 0.8), systematic
nested (P(heads) = 0.4 vs. [0, 1]), and random nested (P(heads) =
0.5 vs. [0, 1]) conditions each presented 50 sequences of 40 coin
flips, 25 from each process. Sequences were selected so that their
frequencies reflected their probability under the corresponding
process. For example, if P(heads) = 0.5, the probability of a
sequence with 20 heads is 0.125, and so there were three sequences
with 20 heads (0.125 X 25 = 3.125). For the matched condition,
the 50 sequences were selected so that the LLRs with respect to the
random non-nested judgment (P(heads) of 0.5 vs. 0.8) were as
similar as possible to the LLRs in the random nested condition.

Procedure. Participants were informed that they would see
sequences of heads and tails that were generated by different
processes and that they would judge what the generating process
was. For each condition, they were informed what the relevant pro-
cesses were and told that half of the coins came from each process.
For example, in the random nested condition, they were told that half
of the sequences came from a coin that is random—has 50% prob-
ability of heads—and half from a coin that has an 80% probability of
heads. Each trial displayed the sequence onscreen, for example,
“HHTHTHTHTHHHHTTHHHHTTHTTTTHHHTTTTHHHTHHT.”
The order of the flips in a sequence was randomized on each
presentation. Responses were made on the keyboard. To familiar-
ize participants with the task, they had a practice phase of making
judgments about 16 sequences of just five flips. The actual exper-
iment required judgments for 50 sequences of 20 flips.

Results and Discussion

Accuracy was calculated in two ways. First, as in Experiment 1,
an inference was scored as correct if the participant chose the
process favored by the evidence a sequence provided (its LLR).
Second, an inference was scored as correct if it corresponded to the
process whose distribution was used to generate the sequence.
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Both of these measures gave the same pattern of results, and to be
consistent throughout the article, we report the first. Figure 5
shows accuracy for all five conditions: systematic non-nested,
random non-nested, systematic nested, random nested, and
matched. Figure 6 shows the proportion of people who chose #, for
each of the 50 sequences, along with the model predictions—the
posterior probability of 4, for each of those sequences.

Comparison of random non-nested, random nested, and
matched judgments. Although both conditions involved a judg-
ment about a random process, accuracy was significantly lower in
the random nested condition than the random non-nested condi-
tion, #(78) = —4.67, p < .001, d = 1.04. This reflects the
particular challenge of discriminating nested hypotheses. To test
whether this was due to weaker evidence in the random nested
condition, the matched condition judged whether a sequence was
from a coin with P(heads) = 0.5 or 0.8, but only for sequences
with LLRs matched to those in the random nested condition.
Accuracy in the matched condition was also significantly lower
than the random non-nested condition, #78) = —4.61, p < .001,
d = 1.03, but did not differ significantly from the random nested
condition, #78) = 0.09, p = .93, d = 0.02. This replicates the
finding from Experiment 1 that a weaker distribution of evidence
was responsible for errors in randomness judgment, which is
underscored by the better accuracy in reasoning about a random
process when it was not nested.

Judgment as a function of whether a process is random
and/or nested. Accuracy in the systematic non-nested, random
non-nested, systematic nested, and random nested conditions was
analyzed in a 2 (random vs. systematic) X 2 (nested vs. non-
nested) analysis of variance (ANOVA). Judgments that involved
nested hypotheses were significantly less accurate than judgments
about non-nested hypotheses, F(1, 195) = 65.22, p < .001. How-
ever, there was no effect of whether a judgment involved reasoning
about a random or systematic process, F(1, 195) < 1, p = 94.
These results support our nested hypothesis account of errors in
randomness judgment, with whether hypotheses were nested hav-
ing a bigger effect than whether people had to reason about a
random process.

The interaction between the two factors in the ANOVA was not
significant, F(1, 195) < 3.56, p = .06. Accuracy in the systematic
non-nested condition did not differ significantly from accuracy in
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Figure 5. Judgment accuracy as a function of task and evidence in

Experiment 2. Error bars represent one standard error.
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Figure 6. Results of Experiment 2, showing the proportion of people
reporting that a sequence was generated by /; and posterior probability of
h, under the model. &, represented a systematically biased process for the
nested conditions and a bias to heads for the symmetric and matched
conditions. Sequences are ordered by increasing evidence for ;. LLR =
log likelihood ratio.

the random non-nested condition, #(78) = —0.28, p = .78, d =
—0.06. Accuracy in the systematic nested condition did not differ
significantly from the random non-nested condition, #(78) = 1.79,
p = .08, d = 0.4, and if anything the trend was for it to be lower.

The proportion of people reporting that a particular process
generated a sequence was closely predicted by the posterior prob-
ability of that process under the model. The correlations for each
condition were systematic non-nested, r(48) = .96; systematic
nested, r(48) = .84; random non-nested, r(48) = .95; random
nested, (48) = .84; and matched, (48) = .86. Reaction time data
were not analyzed because many participants conducted the ex-
periment online, preventing accurate measurement of reaction
times for all participants. Across a range of tasks, the ideal ob-
server analysis provided a compelling account of people’s judg-
ments, in terms of the evidence available in evaluating nested,
random, and systematic processes.

Experiment 3A: Evaluating Randomness Versus
Sequential Dependence

Experiments 1 and 2 provided support for our nested hypothesis
account, showing that people’s errors in detecting randomness are
at least partially due to the statistical structure of the task. Exper-
iment 3 was designed to test the predictions of our account in a
different kind of randomness judgment. The task was judging
whether successive coin flips were random in being independent of
each other or exhibited systematic sequential dependency, with the
probability of repetition (and alternation) being other than 50%.
The conceptions of randomness and reasoning strategies people
use in this task may differ from Experiments 1 and 2, but the task
still shares the key statistical property of evaluating nested hypoth-
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eses. Extending our mathematical analysis to this task also pro-
vides an opportunity to show how it can be used to integrate
statistical inference with cognitive biases, as there is ample evi-
dence that people have misleading intuitions about sequential
dependency. Specifically, people demonstrate an alternation bias,
believing that sequences with many alternations (e.g., alternating
from heads to tails) are more random than sequences with many
repetitions (e.g., repeating heads or tails), and that repetitions are
more likely to reflect systematic processes (Bar-Hillel & Wage-
naar, 1993; Falk & Konold, 1997).

People’s alternation bias is illustrated in Figure 7 (data from
Falk & Konold, 1997, Experiment 3). Apparent randomness rat-
ings are plotted as a function of how likely the sequence is to
alternate. The alternation bias is obvious when human judgments
are compared to the model that we used in the mathematical
analysis presented earlier in the article. From this point on, we
label this the uniform model because it assumes that all systematic
processes are equally likely. The model ratings of randomness
shown in Figure 7 were computed by evaluating the LLR a
sequence provides and scaling it to the same range as human
judgments. Although the uniform model captures the general
trend, it fails to capture human ratings of alternating sequences as
more random than repeating sequences.

To test whether the statistical structure of the task makes a
contribution to errors above and beyond documented cognitive
biases, we defined a new biased model that incorporates an alter-
nation bias. This model shows how an ideal observer may entertain
misleading hypotheses that do not match the structure of the world,
but still be sensitive to the evidence that observations provide for
those hypotheses. The biased model replaced the assumption that
all systematic processes were equally likely with an assumption
that systematic processes were more likely to be repeating than to
be alternating. As we consider in the General Discussion, different
approaches could be taken, but our goal was simply to capture the
bias accurately enough to test the key prediction about nested
hypotheses. The assumption that systematic processes are more
likely to be repeating than alternating was captured by defining a
beta distribution rather than a uniform distribution over P(repeti-
tion). The mathematical details of how the parameters of this
distribution were selected are presented in Appendices A and C,
but in Experiment 3A, they were chosen to capture the magnitude
of the alternation bias in data from Falk and Konold’s (1997)
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Figure 7. Human and model randomness ratings for binary sequences
presented by Falk and Konold (1997). The uniform model assumes that
repetitions and alternations are judged equally systematic, whereas the
biased model assumes that repetitions are more systematic than alterna-
tions.
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Experiment 3. In Experiment 3B, the parameters were then chosen
to capture the alternation bias demonstrated by participants in
Experiment 3A, so that our findings would not be an artifact of a
specific parameter choice. Figure 7 shows that the biased model
better captures people’s judgments about the relative randomness
of repetitions and alternations.

Even when the alternation bias is incorporated into the model,
the random process is still nested in a range of systematic pro-
cesses. Replicating our ideal observer analysis with the biased
instead of uniform model produces the same results: Randomly
generated data have weaker LLRs and should lead to more errors,
in addition to those caused by the alternation bias. As in previous
experiments, nested, matched, and non-nested conditions were
compared. However, in contrast to previous experiments, partici-
pants in the nested condition were simply informed that the coin
came from a “random” or “non-random” process and were given
no information about these processes. Because the judgment relies
only on people’s intuitions about what “random” and ‘“non-
random” means, this provided a strong test of whether our nested
hypothesis account truly characterizes the challenges in human
reasoning about randomness.

Method

Participants. Participants were 120 undergraduate students
(40 in each of three conditions) who received course credit.

Materials. Sequences were selected using a similar method to
Experiment 1. However, the number of flips was reduced to 20,
and all sequences used exactly 10 heads and 10 tails, consistent
with previous research (Falk & Konold, 1997).

For nested sequences, 50,000 sequences were generated by
simulating a random coin with independent flips (P(repetition) =
0.5). Another 50,000 sequences were generated by simulating a
coin that was biased to repetition or alternation (P(repetition)
ranged uniformly from O to 1).* The LLR of each sequence was
computed under the biased model, all sequences were pooled and
ordered by increasing LLR, and 50 sequences were selected by
choosing one at each 2nd percentile.

For non-nested sequences, 50,000 sequences were generated by
simulating a coin biased to repeat (P(repetition) ranged uniformly
from 0.5 to 1) and 50,000 by simulating a coin biased to alternate
(P(repetition) ranged uniformly from O to 0.5). The LLR of each
sequence was computed (relative to the non-nested hypotheses of
a bias to repetition or alternation), the sequences were pooled and
ordered, and 50 sequences that spanned the range of LLRs were
selected.

For matched sequences, the LLRs in the nested condition were
used to select two sets of 25 matched sequences. In matching the
LLRs of the first set of 25 matched sequences, positive LLRs
provided evidence for repetition, while in the second set, positive
LLRs provided evidence for alternation. The distribution of the
LLRs for the nested sequences was not symmetric around zero

8 Although the model assumes the representation of a systematic process
is biased toward repetitions, the generation of systematic sequences did not
reflect this bias to ensure that the sequences would be representative of
actual random and systematic processes. However, the biased model was
used to compute the LLR and determine how much evidence a sequence
provided for a random process.
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(ranging from —0.8 to +4.0), so this control ensured that the
matched sequences provided the same overall amount of evidence
for repetition and alternation, guarding against possible asymme-
tries in judgment. The 25 LLRs used in the matched condition still
spanned the full range of evidence: They were obtained by aver-
aging every two successive LLRs in the nested condition (i.e., the
LLRs of the Ist and 2nd sequences, 3rd and 4th, and so on up to
the 49th and 50th).

Procedure. Participants were informed that they would see
sequences of heads and tails that were generated by different
computer simulated processes, and that their job would be to infer
what process was responsible for generating each sequence. In the
non-nested and matched conditions, participants were instructed
that about half the sequences were generated by computer simu-
lations of a coin that tends to repeat its flips (go from heads to
heads or tails to tails) and the other half by simulations of a coin
that tends to change its flips (go from heads to tails or tails to
heads). In the nested condition, participants were simply told that
half the sequences were generated by computer simulations of a
random process and that half were generated by simulations of a
non-random process. Participants received a practice phase where
they made judgments about 16 sequences of just five flips, to
familiarize them with the task. They then provided judgments for
50 sequences of 20 flips. Each trial displayed the sequence of
heads and tails onscreen.

Results and Discussion

Accuracy for each condition is shown in Figure 8. As in Exper-
iment 1, accuracy was significantly higher in the non-nested con-
dition than the nested and matched conditions, #78) = 6.61, p <
0001, d = 1.48; #(78) = 7.48, p < .0001, d = 1.67. However,
there was no significant difference between the matched and
nested conditions, #(78) = —1.35, p = .18, d = —0.3. Once the
evidence that the sequence provides was equated to that of se-
quences in the nested condition, the difficulty of judging whether
a sequence was biased to alternate and repeat was not significantly
different from judging whether it was random or not. People face
a double challenge in randomness judgments. Not only do mis-
conceptions like the alternation bias reduce accuracy, but the
inherent statistical limitations on the evidence available for a
nested random process also generate errors.

Figure 9 shows the posterior probability of /2, under the model
and the proportion of participants choosing /,, across all three
conditions. The proportion of participants choosing the hypothesis
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Figure 8. Judgment accuracy as a function of task and evidence in

Experiment 3A. Error bars represent one standard error.

WILLIAMS AND GRIFFITHS

Non-Nested Nested Matched
1 1 1
>
=
3
a 05 05 05
[=]
=
o
0 0 0
1 50 1 50 : & 50
Nested Matched
1 1
People
— Model
0.5 05
0 0
3 50 1 50

Sequence Number (ordered by increasing LLR)

Figure 9. Experiments 3A (top three panels) and 3B (bottom two panels):
Proportion of people reporting that a sequence was generated by h,, and
posterior probability of /#, under the model. &, represented a sequentially
dependent process biased to repeat or alternate for the nested condition, and
a bias to repeat flips for the symmetric and matched conditions. Sequences
are ordered by increasing evidence for /,. LLR = log likelihood ratio.

closely tracked the degree of an optimal reasoner’s belief in that
hypothesis. The correlations between the model predictions and
human judgments were #(48) = .96 (non-nested), .87 (nested), and
.79 (matched). People’s uncertainty and errors closely tracked the
rational degree of belief a reasoner should have based on the
evidence a sequence provided. This is particularly noteworthy
because people were not told the nature of the random and sys-
tematic processes and had to rely on their intuitions about “ran-
dom” and ‘“non-random” processes. There were no significant
differences across conditions in the time to make judgments about
sequences (all ps > 0.64; all ds < 0.10). The correlations between
the absolute value of the LLR and reaction times were r(48) =
—.52 (non-nested), —.68 (nested), and —.23 (matched). Reaction
time may have been less informative because the range of LLRs
was smaller than previous experiments.

Experiment 3B: Gaining a Closer Match to
Human Biases

Experiment 3A assumed that the alternation bias was similar to
that in Falk and Konold’s (1997) experiment, but these populations
and tasks may differ in significant ways. An informative compar-
ison relies on the model representing similar hypotheses to people
in a particular task. Our goal in Experiment 3B was to ensure that
the results were not dependent on the particular model and param-
eters used to capture the alternation bias in Experiment 3A. Just as
Experiment 3A constructed a biased model to account for the
alternation bias in Falk and Konold’s data, Experiment 3B repli-
cated Experiment 3A using a model constructed to account for the
alternation bias shown by participants in Experiment 3A by infer-
ring the parameters that capture the randomness judgments made
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by these participants. The same procedure was used as in Exper-
iment 3A, and the details are reported in Appendix C. While the
new parameters differed from those in Experiment 3A, the size of
the alternation bias was similar to that found by Falk and Konold.
Changing the model parameters did not influence the non-nested
condition, so only the nested and matched conditions were repli-
cated.

Method

Participants. Participants were 80 undergraduate students (40
in each condition) who received course credit.

Materials. The procedure used to generate sequences was
identical to that of Experiment 2, except that new parameters were
used for the biased model.

Procedure. The procedure was identical to Experiment 2.

Results and Discussion

The results replicated the findings in Experiment 3A. Figure 10
shows accuracy across conditions, with the non-nested results
taken from Experiment 3A. Accuracy in the non-nested condition
was significantly better than in either the nested condition, #(78) =
6.56, p < .0001, d = 1.47, or the matched condition, #(78) = 4.74,
p < .0001, d = 1.06, although there was no difference in accuracy
between the matched and nested conditions, #(78) = 1.13, p = .26,
d = 0.25. Figure 9 shows the posterior probability of /., under the
model and the proportion of people choosing /,. The correlations
between human judgments and model predictions were r(48) = .83
in the nested condition and .85 in the matched condition. Reaction
times did not differ between the non-nested and nested conditions,
#(78) = 0.03, p = .98, d = 0.00, but judgments took significantly
longer in the matched condition than either the non-nested condi-
tion, #(78) = —3.45, p < .001, d = —0.77, or nested condition,
1(78) = —3.51, p < .001, d = —0.79. The correlation between
reaction time and LLR was r(48) = —.52 (non-nested), —.73
(nested), and —.16 (matched). Overall, Experiment 3B replicated
the key findings of Experiment 3A, showing that its findings were
not restricted to the particular parameters used, and that the anal-
ysis provides a reasonable characterization of how people repre-
sented the processes.

General Discussion

We have presented a nested hypothesis account of errors in
randomness detection, and reported three experiments providing
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Figure 10. Judgment accuracy as a function of task and evidence in

Experiment 3B. Error bars represent one standard error.
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evidence for this model. Experiments 1 and 2 examined people’s
accuracy in evaluating whether sequences were generated by a
coin that was random (heads/tails equally likely) versus a coin
systematically biased toward heads/tails. Accuracy of judgments
was compared across nested, non-nested, and matched conditions.
The nested condition required discriminating a random process
from a systematically biased process (of which randomness is a
special case, resulting in nested hypotheses). The non-nested con-
dition required discriminating two non-nested hypotheses. While
more errors were made in the nested than the non-nested condi-
tions, our model suggested that this was due to the stronger
evidence provided by sequences in the non-nested condition. We
obtained empirical evidence for this conclusion from the matched
condition, in which the judgment task involved systematic pro-
cesses (as in the non-nested condition), but the sequences pre-
sented corresponded to a distribution of evidence that was matched
to the nested condition. Errors in the matched condition did not
differ significantly from the nested condition but were far greater
than the non-nested condition. Experiment 3 generalized the key
findings to judgments about whether a coin produced outcomes
that were independent or biased toward alternation or repetition.
Taken together, these results suggest that the statistical structure of
the task plays a significant role in people’s poor performance at
detecting randomness.

In the remainder of the article, we revisit some of the assump-
tions behind our analysis and discuss its limitations, consider its
connections to previous work, discuss the relationship between
rationality and biases in judgment, and consider future research
and practical implications suggested by our findings.

Assumptions, Limitations, and Extensions of the
Nested Hypothesis Account

A quick reading might suggest that our nested hypothesis ac-
count makes an obvious point about randomness judgment. While
it may be intuitive that identifying a nested hypothesis is difficult,
the proposal that this is a key feature of random processes is a
novel one. Despite awareness of the mathematical difficulty in
evaluating randomness (e.g., Lopes, 1982), this article is novel in
proposing a specific formal model, deriving and quantifying its
implications for judgment using a measure of evidence like the
LLR, and empirically testing whether the model explains people’s
errors.

Another worry could be that the comparison to non-nested
hypotheses was reliant on artificially constructing easier judg-
ments (e.g., discriminating coins with P(heads) of 0.3 or 0.7).
However, it should be noted that our ideal observer analysis shows
that the key result—an asymmetric, weak distribution of evi-
dence—does not depend on the specific parameters so much as
whether the hypotheses are nested or not. We explore a range of
parameter choices by examining judgment about non-nested hy-
potheses that are represented by a single parameter (Experiment 1)
or an entire interval (Experiment 3), symmetric (Experiment 1), or
skewed toward alternation (Experiment 3). Moreover, Experiment
2 replicated Experiments 1 and 3 even when comparing nested and
non-nested hypotheses that both involved random processes, and
found that errors were primarily a consequence of whether a
process was nested rather than random, even when the statistical
features of judgments about random and systematic processes
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were closely matched (e.g., judging whether P(heads) = 0.5 or
P(heads) = 0.4 vs. P(heads) ranging between 0 and 1).

The modeling assumption that people represent systematic bias
in the occurrence of events as uniformly distributed (evaluating
fair vs. biased coins, Experiments 1 and 2) and systematic depen-
dencies as more likely to repeat than alternative (Experiment 3)
matched the current experimental results, but these and other
assumptions of the current modeling framework can certainly be
improved. For example, future modeling and empirical work could
more precisely characterize the nature of people’s beliefs about the
distribution of systematic processes across different contexts.

Relationship to Previous Work

The rational analysis of randomness detection that we have
presented uses tools and ideas that have appeared in previous
research. Lopes (1982) advocated using Bayesian inference and
signal detection theory as part of a formal treatment of subjective
randomness. Lopes and Oden (1987) took this idea one step
further, calculating the predictions of Bayesian inference for hy-
potheses corresponding to random and systematic processes, and
comparing these predictions to human performance. Griffiths and
Tenenbaum (2001) also presented a Bayesian treatment of subjec-
tive randomness, using the log likelihood ratio to define the ran-
domness of a stimulus.

Building on this prior work, our analysis also makes a signifi-
cant novel contribution. Lopes and Oden (1987) only compared
hypotheses that identified specific parameter values for random
and systematic processes, focusing on systematic processes with a
P(repetition) of 0.2 or 0.8. The models they presented thus did not
actually have nested hypotheses, and they were consequently un-
able to explore the role that this factor plays in randomness
judgments. Interestingly, one of the factors that they manipulated
in their experiment was whether participants were informed of the
parameter values of the systematic process that they were sup-
posed to be contrasting against randomness. Participants who were
uninformed were faced with the task of reasoning about nested
hypotheses, and performed worse than participants who were
informed about the nature of the systematic process in exactly the
way that our account would predict.

Griffiths and Tenenbaum (2001) defined Bayesian models of
subjective randomness that did have nested hypotheses, but fo-
cused on modeling performance in tasks related to subjective
randomness in general rather than contrasting this performance
with other related tasks. Our focus in this article has been on
explaining why we should expect people to perform poorly in
randomness detection compared with other judgment tasks, lead-
ing us to emphasize the distinction between nested and non-nested
hypotheses and to explore its consequences in detail.

The Roles of Rationality and Biases in
Randomness Judgments

In using ideal observer models to understand how people eval-
uate randomness, we are not making a strong claim that people are
rational, or arguing that biases are not involved in randomness
perception. Rather, we use these rational models as the basis for
the claim that there may be factors that combine with biases to
make the identification of random processes especially challeng-
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ing. The biased model used in Experiments 3A and 3B demon-
strated that an ideal observer analysis may provide a valuable tool
for investigating which aspects of judgment reflect biases and
which stem from inherent statistical challenges. In this model, we
used existing results concerning the kinds of biases that people
have about randomness to inform our assumptions about what
form systematic processes might take, so that we could evaluate
what an ideal observer with these beliefs would infer and what
challenges they would face.

Future modeling work may also identify ways in which partic-
ular heuristics and biases have developed to mitigate statistical
challenges such as inherently weak evidence. If a learner benefits
greatly from discovering true systematicity and pays little cost for
misclassifying a random process as systematic, the rational con-
sequence of a cost-benefit utility analysis may be the heuristic use
of a liberal criterion that correctly classifies most systematic pro-
cesses but also misclassifies many random processes as systematic.
The human bias to “irrationally see meaning in randomness” may
be an adaptive strategy in general that overcomes statistical limi-
tations on evidence, but in isolated judgments has the surface
appearance of an irrational phenomenon.

Our formal analyses focused on the fact that the data generated
from nested hypotheses provides inherently weak evidence,
whether or not the prior probabilities of particular hypotheses
varied. This leaves open a number of interesting questions about
the effect of manipulating prior probabilities or beliefs. One pos-
sibility is that the accuracy of randomness judgments may be
especially jeopardized when people have strong and misleading
beliefs in systematicity, for example, believing a particular causal
relationship exists between an unproven medicinal supplement and
health. Even for a completely rational agent, changing strong prior
beliefs requires that the data provide strong evidence—which is
precisely what randomly generated data do not provide.

Weak Evidence, Processing Limitations, and
Improving Judgment

The statistical properties of the problem of detecting random-
ness may have implications for other aspects of people’s reasoning
about chance. Some research on illusory correlation (Jennings,
Amabile, & Ross, 1982; Redelmeier & Tversky, 1996) proposes
that people erroneously detect structure by selectively attending to
the subset of available data that provide evidence for structure and
ignoring the data that provide evidence for randomness. It may be
that processing limitations mean that people are not able to utilize
the many observations relevant to computing or inferring a corre-
lation.

If processing limitations force people to consider only a subset
of the data, a rational solution would be to utilize the diagnostic
data that provide the most evidence. In many contexts (such as
inferences about non-nested hypotheses) the same inference will
be reached more quickly and with less computation than using the
entire data set. But a randomly generated data set will contain a
large amount of weak evidence for randomness and (by chance) a
small amount of stronger evidence for structure. While considering
all observations might provide evidence for randomness, selec-
tively attending to the elements of a randomly generated data set
that provide strong evidence (which are data points providing
evidence for a systematic process, given that most data points



n or one of its allied publishers.

ghted by the American Psychological Associa

This document is copyri
This article is intended solely for the personal use of the individual user

is not to be disseminated broadly.

DETECTING RANDOMNESS

provide only weak evidence for a random process) would lead to
inferring a systematic process. This problem would be further
compounded if people had any prior reason to believe a systematic
process was present. Future work can manipulate the distribution
of evidence across samples to investigate this possibility.

The proposal that evaluating randomness is hard because the
evidence available is inherently limited suggests a different
approach to improving judgment, taking a different tack from
attempts to revise misconceptions or biases. One basic means of
improving inferences about the presence or absence of random-
ness could be to present large amounts of data or to organize it
such that it can be readily processed. This should make it easier
for people to accumulate many weak pieces of evidence for a
random process. Calibrating prior beliefs toward expecting
random processes and increasing skepticism about the presence
of systematic processes may also be a useful prescription.
Restricting the breadth of the systematic processes under con-
sideration could also aid judgment: Stronger evidence for ran-
dom processes can be obtained if the alternative hypotheses
specify only very strongly systematic processes (e.g., determin-
istic causal relationships; see Lu, Yuille, Liljeholm, Cheng, &
Holyoak, 2008; Schulz & Sommerville, 2006) or processes that
display just a particular form of systematicity (e.g., a bias
toward one value of a binary outcome, but not the other, as has
been partially explored by Lopes & Oden, 1987). These are all
novel and promising directions for future research.

Conclusion

People make numerous errors in evaluating whether observa-
tions reflect random processes or underlying systematicity. Many
of these errors are due to misconceptions and biases in reasoning
about randomness, but a further challenge is the mathematical
difficulty of detecting a random process. We presented a nested
hypothesis account that characterizes the inherent statistical chal-
lenge in detecting randomness. Ideal observer analyses that were
simulated using computational models show how a random pro-
cess is a special case of a systematic process—one with no
systematicity. As a consequence, the hypothesis of randomness is
nested within the hypothesis of systematicity. Our models demon-
strated how this means that even data that are truly randomly
generated are still likely to come from a systematic process. This
imposes statistical limitations on the evidence the data can provide
for a random process, and impairs judgment. Three experiments
provided evidence for our account’s predictions about human
judgments, showing that the weak evidence available in evaluating
nested hypotheses plays a substantial role in producing errors. In
fact, in our experiments, the strength of this evidence had a greater
effect on judgment accuracy than whether or not people had to
reason about a random process. By showing how some challenges
humans face in detecting randomness are shared with ideal statis-
tical reasoners, we provide a more comprehensive account of why
people can be so bad at detecting randomness.
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Appendix A

Models Used in Comparing Nested and Non-Nested Processes

Uniform Model of Randomness Judgment

The number of outcomes (e.g., heads or repetitions) in a given
sequence follows a binomial distribution that depends on n, the
number of potential outcomes, and the probability of an outcome,
p. The nested hypotheses for a typical randomness judgment are
hy:p, = 0.5 and h,: p, ~ Uniform(0, 1). If k is the number of times
the outcome occurs in a sequence, the log likelihood ratio is

P(d|hy) B (Beta(k+ l, n—k+ 1))

l =
p(dn) " F TG

where the beta function is Beta(x,y) = fé £ 1(1 — ¥ ldr (Boas,
1983).

P(d | h,) is simply the likelihood of the sequence d with k heads
under a binomial distribution, being (p,)* (1 — p,)"~*. P(d|h,) uses
the likelihood under a binomial, but must integrate this likelihood
over the uniform distribution on p,, and so is derived as follows:

1 x
Pih)y = [ ("0 = poydps
=Betalk+ 1,n—k+1)

by the definition of the beta function.

These derivations were also used to model the judgment in
Experiment 1 about whether a coin had P(heads) = 0.4 as opposed
to some other bias.

Non-Nested Judgments About Point Processes

Representing P(outcome) as p, judgments about the direction of
systematic bias (heads vs. tails, repetition vs. alternation) can

represented as the non-nested hypotheses /,: p;, = 0.3 and h,: p, =
0.7. The LLR is

1OgP(d|h1) _ log(PZ)k(l —p)""
P(d]ho) = (p) (1 =Py

This derivation was also used to model judgments in Experiment
2 about whether P(heads) was 0.5 versus 0.8, or 0.4 versus 0.7.

Non-Nested Judgments About Processes
Over an Interval

Judgments about the direction of systematic bias can also be
represented as the non-nested hypotheses /,: p ~ Uniform(0, 0.5)

and h,: p ~ Uniform(0.5, 1). The LLR can be derived similarly to
that for the uniform distribution from 0 to 1, and is

P(d|hy)

¢ p(alh)

Beta(k+ 1, n—k+ 1) — Betays(k+ 1, n—k+ 1)
Beta()_s(k +1,n—k+ 1)

=log

s

where Beta, 5 is defined as

Betags(x.y) = [} #7(1 = i)

and is the incomplete beta function evaluated at 0.5.

(Appendices continue)
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DETECTING RANDOMNESS

Biased Model of Randomness Judgment

Let p represent P(repetition). The alternation bias was captured
through changing model assumptions about the distribution of
systematic processes. The uniform distribution over p in the uni-
form model was replaced by the more general beta distribution.
The beta distribution is defined by two parameters, o and 3, with
P(p) = (1 — p)*~ ' pP~!'. These parameters have a natural inter-
pretation as representing expectations based on prior experience: o
can be interpreted as the number of prior observations of alterna-
tions and (3 as the number of prior observations of repetitions. For
example, when o and 3 are both 1, p ~ Beta(l, 1) is identical to
the uniform distribution assumed in the uniform model, reflecting
maximal uncertainty about which processes are likely.

When (3 is greater than o, the model is biased to expect that
systematic processes are more likely to be repetitions than alter-
nations (p > .5 are more likely), while the reverse is true when o
is greater than 3. The alternation bias can therefore be modeled by
a beta distribution with (3 larger than a: Repetitions will be more
diagnostic of systematic processes and alternations thus more
diagnostic of a random process. Appendix C explains how these
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parameters were fit to the alternation bias in human data in order
to carry out Experiments 3A and 3B.

The nested hypotheses were represented as h,: p = .5 and h,: p
~ Beta(a, B). The LLR is

Beta(a+k, B +n — k)
. P(d|hy) b Beta(a, B)
Spd|ny) ¢ (05"

Using the beta probability distribution over p, the numerator was
derived by

1

(p)e— 101 pf‘)dp

1
P(d|hy) = [} Gyt = por k)( Beaa )

_ fl (p)u+k—l(] _p)[3+l1—k—ldp
0

Beta(a, B)
_ Beta(a + kB +n—k)
B Beta(a,B) ’

which is a generalization of the derivation for a uniform prior.

Appendix B

Construction of Receiver Operating Characteristic (ROC) Curves

The exact procedure for constructing the ROC curves was as
follows. Examining the distribution of log likelihood ratios (LLRs)
in Figure Ic, a decision-maker needs to use the LLR of a data set
to arrive at a decision about whether the data were generated by a
random or systematic process. For example, one approach would
be to use zero as a threshold and judge any data set with a positive
LLR as being systematically generated and any data set with a
negative LLR as being randomly generated. This strategy is equiv-
alent to applying Bayes’s rule, as in Equation 1, and choosing the
hypothesis with highest posterior probability, assuming the prior
probabilities of the two processes are equal. This strategy would
lead the decision-maker to correctly classify those systemati-

cally generated data sets with positive LLRs (termed a hit) but
incorrectly classify those randomly generated data sets that
happen to have positive LLRs (termed a false alarm). Compar-
ing the proportion of correct identifications of structure (the hit
rate) to the proportion of inaccurate inferences of structure from
randomly generated data (the false alarm rate) indicates how
good discrimination of random and systematic processes is.
Each point on the ROC curve is a plot of the hit rate against the
false alarm rate for one threshold on the LLR (in this case the
thresholds range from —20 to +20), giving a broad picture of
the ability to make accurate judgments about which process
underlies observed data.

(Appendices continue)
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WILLIAMS AND GRIFFITHS

Appendix C

Modeling the Alternation Bias

Model of the Alternation Bias in Experiment 3A

Data from Experiment 2 of Falk and Konold (1997) were used
to fit the o and 3 parameters to model the magnitude of the human
alternation bias. Figure 7 shows participants’ ratings of apparent
randomness (AR) for sequences with varying numbers of alterna-
tions, along with predictions of the uniform and biased model.
Model predictions on Figure 7 are log likelihood ratios (LLRs) that
were scaled to the same range as human ratings. The uniform
model does not incorporate a bias to judge repetitions as system-
atic (h,: p ~ Uniform(0, 1), where p denotes P(repetition)) and so
produces LLRs that show a similar pattern to that of Falk and
Konold’s data, but does not capture the human bias to judge
alternations as more random (apparent in Figure 7).

The selection of a and 3 to model the alternation bias could be
done in two ways: selecting values that minimize the average
squared difference between scaled LLRs and AR ratings, or se-
lecting values that maximized the correlation between scaled LLRs
and AR ratings. Both approaches produced equivalent results: The
same range of a and P values minimized squared error and
maximized correlation. In this range of values, 3 was approxi-
mately one and a half times larger than a. We chose a = 10 and
B = 15 as intermediate values in this range and used it in the
model for Experiments 3A and 3B. Figure 7 shows that the scaled
LLRs for this biased model show the same alternation bias as the

AR ratings. In summary, the biased model of people’s biased
inferences about randomness versus dependence (as in Experiment
2) represented the nested hypotheses as h,: p = .5 and h;: p ~
Beta(10, 15).

Model of the Alternation Bias in Experiment 3B

The parameters « and [3 were selected to accurately reflect
participants’ alternation bias in the specific task used in Experi-
ment 3A. The data from the nested condition in Experiment 2 were
used to choose values of a and 3 that aligned the model’s posterior
probability of a sequence being systematic with the proportion of
people who identified the sequence as non-random. For each
sequence, the number of people who judged it as non-random was
assumed to follow a binomial distribution, where the probability of
a “success” was the model’s posterior probability that the sequence
was non-random. The values of o and 3 identified were those that
set the model’s posterior probability to maximize the likelihood of
people’s actual responses. The values obtained were o = 3.1 and
B =428.
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