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Abstract

We present novel algorithms for efficient hierarchical collision detection and propose a hardware
architecture for a single-chip accelerator. We use a hierarchy of bounding volumes defined by k-DOPs
for maximum performance. A new hierarchy traversal algorithm and an optimized triangle-triangle
intersection test reduce bandwidth and computation costs. The resulting hardware architecture can
process two object hierarchies and identify intersecting triangles autonomously at high speed. Real-
time collision detection of complex objects at rates required by force-feedback and physically-based
simulations can be achieved.
Keywords: graphics hardware, computer animation, virtual reality, hierarchical algorithms, triangle
intersection.

1 Introduction
Collision detection is an elementary task in ar-
eas like animation systems, virtual reality, games,
physically-based simulation, automatic path find-
ing, virtual assembly simulation, and medical train-
ing and planning systems.

In many of these systems, collision avoidance
or collision handling is the ultimate goal. Since
algorithms for computing the exact time of colli-
sion are still too slow or too restrictive, most ap-
proaches are “reactive” in that they first try to
place objects at a new position, then check for col-
lision, and then try other positions, based on phys-
ical laws or constraints [21, 14]. This poses very
high demands on collision detection performance,
because they must do many collision checks per
simulation cycle. Another very demanding ap-
plication is rendering force-feedback, where colli-
sions of an (invisible) surface contact object must
be checked at about 1000Hz in order to achieve
stable force computations.

It has been reported by many researchers that
collision detection is still the major time-consuming
step in many simulation or visualization applica-
tions [14]. Since collision detection is such a fun-
damental task, it would be highly desirable to
have hardware acceleration available just like 3D
graphics accelerators. Using specialized hardware,
general-purpose processors can be freed from com-
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puting collisions. This will enable even low-end
single-processor PCs and game consoles to do real-
time collision detection in very complex scenarios
at an affordable price.

In this paper, we propose an architecture which
implements hierarchical collision detection for rigid
objects in hardware. We have concentrated on hi-
erarchical algorithms, because they have offered
the best performance for so-called “polygon soups”.
Such a collision detection hardware will comprise
the last stage of a collision detection pipeline [20].
This is where the bulk of the work is done in typi-
cal scenarios involving a modest number of objects
with large polygon counts. We assume the hier-
archies have already been computed. This is not
a time-critical task, and can be done in software
when the application loads objects at startup time.

The next section describes related work, while
Section 3 describes novel algorithms that are suit-
able for hardware implementation. Section 4 de-
scribes the hardware design in detail. Finally, Sec-
tion 5 presents some benchmarks and considera-
tions about the performance of the envisioned ar-
chitecture.

2 Related Work
Hierarchical collsion detection. Considerable work

has been done on hierarchical collision detection
in software [6, 17, 5, 4, 19]. Some of the bound-
ing volumes (BVs) utilized are spheres, axis-aligned
bounding boxes (AABB), oriented bounding boxes



(OBB), and discretely oriented polytopes (DOP).
However, all traversal schemes proposed so far are
inefficient in that they possibly visit the same nodes
many times.

Collision detection in graphics hardware. There
is virtually no literature about the design of hard-
ware architectures dedicated to collision detection.
All research so far has tried to utilize existing
graphics hardware. The approach taken by [16,
13, 2] is to render the pair of objects with an or-
thogonal projection and counting certain cases of
overlapping intervals in the stencil buffer. This ap-
proach lends itself well to convex objects and a
very special class of non-convex objects. The more
general case of arbitrary concave objects cannot be
solved efficiently with todays rendering hardware.
Furthermore, the most general case of “polygon
soups” (which comprises non-closed objects, in
particular) cannot be handled by this approach at
all.

Another approach of utilizing the graphics hard-
ware is to define a viewing volume (frustum or
box) around one of the objects (the query ob-
ject) and render the scene against that volume [10].
This is facilitated by OpenGL which can feed back
the faces actually being rendered. This approach
can be efficient for specific applications. However,
it is not an accurate collision detection, unless the
query object has the same shape as one of the two
possible viewing volumes.

All of the approaches using graphics hardware
have the disadvantage that they either compete
with the rendering module for the graphics pipe,
or an additional graphics board must be spent for
collision detection. The former slows down the
overall frame rate considerably, while the latter
would be a tremendous overkill, since most of the
resources of the hardware would not be made use
of. Furthermore, these approaches work in image
space, which reduces precision significantly.

Polygon intersection tests. A number of algo-
rithms for ray-triangle and triangle-triangle inter-
section have been presented in the literature [1,12,
7, 15, 3, 18, 11]. Most of them compute either the
barycentric coordinates or a number of 4 × 4 de-
terminants. We propose a very efficient algorithm
for checking intersection of triangles that does not
need any division. Our new algorithm not only
uses less multiplications and additions than [11]
and [1], but is also very well suited for a hardware
implementation due to a very uniform control and
data flow.

3 The Algorithm

3.1 DOP Trees
The basic operation of any hierarchical collision
detection algorithm is the overlap check of two
nodes from different objects. In this section, we
briefly recall the calculations necessary for colli-
sion detection using DOP trees. The derivation of
the following formulas can be found in [19].

DOPs are bounding volumes that are a general-
ization of axis-aligned bounding boxes. They have
been introduced into computer graphics by [8].
DOP trees are a hierarchical representation of ob-
jects [19, 9]. Each inner node stores a DOP and
pointers to its children which it encloses; leaves
store polygons (or other graphical primitives). A
DOP is described by k numbers (hence k-DOP ),
usually represented by a vector of k floats. Exten-
sive benchmarks have shown k = 24 to be optimal.

Given two objects OA and OB, and two DOPs
d, e ∈ Rk from OA and OB’s DOP trees, resp., the
overlap test proceeds in two steps: first, DOP d
from OA’s hierarchy is transformed into d ′ in the
coordinate frame of OB by

d ′ = C× d + c , (1)

where

C =




. . . c0,0 . . . c0,1 . . . c0,2 . . .
...

. . . ck−1,0 . . . ck−1,1 . . . ck−1,2 . . .




where in matrix C exactly three entries per row are
non-zero. Second, d ′ is compared componentwise
with DOP e according to

∃i ≤ k
2 : d ′i < −ek

2 +i ∨ ei < −d ′k
2 +i

⇔
d and e do not overlap

(2)

where d ′i < d
′
k
2 +i

define a slab (analogously for all

DOPs).
Matrix C and vector c depend only on the posi-

tion of the two objects relative to each other. They
are computed during the set-up by the software
API of the collision detection hardware.

Since the k × k-matrix C in Equation 1 has ex-
actly 3 coefficients per row that are not 0, we can
compute d ′ more efficiently by

d ′i = Ci



dji,0

dji,1

dji,2


+ ci (3)
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Figure 1: The simultaneous traversal of two BV hierarchies is, conceptually, equivalent to the traversal of a BV
pairs hierarchy. Here, the right DOP tree is “tumbled” with respect to the DOP orientations of the left tree’s
reference frame.

where correspondence j stores the place of those
coefficients which are not zero. So, by introducing
a k × 3 correspondence matrix j, we can reduce
the size of the transformation matrix C to k × 3.
Consequently, the number of multiplications is 3k.

3.2 Hierarchy Traversal
The general, traditional scheme for hierarchical
collision detection is a simultaneous, recursive traver-
sal of two BV hierarchies. (see Algorithm 1). How-
ever, this procedure incurs several penalties:

1. Nodes in both trees are usually visited sev-
eral times; this is a general problem of all hi-
erarchical collision detection algorithms (see
Figure 1).

2. If the nodes have to be transformed (or other
computations specific to individual nodes have
to be performed), then this will be done sev-
eral times for the same node.

The second penalty is a consequence of the first
one; it could be alleviated by storing the result
of the node transformation back into the node.
Unfortunately, this has other disadvantages: first,
the BV hierarchy occupies more memory (in the
case of DOP trees, this would increase the memory
usage by a factor 2); second, more importantly,
the algorithm would no longer be thread-safe, so
that multiple pairs of objects could no longer be
checked in parallel.

In contrast, our novel traversal scheme reduces
the number of nodes visited, transfer volume from
memory, and number of node transformations dra-
matically. Our traversal scheme only needs an ad-
ditional small stack.

The idea is to avoid simultaneous traversal of
two BV hierarchies. Instead, we traverse only one

traverse(A,B)
if A and B do not overlap then

return
end if
if A and B are leaves then

return intersection of primitives encl. by A and B
else

for all children A[i] and B[j] do
traverse(A[i],B[j])

end for
end if

Algorithm 1: The traditional traversal scheme. A[i]
and B[j] are the child nodes of A and B, resp. For
sake of clarity, the “mixed” cases (one node is a leaf,
the other is not) are omitted.

hierarchy and compare each node of that one with
a list of nodes from the other hierarchy. Let us call
nodes that need to be transformed tumbled nodes,
the other ones aligned nodes (see Figure 1). As-
sume that we are visiting a tumbled node A, and
that a list L contains all aligned nodes with which
A needs to be checked for overlap. So we check
all pairs (A, Li); whenever such a pair overlaps,
we append the two children Lij, j ∈ [1, 2], to a new
list L ′. After L has been completely processed, L ′

contains all aligned nodes that need to be checked
with A1 and A2, the two children of A. It is obvi-
ous that with this traversal we visit each tumbled
node only once, and thus we transform the DOP
stored with it exactly once.

This scheme works for all kinds of hierarchical
collision detection, not just DOP trees. Depend-
ing on how much work per node-node overlap test
can be factored out into one of the two nodes, the
benefit of our new method can be dramatic.



For example, considering Figure 1, a possible se-
quence of pairs of nodes could be: A1 B2 D4 E4
D5 E5 C2 F4 G4 F5 G5 B3 C3. This means, that
with the classical traversal the sequence of node
transformations is: 1 2 4 4 5 5 2 4 4 5 5. In con-
trast, with our new traversal scheme, this sequence
of visited node pairs is: A1 B2 C2 D4 E4 F4 G4
D5 E5 F5 G5 B3 C3, and the sequence of node
transformations is: 1 2 4 5 3.

A hardware implementations allows us to im-
prove the algorithm further by performing DOP
overlap tests in parallel. We can exploit the fact
that if two nodes A,B overlap, then we always
need to check all children pairs (Ai,Bj), Conse-
quently, instead of storing pointers to all children
in the list L ′, we store only one pointer for each
pair of siblings. By the nature of the binary tree,
performing two overlap tests in parallel yields the
greatest cost/performance benefit. To this end, we
load a sibling pair of tumbled DOPs (A,B), trans-
form them sequentially, and compare the two in
parallel with each DOP from L. This results in two
new lists, one for child pair (A1,A2) and one for
(B1,B2). In the sequential version described in the
previous paragraph, we produced these two lists
at very different times during the traversal, and we
processed each of them twice; now, we produce
those two lists simultaneously, and then we process
each of them only once.1 The benefit of this is that
the time needed for overlap tests and the number
of times an axis-aligned DOP needs to be trans-
ferred from memory is cut by a factor of two. The
pseudo-code in Algorithm 2 summarizes this new
algorithm scheme. Note that, for clarity, we have
omitted the “mixed” cases. Note also that the last
call of traverse is actually a call of an overloaded
version, which has only slight differences from the
algorithm shown here.

In a hardware implementation, we have to main-
tain the stack and the lists ourselves. This can be
done by a stack of lists (see Figure 2). On the same
stack, we keep pointers to pairs of tumbled nodes.
Going down from node pair (A,B) to (A1,A2), we
push the pointer to (A,B) onto the stack. Later,
when the recursion returns to this node pair, we
need to decide whether to go down into node pair
(B1,B2) or to make a step upwards. This infor-
mation can be kept in an additional bit on the
stack: when the pointer is pushed onto the stack,
the corresponding bit is reset; when we return to

1 This scheme can be generalized straight-forward to process 2m

tumbled nodes simultaneously.

traverse(A,B,L)
transform A
transform B
init L with pairs of first level beneath roots
for all N ∈ L do

if X and N do overlap then
if X and N are leaves then

check primitives enclosed by X and N
else

L ′X+ = N1,N2

end if
end if

end for
if A is an inner node then

traverse(A1,A2,L ′A)
else

traverse(A,L ′A)
end if
if B is an inner node then

traverse(B1,B2,L ′B)
else

traverse(B,L ′B)
end if

Algorithm 2: The new algorithm scheme for hierar-
chical collision detection that transforms each tum-
bled DOP only once, and that reduces the number
of multiple visits of nodes by a factor 2. Operations
involving node “X” are executed in parallel on both
nodes A and B.

this node, we go down into the other branch and
flip the bit to 1. When we return the next time, the
algorithm knows to make another step upwards.

3.3 Polygon Intersection Test
In the case of collision, the traversal reaches pairs
of leaves containing triangles, which have to be
checked for intersection. Assume triangle A is
given by vertices V1,V2,V3 and triangle B is given
by vertices W1,W2,W3, both in their object’s ref-
erence frame. Assume triangle A is part of object
OA, and B is part of OB.

The approach in our algorithm is to check (con-
ceptually) each edge of A against B, and vice versa.
First, A’s vertices are transformed into the refer-
ence frame of OB. Assume further a 3 × 3 trans-
formation MB for triangle B such that MB · (Wi−
W1) maps onto the unit triangle (0, 0, 0), (1, 0, 0),
(0, 1, 0). Then, we transform A by (MB,W1) (see
Figure 3). For sake of simplicity, we will call the
new vertices Vi again.

Consider each edge PQ := ViVi+1. If both Pz
and Qz ≥ 0 or ≤ 0, then we skip this edge. Now



1

1
B

S

AP

Q

y

x

z

Figure 2: The improved traversal scheme can be implemented by a stack
of lists. (In a hardware implementation, the stack on the right is merged
into the left one.)

Figure 3: Using a special trans-
formation, the intersection test
can be done very efficiently.

we compute (conceptually) the intersection S of the
supporting line X = P+tr, r = Q−P, with the plane
z = 0, which is defined by t = −Pzrz

as S = P − rPzrz
(we know rz 6= 0). We know that 0 ≤ t ≤ 1. We
also know that Sz = 0, so we need to compute
only Sx = Px − rx

Pz
rz

and similarly Sy, which are,
basically, the barycentric coordinates of the inter-
section point. Finally, we just check whether or not
Sx ≥ 0 ∧ Sy ≥ 0 ∧ Sx + Sy ≤ 1. If so, A and B
do intersect; otherwise, we check the other edges,
and, in case of no intersection, we check B against
A.

In order to save the division and the vector sub-
traction (for r), we reformulate the condition as
follows (assuming rz > 0):

PxQz ≥ QxPz ∧

PyQz ≥ QyPz ∧

PxQz −QxPz + PyQz −QyPz ≤ Qz − Pz
(4)

If rz < 0, then we must compare with ≤ 0,≤ 0,
and ≥ 0, respectively.

The algorithm gains its special efficiency because
we can precompute the matricesMA andMB (they
can be obtained from a simple linear equation sys-
tem), and because we do not need to compute the
exact intersection point.

In our case of collision detection using DOP
trees, we can store these matrices in the leaves in-
stead of the DOPs. We do not need to check pairs
of leaf DOPs, because the immediate check of tri-
angles is faster. Storing the triangle matrixMB and
3 vertices needs 3×4+3×3 = 21 floats, which fit
well into the nodes of a 24-DOP tree.

Module 0
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Module 3
SDRAM

Module 1
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Figure 4: Schematic diagram.

4 Hardware Design
The target design is a PCI-board with one ASIC,
a large on-board memory for the hierarchy, and a
small SRAM as dedicated stack memory. Crucial
for the performance is the bandwidth towards the
local memory, and so a four-bank SDRAM con-
figuration with a 256-bit bus was chosen (see Fig-
ure 4).

4.1 The CollisionChip
Figure 5 shows all functional units of the Colli-
sionChip. It consists of a number of large reg-
ister files grouped around an arithmetic unit for
floating-point dot-products (the DOTADD-unit),
a Triangle Intersection Test Unit (IT-Unit), reg-
ister banks connected to comparators, interfaces
to the PCI-bus and to the local memories, the
Stack Engine and control units as well as address
generators. Although the processing of bounding
volumes and triangles differ quite substantially, a
common architecture was found with only low re-
dundancy.



Although the design is geared towards high per-
formance and the chip looks large on paper, the ac-
tual chip space will be modest. All register bits to-
gether require roughly only 100k transistors. Also
note that for comparisons, IEEE floating-point op-
erands can be treated basically like integers, which
simplifies all comparators significantly. Expensive
units are the DOTADD-Unit and, to a lesser de-
gree, the IT-Unit and the four-port DOP Register
File. However, units like these can be found on to-
day’s CPUs and graphics chips, so one can be con-
fident that the CollisionChip can be built at low
costs using current technology. The design was laid
out for k = 24 and single-precision IEEE floating-
point operands.

The chip will have around 450 signal pins, mostly
due to the 256-bit bus, and should fit into a 600-
pin package including all power pins.

The DOTADD-Unit. The DOTADD-unit is sim-
ilar to transform units as found in modern graphics
accelerators. Its basic function is to perform

d ′i = dk × Ci,0 + dm × Ci,1 + dn × Ci,2 + ci

on 32-bit floating-point numbers. The indices re-
fer to the location in the register files. Due to the
absence of data dependencies in the control flow,
it can be pipelined for high clock frequency and
throughput.

Processing of Bounding Volumes. Prior to the
processing of two hierarchies, the matrix C and
the coefficients c must be loaded into the Matrix
Register File. Also, the correspondence indices i,
k, m and n must be stored in the Correspondence
Register File. This happens via the PCI-bus under
software control, and occupies 24 lines in both reg-
ister files. The software also transmits the pointers
(local memory addresses) of the two root nodes as
starting point to the Master Controller.

A DOP from the tumbled object is loaded from
memory and sequentially stored in the DOP Reg-
ister File under control of Address Generator 1.
After some constant delay (again predetermined
by software) a sufficiently large subset of DOP-
elements d are or will become available in time
for continuous evaluation of Equation 1. At this
point in time, Address Generator 2 is triggered
and the operands are fed into the DOTADD-unit.
Note that for maximum performance, processing
of the lines in matrix C occurs out-of-order, de-
pending on the earliest availability of the required
d-elements. Also note that a specific d may be used
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30..030..0
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Figure 7: Intersection Test Unit for Triangles

for more than one line. The transformed DOP-
elements d ′ are then stored into the Results Reg-
ister Bank under control of Address Generator 3,
which basically delays an index i for the duration
of the pipeline delay of the DOTADD-unit. The
same processing is applied to the sibling of the
tumbled node.

The DOP-elements e of the aligned node are then
loaded from memory in three transfers and stored
in the registers labeled e0 . . . e23 under control of
the Master Controller. The bank of comparators
determines overlap in parallel and signals this con-
dition to the Master Controller. The lists of child
nodes to be checked for overlap are constructed
according to this condition by the Stack Engine.

Hierarchy Traversal. The novel traversal algo-
rithm as described in Section 3.2 is implemented
using a dedicated and fast external SRAM to store
the lists and a suitably designed Stack Engine. Its
basic task is to hand node pointers from the cur-
rent list to the Master Controller and to receive
child node pointers to construct new lists. Inter-
nally, it maintains a stack of list pointers and a
register containing the actual level.

Processing of Triangles. As described in Sect. 3.3,
testing triangle A from object OA against triangle
B from object OB requires transforming A into the
coordinate system of OB using a rotation and a
translation. These are constant for two objects,
and can therefore be precomputed. The reverse
test B against A may also be necessary, which re-
quires the inverse transform. For maximum per-
formance, all coefficients are kept on chip in the
Matrix Register File in lines 24 through 29. Af-
ter this first transformation, the triangle must then
be transformed using the matrix stored in the leaf
of the other triangle, whose coefficients are loaded
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Figure 5: All functional units of the CollisionChip.



Figure 6: Some of the objects of our test suite (car body, front light, cooling filter, door lock; courtesy VW and
BMW).

into lines 30 through 32 of the Matrix Register
File. The Correspondence Register File has 27 lines
dedicated to these transforms, and so they can be
performed using the DOTADD-unit by properly
setting up the Address Generators.

The concrete sequence of operations is as fol-
lows. The vertices of A are loaded into the DOP
Registers d0 . . .d8, transformed and written back
into DOP Registers d9 . . . d17. Meanwhile, the co-
efficients from the other leaf are loaded from mem-
ory. The second transformation of A leaves the
vertices in registers d0 . . .d8 again.

Further processing according to Section 3.3 and
Equation 4 is then done in a separate unit called
IT-Unit. (see Figure 7) This unit can have low-
performance and thus low-cost arithmetic units,
since triangle tests are not performed very fre-
quently (see Table 1). This unit is controlled by
the Master Controller via a 7-bit bus and sup-
plied with operands from the DOP Register File us-
ing indices from the Correspondence Register File.
Five pairs of operands need to be read per edge,
which requires additional 15 entries for a total of
66 lines in the Correspondence Register File. The
accumulation circuitry consisting of the ADD/SUB
unit and the register ACC compute the left side of
the third condition in Equation 4. The combina-
tional circuitry to the left determines whether the
edge cuts the z = 0 plane at all. Note that the la-
bels in Figure 7 refer to only one edge, and that
processing may have to be repeated for the other
two edges.

An intersection is reported to the software; oth-
erwise, the above procedure is repeated with oper-
ands reversed.

5 Performance Estimations
Processing of a given list involves reading and
transforming two tumbled nodes, and reading and
comparing the appropriate number of aligned node

pairs. We assume that throughput is limited by
transformation performance and memory band-
width; the stack engine is assumed to be always
fast enough. We also don’t consider triangle-trian-
gle-tests here since they don’t occur very often.

Further assumptions are as follows: nodes are
defined by 24 single-precision floating-point num-
bers plus auxiliary data, placed in memory on
128-byte boundaries. The memory is build from
DDR-SDRAM chips with a 2-2-2 access character-
istic (2 cycles each for the precharge time, RAS-
CAS-delay, and CAS-latency). The CollisionChip
is assumed to run at the data burst frequency, e.g.
266MHz for PC133 memory chips. A cycle of the
CollisionChip equals one half of a memory cycle.
The SDRAM Interface can buffer an entire node
pair (256 bytes) and thus allows a burst length of
eight to be used. In the following, cycles refer to
chip cycles. Then, a random access to a node pair
takes 16 cycles to complete.

The first d-parameter of a tumbled node can be
written in the DOP Register File 10 cycles after the
(random) read was initiated. On average, contin-
uous evaluation of Equation 1 can start after ad-
ditional 12 cycles, when the first half of all d’s are
available. The DOTADD-unit is assumed to have
6 pipeline stages. The first result will be clocked
into the Results Register Bank after a total of 28
cycles, the last one after 52 cycles.

Last access to the DOP Register File for the pro-
cessing of the first tumbled node sibling occurs in
cycle 46. The other sibling can then be transferred
sequentially from the SDRAM Interface Unit into
the DOP Register File and processed in the same
way. The transformed sibling will be ready in the
Results Register Bank after 88 cycles.

By that time, the first pair of aligned nodes in
the list has been fetched from memory, with one
of the nodes being present in ”e”-register bank.
The other node will be processed four cycles later.
The load of the second node pair has been initiated



average numbers worst-case numbers
aligned tumbled time time aligned tumbled time time speedup

num nodes nodes pgon in in nodes nodes in in avg /
Object pgons visited1 visited2 checks HW SW visited1 visited2 HW SW worst-case

Filter 19 326 12 474 240 1 660 153 14 936 542 888 3 553 5 638 717 164 98 / 127
Frontlight 30 075 389 73 68 15 524 7 065 937 207 9 226 36 / 44
Lock 62 023 279 81 9 15 401 4 854 877 178 6 804 27 / 38
Car body 60 755 259 66 55 12 383 3 076 538 110 5 390 31 / 49
Buddha 125 000 159 50 7 9 240 3 345 301 77 4 074 26 / 53

Table 1: This table shows the performance of our hardware architecture for a number of objects that are
placed in close proximity. All times are in microseconds. The average numbers have been obtained by rotating
one of the objects relative to the other. The worst-case numbers are the respective maxima observed during
that rotation. The collision detection times have been calculated with Equation 5, assuming 3.76 nsec/cycle
(α = num. aligned nodes / num. tumbled nodes, τ = num. tumbled nodes / 2). Columns marked by (1) count
multiple visits of aligned nodes, while those marked by (2) count the number of unique tumbled nodes (which
are, unlike traditional traversal schemes, visited only once). The software performance has been measured
using the traditional recursive hierarchy traversal.

such that processing can continue uninterrupted
throughout cycle 100.

For all further memory reads, since we assume
page faults for practically all memory reads, a de-
lay will occur between read cycles. On memory
chips with four internal banks, this delay will be
two cycles on average due to bank interleaving,
giving a total read time of 10 cycles for a node
pair. Thus, the performance can be estimated as

TL = 100 + (α− 2) ∗ 10,

where TL is the number of cycles needed to process
a list, and α is the number of aligned node pairs in
the list. If for a given collision test for two objects
there are τ lists to process, each with α node pairs
on average, the total performance can be charac-
terized as

TT = (100 + (α− 2) ∗ 10) ∗ τ (5)

The number of lists τ is given by the number of
visited tumbled node pairs.

This estimation is compared to a software im-
plementation on a PC with a Pentium-III CPU run-
ning at 1GHz. The results are summarized in Ta-
ble 1.

6 Conclusions and Future Work
In this paper, we have presented novel algorithms
and a hardware architecture for performing hi-
erarchical collision detection. It is arguably the
first special-purpose hardware architecture dedi-
cated to this task. We lay special emphasis on

the fact that this architecture is suitable for “poly-
gon soups” in general, as opposed to previously
reported methods utilizing graphics hardware.

As can be seen in Table 1, the speedup ranges
between about 25 and 125 for our benchmarks. It
is generally higher in worst-case scenarios, which is
an important result, because interactivity is limited
most severely by these cases. Thus a chip design is
very well justified.

A good part of the speedup can be attributed to
our novel hierarchy traversal scheme, which can
be applied to all kinds of bounding volume hierar-
chies.

Our near-term goal will be to implement a VHDL
model of the CollisionChip, identify potential bot-
tlenecks, and further optimize the architecture to-
wards even higher processing speeds. Our long-
term goal will be to integrate this project into an
industrial virtual prototyping application.
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