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ABSTRACT
We present a novel, generic framework and algorithm for
hierarchical collision detection, which allows an application
to balance speed and quality of the collision detection.

We pursue an average-case approach that yields a numer-
ical measure of the quality. This can either be specified by
the simulation or interaction, or it can help to assess the
result of the collision detection in a time-critical system.

Conceptually, we consider sets of polygons during traver-
sal and estimate probabilities that there is an intersection
among these sets. This can be done efficiently by storing
characteristics about the average distribution of the set of
polygons with each node in a bounding volume hierarchy
(BVH). Consequently, we neither need any polygon inter-
section tests nor access to any polygons during the collision
detection process.

Our approach can be applied to virtually any BVH. There-
fore, we call a BVH that has been augmented in this way
an average-distribution tree or ADB-tree.

We have implemented our new approach with two basic
BVHs and present performance measurements and compar-
isons with a very fast previous algorithm, namely the DOP-
tree. The results show a speedup of about a factor 3 to 6
with only approximately 4% error.

Categories and Subject Descriptors
I.3.5 [Computer Graphics]: Computational Geometry and
Object-Modeling—Geometric algorithms, languages and sys-
tems; object hierarchy; physically-based modeling ; I.3.7 [Co-
mputer Graphics]: Three-Dimensional Graphics and Re-
alism—Animation; virtual reality ; G.2.1 [Discrete Math-
ematics]: Combinatorics—Combinatorial algorithms
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1. INTRODUCTION
Fast collision detection of polygonal objects is needed in
many highly interactive applications such as virtual proto-
typing, 3D games, physically-based simulation, and robotics.
Most of these applications simulate some kind of more or less
realistic object behavior.

It has often been noted previously, that the perceived qual-
ity of a virtual environment and, in fact, most interactive 3D
applications, crucially depends on the real-time response to
collisions [27]. At the same time, humans cannot distinguish
between physically correct and physically plausible behavior
of objects (at least up to some degree) [8]. 1 Since collision
detection is still the major bottleneck of many of these sim-
ulations and interactions, it is obvious that this is where we
can achieve the best speedup.

Therefore, we introduce the novel framework of collision
detection using an average-case approach, thus extending
the set of techniques for plausible simulation. To our knowl-
edge, this is the first time that the quality of collision detec-
tion can be decreased in a controlled way (while increasing
the speed), such that a numeric measure of the quality of
the results is obtained (which can then be related to the per-
ceived quality). The methods developed in this paper can
be applied to virtually any hierarchical collision detection
algorithm.

Conceptually, the main idea of the new algorithm is to
consider sets of polygons at inner nodes of the BV hierarchy,
and then, during traversal, check pairs of sets of polygons.
However, we neither check pairs of polygons derived from
such a pair of polygon sets, nor store any polygons with
the nodes. Instead, based on a small number of parameters
describing the distribution within the polygon sets, we will
derive an estimation of the probability that there exists a
pair of intersecting polygons. This has two advantages:

1. The application can control the runtime of the algorithm
by specifying the desired “quality” of the collision detec-
tion (to be defined later).

2. The probabilities can guide the algorithm to those parts
of the BV hierarchies that allow for faster convergence of
the estimate.

1 Analogously to rendering, a number of human factors deter-
mine whether or not the “incorrectness” of a simulation will
be noticed, such as the mental load of the viewing person,
cluttering of the scene, occlusions, velocity of the objects
and the viewpoint, point of attention, etc.



The next section will review some of the work related to
ours. Section 3 describes the framework and derivations in
detail, while Section 4 provides various results and bench-
marks of our new approach. Finally, Section 5 draws some
conclusions and describes possible avenues for further work.

2. RELATED WORK
Bounding volume (BV) hierarchies have proven to be a very
efficient data structure for rigid collision detection, and, to
some extent, even for deformable objects.

One of the design choices with BV trees is the type of BV.
In the past, a wealth of BV types has been explored, such as
spheres [13, 25], OBBs [12], DOPs [18, 30], Boxtrees [31, 2],
AABBs [28,19], and convex hulls [10].

Alternatives to BV hierarchies are approaches that utilize
the graphics hardware [26, 23, 5, 21, 6]. Most of these meth-
ods utilize the stencil buffer or the feedback mechanism of
OpenGL. However, all of them compete with the rendering
module for the graphics resources (unless one spends another
board just for the collision detection).

Another alternative are space-subdivision approaches, for
instance by an octree [15] or a voxel grid [22]. In general,
non-hierarchical data structures seem to be more promis-
ing for collision detection of deformable objects [1, 14, 11],
although some geometric data structures suggest a natural
BV hierarchy [20]. Deformable collision detection is not the
focus of our work presented here.

BV hierarchies lend themselves well to time-critical col-
lision detection, i.e., the scheduler interrupts the traversal
when the time budget is exhausted. This has been observed
by several researchers [9, 13]. Hubbard presented the idea
of interruptible collision detection using sphere trees [13].
Dingliana and O’Sullivan [9] are concerned with modelling
contacts based on interrupted sphere tree traversals. The
method described there can be applied in our framework
too. However, they do not provide any theoretical founda-
tions concerning the error incurred by an incomplete traver-
sal. In addition, their methods do not support application-
driven “levels-of-detail” of collision detection, where the ap-
plication can specify an allowable error rate beforehand.

A different approach to reducing query times is to try to
learn and model the query probability distribution either
before the hierarchy construction [3] or at runtime [4] (i.e.,
the construction is done on-demand). While being quite ef-
fective, their data structures and traversal algorithms are
still pretty much the classical ones (besides the fact that
they apply the approach only to the problem of detecting
an intersection between a line segment and the environ-
ment/object). However, our framework can be combined
with theirs very well and easily.

Probabilistic methods have been applied to other prob-
lems of computer graphics, such as out-of-core walkthroughs
of virtual environments [16] and the randomized z-buffer
[29]. To our knowledge, however, there is neither literature
about probabilistic collision detection nor about algorithms
using a probabilistic analysis or an average-case approach to
control the quality and speed of collision detection.

3. AN AVERAGE-CASE APPROACH
Given two BV hierarchies for two objects, virtually all col-
lision detection approaches traverse the hierarchies simulta-
neously by an algorithm similar to that shown in Figure 1.

It allows to quickly zoom into areas of close proximity. The
algorithm (usually) stops if an intersection is found or if the
traversal has visited all relevant sub-trees.

traverse(A,B)
if A and B do not overlap then return;
if A and B are leaves then

return intersection of primitives enclosed
by A and B;

else
for all children A[i] and B[j] do

traverse(A[i], B[j]);

Figure 1: Traditional hierarchical collision detection algorithm.

As mentioned in the previous section, it is, of course, pos-
sible to just cut off this traversal any time the application or
scheduler deems suitable. The problem with this approach
is that it gives absolutely no hint as to the confidence in the
result.

In contrast, our novel approach enables an application to
trade accuracy for speed in a controlled fashion, so that it
always has a “measure of confidence” into the result reported
by the collision detection algorithm.

BV A

BV B

polygon in BV A

polygon in BV B

Figure 2: We partition the intersection volume by a grid. Then,
we determine the probability that there are collision cells where
polygons of different objects can intersect (highlighted in grey).

3.1 Overview of our Approach
The idea of our algorithm is to guide and to abort the traver-
sal by the probability that a pair of BVs contains intersecting
polygons. The design of our algorithm was influenced by the
idea to develop an algorithm that works well and efficient
for most practical cases — in other words, that works well
in the average case. Therefore, we estimate the probability
of a collision within a pair of BVs by some characteristics
about the average distribution of the polygons, but we do
not use the exact positions of the polygons during the colli-
sion detection.

Conceptually, the intersection volume of A and B, A∩B,
is partitioned into a regular grid (see Figure 2). If a cell
contains enough polygons of one BV, we call it a possible
collision cell and if a cell is a possible collision cell with
respect to A and also with respect to B, we call it a collision
cell (a more precise definition is given in Section 3.2). Given
the total number of cells in A ∩ B, the number of possible
collision cells from A and B, resp., lying in A ∩ B, we can
compute the probability that there are at least x collision
cells in A ∩ B. This probability can be used to estimate
the probability that the polygons from A and B intersect.
For the computations, we assume that the probability of
being a possible collision cell is evenly distributed among



all cells of the partitioning because we are looking for an
algorithm that works well in the average case where the
polygons are uniformly distributed in the BVs. Of course,
this assumption is more realistic for smaller BVs (compared
to the object size) than for larger ones. Later in Section 3.4.3
we pay special attention to uneven polygon distributions.

An outline of our traversal algorithm is shown in Figure 3.
Function computeProb estimates the probability of an inter-
section between the polygon sets of two BVs. By descending
first into those sub-trees that have highest probability, we
can quickly increase the confidence in the result and deter-
mine the end of the traversal. Basically, we are now dealing
with priorities of pairs of nodes, which we maintain in a
priority queue. It contains only pairs whose corresponding
polygons can intersect. The queue is sorted by the proba-
bility of an intersection. Instead of a recursive traversal, our
algorithm just extracts the front node pair of the queue and
inserts a number of child pairs.

The quality and speed of the collision detection strongly
depends on the accuracy of the probability computation.
Several factors contribute to that, such as the kind of par-
titioning and the size of the polygons relative to the size of
the cells. This is discussed more detailed in Section 4.2.2.

There are two other important parameters in our traversal
algorithm, pmin and kmin, that affect the quality and the
speed of the collision detection. Both can be specified by
the application every time it performs a collision detection.
A pair of collision nodes is found if the probability of an
intersection between their associated polygons is larger than
pmin. A collision is reported if at least kmin such pairs have
been found. The smaller pmin or kmin, the shorter is the
runtime and, in most cases, the more errors are made.

traverse(A,B)
priorityQueue q; k:=0;
q.insert(A,B, 1);
while q is not empty do
A,B := q.pop;
for all children A[i] and B[j] do
p := computeProb(A[i], B[j]);
if p ≥ pmin

k:=k+1;
if k ≥ kmin return ”collision”;

if p > 0 q.insert(A[i], B[j], p);
return ”no collision”;

Figure 3: Our algorithm traverses two BV hierarchies by main-
taining a priority queue of BV pairs sorted by the probability of
an intersection.

The remainder of this section explains this framework
more precisely in a top-down manner.

3.2 Terms and Definitions
For the sake of accuracy and conciseness, we introduce the
following terms and definitions. We treat the terms bound-
ing volume (BV) and node of a hierarchy synonymous. A
and B will always denote BVs of two different hierarchies.

Definition 1 All polygons of the object contained in BV A
or intersecting A are denoted as P (A).

Let c be a cell of the partitioning of A∩B. The total area
of all polygons in P (A) clipped against cell c is denoted as
Areac(A).

quadrangles

Figure 4: A cubic collision cell c with side length a. Areac(A)
and Areac(B) must be at least MaxArea(c) = a2

√
2, which is

exactly the area of the two quadrangles.

MaxArea(c) denotes the area of the largest polygon that
can be contained completely in cell c.

Definition 2 (possible collision cell) Given a BV A and
a cell c. c is a possible collision cell, if Areac(A) ≥ MaxArea(c).

Definition 3 (collision cell) Given two intersecting BVs
A and B as well as a partitioning of A ∩ B. Then, A
and B have a (common) collision cell iff ∃c : Areac(A) ≥
MaxArea(c) ∧ Areac(B) ≥ MaxArea(c) (with suitably cho-
sen MaxArea(c)).

Definitions 2 and 3 are actually the first steps towards
computing the probability of an intersection among the poly-
gons of a pair of BVs. In particular, definition 3 is motivated
by the following observation. Consider a cubic cell c with
side length a, containing exactly one polygon from A and B,
resp. Assuming Areac(A) = Areac(B) = MaxArea(c), then
we must have exactly the configuration shown in Figure 4,
i.e., an intersection, if we choose MaxArea(c) = a2

√
2. Ob-

viously, a set of polygons is not planar (usually), so even if
Areac(A) > MaxArea(c) there might still not be an inter-
section. But since almost all practical objects have bounded
curvature in most vertices, the approximation by a planar
polygon fits better and better as the polygon set covers
smaller and smaller a surface of the object.

Definition 4 (LB(cA∩B)) Given an arbitrary collision cell
c from the partitioning of A∩B. A lower bound for the prob-
ability that a collision occurs in c is denoted as LB(cA∩B).

Let us conclude this subsection by the following important
definition.

Definition 5 (Pr[c(A ∩B) ≥ x ]) The probability that at
least x collision cells exist in A ∩ B is denoted as Pr[c(A ∩
B) ≥ x].

Overall, given the probability Pr[c(A ∩ B) ≥ 1], a lower
bound for the probability that the polygons from A and B
intersect is given by

Pr[P (A)∩P (B) 6= ?] ≥ Pr[c(A∩B) ≥ 1] ·LB(cA∩B). (1)

A better lower bound is given in Section 3.5.2, where x >
1 is used for Pr[c(A ∩ B) ≥ x]. Section 3.5.1 will derive
Pr[c(A∩B) ≥ x], while Section 3.5.3 will derive LB(cA∩B).

3.3 ADB-Trees
As mentioned before, our approach is applicable to virtu-
ally all BV hierarchies by augmenting them with a simple
description of the distribution of the set of polygons. The
resulting hierarchies are called ADB trees. In the following,
we explicitly mention the type of BV only if necessary.



Our function computeProb(A,B) needs to estimate the
probability Pr[c(A∩B) ≥ x] that is defined in the previous
section. However, partitioning A ∩ B during runtime is too
expensive.

Therefore, we partition each BV during the construction
of the hierarchy into a fixed number of cuboidal cells, (the
partitioning is discussed more detailed in Section 4.2.2) and
then we count the number of possible collision cell according
to Definition 2 and store it with the node. Note that, thanks
to our average-case approach making the assumption that
each cell of the partitioning has the same probability to be a
possible collision cell, we are not interested in exactly which
cells are possible collision cells, but only in their number. As
a consequence, this additional parameter per node incurs
only a very small increase in the memory footprint of the
BV hierarchy, even when utilizing very “light-weight” nodes
such as spheres [13] or restricted boxes [31]. It is, of course,
computed during preprocessing after the construction of the
BV hierarchy.

Note that we do not need to store any polygons or pointers
to polygons in leaf nodes. A possible intersection is deter-
mined solely based on the probabilities described so far.

In addition to the ADB-trees, we will need a number of
lookup tables in order to compute Pr[c(A ∩ B) ≥ x] effi-
ciently (see Section 3.5). Fortunately, they do not depend
on the objects nor on the type of BV, so we need to precom-
pute the lookup tables only once.

3.4 Probability Parameters
As will be explained in Section 3.5, Pr[c(A ∩ B) ≥ x] can
be computed from the following 3 parameters only:

s = # cells contained in A ∩B,
sA = # possible collision cells from A in A ∩B,
sB = # possible collision cells from B in A ∩B.

In this section, we explain how to determine them during
the collision detection process. Figure 5 gives an overview
of the algorithm computeProb(A,B).

computeProb(A,B)
compute s, sA, sB ;
look up for Pr[c(A ∩B) ≥ x]

using (s, sA, sB);
estimate Pr[P (A) ∩ P (B) 6= ?] by
Pr[c(A ∩B) ≥ x] and LB(cA∩B);

Figure 5: computeProb(A,B) estimates the probability
Pr[P (A) ∩ P (B) 6= ?] by only 3 parameters that can be effi-
ciently computed on-the-fly.

3.4.1 Equally sized BVs
For a moment, let us assume that BVs A and B are of
the same size and that the polygons are evenly distributed
in both of them. Later in this section, we will lift both
assumptions. Let c(A) denote the number of cells lying in
A. Then, the number s of cells in A ∩ B can easily be
approximated by

s =
Vol(A ∩B)

Vol(A)
· c(A) (2)

Analogously, the parameters sA and sB are computed de-
pending on the number of possible collision cells of A and
B that have been determined during preprocessing.

Obviously, the cells of the preprocessing partitioning of A
and B are not congruent with the cells of the partitioning of
A∩B. But congruence is not needed, because our probabil-
ity computations are only based on the number of possible
collision cells and the number of cells lying in A ∩ B; they
are not based on geometrical properties.

3.4.2 Differently sized BVs
Now, consider the case that A and B are of different size.
Without loss of generality, the cells in A are smaller than the
cells in B. Then, we first compute s and sA as described
above. If we would also compute sB this way, we would
get too small a probability of collision because the number
of possible collision cells would be assumed too small. In
practice, the quality of the collision detection would not be
affected but the performance, because the traversal would
stop later than necessary.

As a remedy, we have to compute sB depending on a
partitioning with a cell size equal to the cell size of the BV
A. Therefore, we look for child nodes of B whose sizes are
(almost) equal to the size of A and compute sB depending
on these nodes. As a consequence, we have to traverse to
the child nodes of B and we stop the traversal at a node
Bi if Vol(Bi) ≤ Vol(A). Let pc(Bi) denote the number of
possible collision cells lying in Bi. Then, we compute sBi
by

sBi =
Vol(Bi ∩A)

Vol(Bi)
· pc(Bi) (3)

and sB depending on the n nodes Bi where the traversal
was aborted

sB =

nX
i=1

sBi . (4)

In the case the traversal has reached a leaf node Bi, it could
happen that Vol(Bi) is still larger than Vol(A). Then, we
compute sBi by Equation 3 and derive sB′i that denotes the
number of possible collision cells lying in A ∩Bi depending
on a partitioning, where the cell size is equal to that of A.

It is self-evident to compute sB′i by increasing sBi de-
pending on the ratio between the sizes of A and Bi. But if
we would only increase sBi by τABi := Vol(Bi)/Vol(A) it
could happen that this would be an overestimate. Figure 6
illustrates the problem. A single cell from the partitioning
of the BV Bi (left) encloses the same volume as the 8 cells
in the middle and as the 27 cells in the right. The cells in
the middle and on the right have the same volume as the
cells of a BV A. So, the cell sizes differ by a factor of 8 and
27, but as one can see, the number of possible collision cells
differs only by 8 · 1/2 = 4 and 27 · 1/3 = 9.

Of course, this is only correct, if the polygons are aligned
as shown in the figure. But as we are dealing with leaf nodes,
the assumption that the polygons can be approximated by a
single plane (as shown in our figure) is realistic for real-world
models. We will discuss this later in detail in Section 3.5.3.
As a consequence, we compute sB′i by Equation 5 and use
this instead of sBi for evaluating Equation 4.

sB′i = sBi · τABi ·
1

3
√
τABi

(5)



Figure 6: While the cell sizes differ by
τABi = Vol(Bi)/Vol(A), the number of possible col-
lision cells differs by τABi · 1/ 3

√
τABi .

3.4.3 Uneven polygon distributions
Until now, we have assumed that the polygons are evenly
distributed in the BVs A and B. In practice, this is obvi-
ously not always correct so that the parameters s, sA, and
sB could lead to probabilities that are too low or too high.

As a remedy, we propose a two-level partitioning of each
BV in the hierarchy: first, we partition the BV by a grid
or pyramidal sectors (see Figure 7) into a (small) number of
regions. Then, for each region, we compute the number of
possible collision cells as described above. That way, we can
capture the polygon distribution by a set of values, instead
of only one. During collision detection, a better estimate
of the number of possible collision cells lying in the inter-
section volume can be determined by considering only those
regions that lie in the intersection. Let R1, . . . , Rn denote
the n regions of a BV A and pc(Rj) the number of possible
collision cells corresponding to the region Rj . Then, sA can
be computed as follows:

sA =

nX
j=1

pc(Rj) · Vol(Rj ∩B)

Vol(Rj)
.

Figure 7: A BV can be subdivided into regions in order to
capture uneven polygon distributions.

3.5 Probability Computations
In this section, we explain the computation of the probabil-
ity Pr[c(A ∩B) ≥ x] and its usage.

3.5.1 Probability of collision cells
Recall that computeProb(A,B) estimates the probability
that polygons contained in two BVs A and B intersect (see
Figure 5). Given a partitioning of A ∩ B and the numbers
s, sA, sB , the question is: what is the probability that at
least x of the s cells are possible collision cells of the sA cells
and are also possible collision cells of the sB cells? This is
the probability that at least x collision cells exit.

Note that the sA+sB possible collision cells are randomly
but not independently distributed among the s cells: obvi-
ously, it can never happen that two or more of the sA or sB ,
resp., possible collision cells are distributed on the same cell,
i.e., sA possible collision cells are distributed on exactly the
same number of cells of the partitioning. This problem can
be stated more abstractly and generalized by the following
definition.

Definition 6 (Pr[# filled bins ≥ x]) Given u bins, v blue
balls, and w red balls. The balls are randomly thrown
into the u bins, whereby a bin never gets two or more red
or two or more blue balls. The probability that at least
x of the u bins get a red and a blue ball is denoted as
Pr[# filled bins ≥ x].

If u = s, v = sA and w = sB , this definition is related to
our original problem by the following observation, because
we assume that each cell of the partitioning has the same
probability of being a possible collision cell.

Observation 1
Pr[c(A ∩B) ≥ x] ≈ Pr[# filled bins ≥ x].

Now, let us determine Pr[# filled bins ≥ x]. The proba-
bility, that exactly t of the u bins get a red and a blue ball,
is �

w
t

��
u−w
v−t
��

u
v

�
Explanation: Let us assume, the w red balls have already

been thrown into the u bins. Now, the question is: what
is the probability that t of the v blue balls are thrown into
bins containing a red ball?

�
u
v

�
is the number of possibilities

to distribute the v blue balls to the u bins. The number of
possibilities that t of the v blue balls are distributed to bins
already filled with a red ball is

�
w
t

�
. And the remaining v− t

blue balls have to be distributed simultaneously to the u−w
empty bins.

Thus, the probability that at least x of the u bins get a
red and a blue ball, is

Pr[# filled bins ≥ x] = 1−
x−1X
t=0

�
w
t

��
u−w
v−t
��

u
v

� (6)

In the case x = 1, this equation can be simplified yielding

Pr[# filled bins ≥ 1] = 1−
�
u−w
v

��
u
v

�
v>0
= 1−

vY
i=1

(1− w

u− v + i
).

(7)

It is obvious that in Equation 7, u − v has to be com-
puted only once. Therefore, 4v+ 1 operations are necessary
to compute Pr[# filled bins ≥ 1] and in the worst case
(where v = 83 ∧ w = 83) 4 × 83 + 1 = 2049 operations
are necessary to calculate Pr[# filled bins ≥ 1] for a sin-
gle pair of nodes. Of course, this would be too expensive
during runtime. Therefore, we compute a complete lookup
table for Pr[# filled bins ≥ x], which has to be done only
once for our algorithm. Note that Pr[# filled bins ≥ x] is
completely independent of the type of BV or model.

3.5.2 Probability of collision
Until now, for computing a lower bound for Pr[P (A) ∩
P (B) 6= ?] (see Equation 1) we have only used the probabil-
ity that at least one collision cell exists in A∩B. Although
the algorithm achieves very good quality using only that
probability, we can improve the lower bound by using the
probability that several collision cells are in the intersec-
tion, i.e., by using Pr[c(A ∩ B) ≥ x], x > 1. Obviously,
Pr[c(A ∩ B) ≥ x] decreases as x increases. But the more
collision cells (with high probability) in the intersection vol-
ume are, the higher the probability is that a collision really
takes place in the pair of BVs.



Let a partitioning of A∩B be given. Then, a lower bound
for the probability Pr[P (A) ∩ P (B) 6= ?] can be computed
by

Pr[P (A) ∩ P (B) 6= ?] ≥
max

x≤min{sA,sB}

n
Pr[c(A∩B) ≥ x] · �1− (1−LB(cA∩B))x

�o(8)

because
�
1 − (1 − LB(cA∩B))x

�
denotes a lower bound for

the probability that in at least one of the x collision cells a
collision takes place. Note that, if we use the approximation
shown in Observation 1, this is not a lower bound any longer,
but only a good estimation of it.
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Figure 8: Usually,
�
1− (1−LB(cA∩B))x

� · Pr[c(A∩B) ≥ x]
is maximal for x ≤ 10.

In practice, it is sufficient to evaluate Equation 8 for small
x, because for realistic values of s, sA, sB , and LB(cA∩B) it
assumes the maximum at a small x (see Figure 8). Conse-
quently, we bound x by a small number (e.g., 10) in Equa-
tion 8. Summarizing this section, in order to get a better
lower bound for the collision probability, Pr[P (A)∩P (B) 6=
?] can be computed by Equation 8 instead of Equation 1.

3.5.3 Probability of intersection in a cell
It remains to derive LB(cA∩B), which denotes a lower bound
for the probability of an intersection in an arbitrary collision
cell from the partitioning of A ∩B (see Defintion 4).

For most real-world models, we can assume that the cur-
vature of the surfaces is bounded (possibly except in a finite
number of curves on the surface). Now consider a collision
cell c ⊂ A ∩ B, i.e., it contains two sets of polygons, P (A)
and P (B). Because we are looking for a lower bound, we
can only assume that Areac(A) and Areac(B) are equal to
MaxArea(c).

Suppose the cell c is large compared to the size of the
objects. Then, the possible curvature of the surface parts in
P (A) and P (B) can lead to convex hulls of P (A) and P (B)
that are small with respect to c. Therefore, the probability
of an intersection is small.

On the other hand, as the traversal of the BV hierarchies
reaches lower levels, c becomes small compared to the size
of the objects. Then, because of the bounded curvature,
P (A) and P (B) can be approximated better and better by
two plane polygons. In the extreme, we reach exactly the
situation shown in Figure 4. Therefore, we estimate the
lower bound LB(cA∩B) by

LB(cA∩B) ≈ dA + dB
dmaxA + dmaxB

where dA, dB are the depth of node A,B in their respective

BV hierarchies, and dmaxA , dmaxB are the maximum depths.
In other words, the larger the depth of the nodes of A and
B, the smaller the BVs, and the larger is the probability
that the polygons in a collision cell intersect.

Note that if we approximate LB(cA∩B) as described above,
the lower bound given in Equation 8 is not a lower bound
any longer, but only a good estimation of it.

3.6 Intersection Volume
Since Equation 2 has to be computed once per node pair dur-
ing the hierarchy traversal, we need a fast way to compute
Vol(A∩B). However, an exact computation is prohibitively
expensive for most BVs (except spheres), even for cubes,
because they are not aligned with each other. So we need
to resort to approximations. A simple and efficient one is to
enclose the BVs by spheres and compute their intersection
volume. Unfortunately, this is also a very inaccurate one.
In the case of DOPs (note that cubes are special 6-DOPs),
we could also enclose one of A or B by an aligned DOP effi-
ciently [30]. Another method that works only for boxes (and
similarly for DOPs) is to choose three slabs out of the 2× 3
slabs defined by two boxes A and B [7]. Figure 9 illustrates
this idea. The volume of the resulting parallelepiped can be
computed by the scalar triple product.

area which is included in
the computation of the
intersection area

BV A

BV B

Figure 9: The intersection volume (highlighted area) could be
approximated by taking the three best slabs [7]. For the sake
of illustration, the figure is in 2D.

Since the above mentioned methods can all produce fairly
gross overestimations, and since the latter two methods are
also quite expensive (for our purpose), we propose a different
method. The idea is shown in Figure 10.

Given two bounding boxes of (nearly) the same size at a
certain distance d that are not necessarily aligned with each
other. Then, an upper bound of their intersection volume is
given by two BVs of the same size with the same distance d,
that are aligned as one of the 3 cases shown in the Figure 10.
So we only need to tentatively compute the intersection vol-
ume Vi for each of them. Then, max{V1, V2, V3} is an upper
bound of the intersection volume. In the following, let a, b,
and c denote the side lengths of the BVs, where a ≥ b ≥ c.
Then

V1 = a · b · c · (1− d√
a2

)1 = (a− d) · b · c

V2 = a · b · c · (1− d√
a2 + b2

)2

V3 = a · b · c · (1− d√
a2 + b2 + c2

)3

To prove this claim, one has to perform two steps. First of
all, assume that the boxes are axis-aligned. Without loss of
generality, let one box be centered at the origin and the other
centered at P = (x, y, z). Then, the intersection volume is
V = (a−x)(b−x)(c−x), which has to be maximized under
the constraint that x2 + y2 + z2 = d2. Then, one has to



show that V ≤ max{V1, V2, V3} always holds. In the second
step, one has to prove that for a rotated BV the intersection
volume is smaller or equal than when aligning that BV while
keeping the same distance. If the difference of the size of
the two bounding boxes is above a certain threshold, we use
the intersection volume of the two bounding spheres as an
estimate. In our experience this seems to work well.

V1

V2 V3

d

point of intersectionmidpoint of BV

Figure 10: We estimate the intersection volume for two not
necessarily aligned BVs by the maximum of three corresponding
aligned cases, max{V1, V2, V3}, which is an upper bound. Note
that, also for non-cubic BVs, the line through the midpoints of
the two BVs has to intersect the vertices and/or edges of the
BV of the intersection volume as shown.

4. RESULTS
Because our approach is applicable to most hierarchical BV
hierarchies, we have decided to implement two basic data
structures, namely an octree and an AABB tree, that are
used in many VR applications and that can easily be turned
into ADB-trees. The construction heuristic of the AABB
tree is the same as that used for the restricted boxtree [31].
Figure 12 shows the timing results of a comparison between
our ADB-trees based on the octree and the AABB tree.
Obviously, the AABB tree performs better by a factor > 3
and we have obtained similar results with all other mod-
els. Therefore, all the following benchmarks were performed
using our ADB-tree based on AABBs.
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Figure 12: Comparison of our ADB-trees based on an octree
and on an AABB tree. Here, the results for the car body with
20,000 polygons are shown, but we have obtained similar ones
for all other objects of our suite.

We implemented our new algorithm in C++. As of yet,
the implementation is not fully optimized. In the following,
all results have been obtained on a 2.4 GHz Pentium-IV with
1 GB main memory.

4.1 Benchmark Scenario
For timing the performance and measuring the quality of
our algorithm, we have used a set of CAD objects, each of

Figure 13: A snapshot of the benchmarking procedure (objects
are rendered transparent). The two boxes show one pair of BVs
that contain at least one collision cell with high probability.

BV hierarchy Bytes

ADB tree based on AABBs 36
sphere tree 16
AABB tree 28
OBB tree 64
24-DOP tree 100

Table 1: This table compares the amount of memory per node
for our ADB-tree with some traditional ones.

them with varying complexities (see Figure 11 in the Color
Plates Appendix).

Benchmarking is performed by the procedure proposed in
Zachmann [31], which computes average collision detection
times for a range of distances between two identical objects.

Figure 13 shows a snapshot of this benchmarking proce-
dure, where one pair of BVs has been highlighted, which
contain at least one collision cell with high probability.

4.2 Preprocessing
4.2.1 Memory requirements

Table 1 summarizes the number of bytes per node for differ-
ent BV hierarchies. Note that we do not need to store any
polygons or pointers to polygons in leaf nodes. Therefore,
we need exactly the same number of bytes for each node in
our hierarchy. We use 24 bytes for storing two vectors that
define the BV, 4 bytes for a pointer to child nodes, 4 bytes
for storing possible collision cells and 4 bytes for storing the
volume of the BV.

4.2.2 Partitioning of BVs
As mentioned in Section 3.1, the quality of the collision de-
tection depends, to some extent, on the number of cells a
BV is partitioned into. Our experiments have shown, that
83 cells per node are sufficient: if the nodes are partitioned
into more cells, the collision quality (in the sense of the error
rate) does not seem to improve and if less cells are chosen,
the quality gets worse. Of course, the finer the partitioning,
the more possible collision cells are stored at each node and
the larger are sA and sB — but also the larger is s. So,
the probability Pr[# filled bins ≥ x] does not necessarily
increase if the number of cells of the partitioning increases.

An other reason for restricting the number of cells by 83

is that the finer the subdivision into cells, the larger are the
lookup tables (and the higher is the memory consumption)
because the values s, sA and sB directly depend on the
partitioning.



Figure 11: Some objects of our test suite: body of a car, lock of a car door, and a set of pipes. (Data courtesy of VW and BMW)
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Figure 14: Timings for different models and different polygon counts (kmin = 10 and pmin = 0.99). Also, a runtime comparison
to a DOP tree is shown (see Section 4.3.3).

4.2.3 Lookup Tables
As mentioned before, we need a lookup table for the prob-
abilities Pr[# filled bins ≥ x] with u, v, w ∈ {1, . . . , 512}
and x ≤ 10 (see Section 3.5.2). By exploiting the fact that
Pr[# filled bins ≥ x] for u = u′, v = v′, w = w′ is equal
to Pr[# filled bins ≥ x] for u = u′, v = w′, w = v′, we can
reduce the memory usage of that lookup table by a factor 2.
Still, for each x, the lookup table would contain 512 ·P512

i=1 i
entries amounting to about 256 MB. Fortunately, we can
reduce the number of entries significantly by exploiting the
monotonicity of Pr[# filled bins ≥ x] in the variables v and
w. If the probability for u = u′, v = v′, w = w′ is close to 1
(e.g., ≥ 1−0.9 ·10−5), then we do not compute the probabil-
ities for u = u′, v = v′, w ≥ w′ + 1; instead, we continue at
u = u′, v = v′ + 1, w = v′ + 1. On average, this reduces the
number of probabilities for one lookup table by a factor of
17. Figure 15 gives an overview of the memory consumption
for storing the lookup tables.

Note that for computing Pr[# filled bins ≥ x] the bino-
mial coefficients can become very large. Therefore, in order
to compute the probabilities as accurate as possible, one
should use arbitrary precision for numeric calculations. Us-
ing Maple, the time for computing all ten tables took about
93 hours. As mentioned earlier, these lookup tables are ab-
solutely independent of the models, so that they have to be
computed only once and can be stored in a file.

4.3 Performance and Quality
4.3.1 Time and Quality versus Complexity

Each plot in Figure 14 shows the runtime for a model of
varying complexity (the legend gives the number of polygons
per object). In most cases, the runtime is fairly independent
of the complexity. There are exceptions, for instance, the
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Figure 15: Memory consumption of our ten lookup tables.

pipes with 9,814 polygons take even slightly longer than the
pipes modelled with 124,736 polygons. We conjecture that
this is caused by larger polygons in the coarser resolution
of the model which allows the construction heuristic less
possibilities to construct optimal BV hierarchies.

Figure 16 shows the error rates corresponding to the tim-
ings in Figure 14. Here, the error is defined as the percentage
of wrong detections. For measuring them, we have com-
pared our results with an exact approach. Only collision
tests are considered where at least the outer BVs, which
enclose the whole objects, intersect. Apparently, the error
rates are always relatively low and mostly independent of
the complexities: on average, only 1.89% (sharan), 1.54%
(door lock), and 2.10% (pipes) wrong collisions are reported
if the objects have a distance between 0.4 and 2.1, and about
3.19% (sharan), 1.71% (door lock), and 3.15% (pipes) wrong
collisions are reported for distances between 1 and 2.

4.3.2 Time versus Quality
In this section, we examine how the runtime depends on the
quality of the collision detection.

As mentioned in Section 3.1, the runtime and the qual-
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Figure 16: Error rates corresponding to the timings in Figure 14.
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Figure 17: Runtime and error comparisons for the car body with 20,000 polygons. Left, center: timings and error rates for different
pmin (kmin = 10); right: Timings for different kmin (pmin = 0.99).

ity can be influenced by the values of pmin and kmin (see
also Figure 3): the smaller pmin or kmin, the shorter is the
runtime and, usually, the more errors are made.

Figure 17 on the left shows the correlation between the
runtime and pmin (car, 20026 polygons). The corresponding
error rates are shown in the middle. Obviously, as pmin in-
creases the error rate decreases. There are a few exceptions,
where more errors are made when using a larger pmin. We
conjecture that this is caused by pairs of BVs where corre-
sponding polygons (that do intersect) have a low probability
of intersection. For pmin = 0.9 and pmin = 0.99 the errors
differ only by less than 2% points while for pmin = 0.9 and
pmin = 0.5 the errors differ by about 5% points on average
(object distances between 1.2 and 2).

In Figure 17 (right) the timings for different kmin (the
number of pairs of collision nodes that have to be found be-
fore the traversal stops) are compared (car, 20026 polygons).
Due to space limitations, the corresponding errors can only
be found in the extended version of this paper [17]. Only
about 0.2% points less errors are made if kmin increases from
5 to 10, while 2% points less errors occur if kmin is changed
from 1 to 5 (object distances between 1.2 and 2). Comparing
the timings for kmin = 5 and kmin = 10, it is questionable
whether an increase in accuracy by 0.2% points justifies a
decrease in speed by a factor ≈ 2.3.

4.3.3 Performance comparison
A runtime comparison between our approach and a DOP
tree implementation, where no probabilities are utilized, can
be found in Figure 14. We have implemented the DOP tree
with the same care as for our new approach. The runtime
for the DOP tree is only shown for a single resolution at
which the highest performance was achieved using the DOP
tree approach. As you can notice, our algorithm is always
remarkably faster, e.g., in the case of the car body our new
algorithm is ≈ 3 times faster on average (kmin = 10, pmin =
0.99) and > 6 times faster if the error rate may increase by

only 0.2% points (kmin = 5, pmin = 0.99, see also Figure 17).

5. CONCLUSION AND FUTURE WORK
In this paper we have presented a general method to turn a
conventional hierarchical collision detection algorithm into
one that uses probability estimations to decrease the quality
of collision detection in a controlled way. To our knowledge,
this is the first approach to this problem.

Our algorithm can be utilized to increase the perceived
quality of simulations and interactions by increasing the
performance without noticeably decreasing the correctness.
More precisely, our novel framework can be useful in several
ways:

• It allows applications that do not need a precise colli-
sion detection to take advantage of that opportunity by
specifying a desired quality threshold, thus decreasing the
collision detection time significantly.

• It allows a scheduler to interrupt the collision detection
while still allowing the collision detection to make a bet-
ter effort than in the traditional traversal schemes and
return a kind of measure of confidence in the result.

Note that in both cases, the application can still obtain
meaningful contact information in order to handle the colli-
sion.

Our approach is made possible by augmenting traditional
BV hierarchies with just a few additional parameters per
node, which are utilized during traversal to efficiently com-
pute the probability of a collision occurring among the poly-
gons of a pair of BVs. These probabilities are then used as
priorities to direct the traversal into those parts of the BV
trees with higher probability.

We have implemented our new ADB-trees (average-distri-
bution trees) based on AABBs and octrees and present per-
formance measurements and comparisons with a fast tradi-
tional algorithm, namely the DOP-tree. The results show a



speedup of about a factor 3 to 6 with only about 4% error
on average. Furthermore, error rates and performance are
almost independent of the number of polygons.

Currently, we are investigating the exploitation of curva-
ture distributions in order to improve error rates and per-
formance.

We are also working on the application of our approach
to other BV hierarchies, in particular DOP trees and Re-
stricted Boxtrees. In addition, we would like to apply it
to non-hierarchical data structures for deformable collision
detection.

An interesting extension of our new algorithm would be
the modelling of contacts, and an estimation of separation
distance or penetration depth.

Since we can now better control the error of the collision
detection, we think it should now be possible to establish
a precise correlation between that error and the perceived
correctness [24].

There are many areas in computer graphics that utilize
BV hierarchies, such as ray tracing, occlusion culling, or
shadow rendering. So a natural question is if an average-
case approach can be applied there too.
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