
Rapid Collision Detection by Dynamically Aligned DOP-Trees

Gabriel Zachmann
Fraunhofer Institute for Computer Graphics

Rundeturmstraße 6, 64283 Darmstadt, Germany
email: zach@igd.fhg.de

Abstract

Based on a general hierarchical data structure, we present
a fast algorithm for exact collision detection of arbitrary
polygonal rigid objects. Objects consisting of hundreds of
thousands of polygons can be checked for collision at in-
teractive rates.

The pre-computed hierarchy is a tree of discrete ori-
ented polytopes (DOPs). An efficient way of re-aligning
DOPs during traversal of such trees allows to use simple
interval tests for determining overlap between DOPs. The
data structure is very efficient in terms of memory and con-
struction time.

Extensive experiments with synthetic and real-world
CAD data have been carried out to analyze the perfor-
mance and memory usage of the data structure. A compari-
son with OBB-trees indicates that DOP-trees as efficient in
terms of collision query time, and more efficient in memory
usage and construction time.

Keywords: Interference detection, virtual prototyping,
hierarchical bounding volumes, physically-based model-
ing, shape approximation.

1 Introduction

Real-time collision detection of polygonal objects under-
going rigid motion is of critical importance in many inter-
active virtual environments. In particular, simulation algo-
rithms, utilized in virtual reality systems to enhance object
behavior and properties, need several collision queries per
frame. It is a fundamental problem of dynamic simulation
of rigid bodies and simulation of natural interaction with
objects. For example, in virtual prototyping, parts should
be rigid and slide along each other. A very demanding sim-
ulation is force-feedback which needs at least 1000 colli-
sion queries per second. It is very important for a VR sys-
tem to be able to do all simulations at interactive frame
rates. Otherwise, the feeling of immersion, the “believabil-
ity” of the virtual environment, and even the usability of
the VR system will be impaired severely.

For real-time simulations, the collision detection must
be fast enough under all circumstances to allow several iter-
ations per frame with objects consisting of 5,000 to 50,000
polygons at least. The algorithm must not make any as-
sumption about the input, such as convexity, topology, or
manifolded-ness, because polygonal geometry, converted
from CAD data, is usually not “well-formed”: it may have
cracks, identical or degenerate polygons, etc. (hence they
have been named “polygon soups”). Also, it cannot make
any assumptions or estimations about the position of mov-
ing objects in the future, especially when they are being
moved by the user. Most collision response algorithms
need at least one point of intersection (a witness) in order
to take reasonable steps.

Fast collision detection of moving non-convex polygo-
nal objects seems to be a “hard” problem because of its im-
manent “all-pairs weakness” [13]. Several bounding vol-
ume (BV) hierarchies have been developed to overcome
this problem in order to find quickly a pair of intersect-
ing polygons, or to reject pairs of polygons which cannot
intersect1.

The performance of any collision detection based on
hierarchical bounding volumes depends on two conflicting
constraints: (1) the tightness of the BVs, which will influ-
ence the number of BV tests, and (2) the simplicity of the
BVs, which determines the efficiency of an overlap test of
BVs. Our algorithm is more biased towards optimizing (2).
However, the bias can be shifted to (1) by making them
arbitrarily tight.

Our approach is based on the BVs introduced by
[15]. They have been nameddiscrete orientation polytopes
(DOPs) by [12]. For each object, we build a hierarchy of
DOPs (DOP-Tree), each leave of which encloses a single
polygon of the object. In order to quickly determine ether
two DOPs overlap, one of them has to be “re-aligned”.
This can be done “on-the-fly” during traversal of the two
DOP-Trees by a simple affine transformation of the “non-
aligned” DOPs.

1We conjecture that for any algorithm there are two objects and two
positions for them such that the algorithm performs no better than
(n2).

The next section provides a quick overview of other hi-
erarchical collision detection methods. Section 3 describes
the general framework which most hierarchical collision
detection methods are based on. In Section 4 we explain
the application of hierarchical DOPs to collision detection
including the construction of DOP-trees. Section 5 presents
results of the effect of the number of orientations on colli-
sion detection time. Also, our DOP-Trees are compared
to OBB-Trees. Finally, Section 6 draws some conclusions
and describes future directions for research on hierarchical
collision detection.

2 Related work

Interference and collision detection problem have been ex-
tensively studied in the literature. Computational geome-
try first focused on theconstructionof the intersection of
two polyhedra [18, 17] and later on thedetection problem
[5, 20]. The algorithms are very efficient in the asymptot-
ical worst-case. However, most of them are restricted to
static environments and many of them have not been im-
plemented.

Configuration space has been used to detect collisions
for path-planning in robotics (see [6], for example). For
collision avoidance, Shaffer et al. [4] have used an octree
to approximate objects.

Good results have been achieved for convex polyhedra
[16, 3, 8]. Almost all approaches for general, non-convex
objects utilize some sort of BV hierarchy. A few non-
hierarchical approaches have been taken as well. Garcia-
Alonso et al. [7] partition the set of polygons of an object
by a uniform grid.

Sphere trees were developed by [13, 14, 19]. Gott-
schalk et al. [11] developed a bounding box hierarchy based
on oriented boxes (OBBs). Its box overlap test is much
more expensive than for DOPs. Aligned Box-Trees have
been presented in [21]. Barequet et al. [1] presented some
theoretical results on a class of BV hierarchies called BOX-
TREE, too.

DOP-trees have been used for collision detection be-
fore by [12]. However, they seem to use more general
DOPs and do hill-climbing to compute the axis-aligned
DOPs from the “tumbled” ones, which is probably less ef-
ficient than our method.

3 The hierarchical collision detection
scheme

The goal of any hierarchical BV scheme used for colli-
sion detection is to discard quickly any pairs of polygons
which cannot intersect. Each node in the tree is associated
with a subset of the primitives of the object, together with a

BV that encloses this subset with a smallest containing in-
stance of some specified class of shapes. Given two objects
and the roots of their associated BV trees, a simultaneous
traversal of the two trees recursively checks all pairs of their
children BVs for overlap. If such a pair does not overlap,
then the polygons enclosed by them cannot intersect.

The following pseudo-code outlines the basic scheme
of collision detection algorithms based on a BV hierarchy:

Simultaneous traversal of BV trees

a = bounding volume ofA’s tree,
b = bounding volume ofB’s tree
a[i], b[i] children of a and b, resp.

traverse(a,b):
a or b is empty ! return
b leaf !
a leaf !

check primitives enclosed bya and b
return

a not leaf !
forall i:
a[i],b overlap ! traverse(a[i],b)

b not leaf !
a leaf !
forall i:
a,b[i] overlap ! traverse(a,b[i])

a not leaf !
forall i: forall j:
a[i],b[j] overlap! traverse(a[i],b[j])

Figure 1 visualizes the set of polygons considered in the
worst-case for exact intersection calculations. The picture
has been obtained with our DOP-Tree data structure, but
all other hierarchical BV schemes would produce a similar
image.

4 Discrete orientation polytopes

Discrete orientation polytopes (DOPs) are convex poly-
topes whose faces can have only normals which come from
a fixed small set ofk orientations (k-DOPs). Probably the
fastest overlap check for axis-aligned boxes is the well-
known interval test. In order to be able to apply such a test
to DOPs, we restrict the set of orientations further such that
for each orientation of the set there is also an anti-parallel
one; the two corresponding faces form what is commonly
known as aslab. Thus, this special kind ofk-DOPs can be
viewed as a generalization of axis-aligned boxes.

Being the intersection ofk half-spacesHi : Bix- di � 0;
a k-DOP can be represented by the pointd 2 Rk, whereBi are thek fixed orientations. We will calld the plane

Figure 1: All polygons which are considered for in-
tersection in the worst-case are rendered solid. The
rejection of all other polygons is based on the hierar-
chical BV data structure.

offsetsfor that DOP. At each node of our hierarchical data
structure we need to store onlyk floating point numbers
(since the orientations are the same for all DOPs) plus 2
pointers (assuming binary trees).

We would like to remark that, except for the just men-
tioned interval overlap test of DOPs, all other parts of our
algorithms apply to the case of general DOPs as well.

4.1 Aligning DOPs

Given two DOP-TreesA andB, the basic step of the simul-
taneous traversal is an overlap test of two nodes. In order to
apply the simple and very fast interval overlap test to DOP-
Trees, they must be given in the same space. However, at
least one of the associated objects has been transformed by
a rigid motion. By choosingA’s object space (w.l.o.g.),
we need to re-align onlyB’s nodes as we encounter them
during traversal. Aligning a node (a “non-aligned DOP”)
is done by enclosing it in another (aligned) DOP. We will
show that this can be done by a simple affine transforma-
tion of the node’s plane offsets.

Assume we are given a (non-aligned) DOPD of B’s
DOP-Tree, which is represented byd. Assume also, that
the object associated withB has been transformed by a ro-
tationM and a translationo, with respect toA’s reference
frame. ThenD is the intersection ofk half-spaceshi : bix - di + oi � 0;
wherebi = BiM-1 (see Figure 3).

b

d

b

d

d

b

d

BB

B

B

d’

d’

B

b

2

2

5

4

5 6

2

b

b1

1

4

2

5

3

D

3

1
6

5
4

B

Figure 3: A rotated DOP can be enclosed by an
aligned one by computing new plane offsets d 0i. Eachd 0i can be computed by an affine combination of 3djil ; 1 � l � 3 (2 in 2-space). The correspondence jil
depends only on the affine transformation of the as-
sociated object and the fixed orientations Bi.

Now suppose we want to compute thed 0i of the enclos-
ing DOPD 0 of D. There is (at least) one extremal vertexPi of the convex hull ofD with respect toBi. This vertex is
the intersection of 3 (or more) half-spaceshjil ; 1 � l � 3.
It is easy to see that

d 0i = Bi0B@ bji1bji2bji3
1CA-10B@ dji1dji2dji3

1CA + Bio
The correspondence established byjil is the same for

all (non-aligned) DOPs of the whole tree, if the following
condition is met: DOPs must not possess anycompletely
redundanthalf-spaces, i.e., all planes must be supported by
at least one vertex of the convex hull of the DOP. (We do
allow almost redundanthalf-spaces, i.e., planes which are
supported by only a single vertex of the convex hull.) For-
tunately, this condition is trivially met when constructing
the DOP-Tree.

Thus, enclosing a non-aligned DOP by an aligned one
takes only3k multiplications and3k additions.

The correspondencejil is established by two steps:
First, we compute the vertices of the convex hull of a
generic DOP (alldi = 1). Each vertex is supported by
three planes (or more), the orientations of which we store
with that vertex in an intermediate correspondence.

This has to be done only once for a given set of orien-
tations. We can choose any DOP to establish this (interme-
diate) correspondence. However, we must make sure that
all planes do support a non-degenerate face.

Figure 2: The suite of test objects. They are (left to right): the skin of a car door (� 3,000 polygons; data courtesy
of BMW), the lock of a car door (� 20,000 polygons; data courtesy of BMW), skin and seats of a car(� 60,000
polygons; data courtesy of VW), a section of pipes(� 120,000 polygons).

Second, at the beginning of each DOP-tree traversal,
we transform the vertices of the generic DOP by the ob-
ject’s rotation. Then, we use these to establish the final
correspondencejil.
4.2 Building DOP-Trees

Any hierarchical algorithm can be only as good as the hi-
erarchical data structures. “Good” hierarchical data struc-
tures for ray-tracing are characterized by a low stabbing
number [1]. “Good” BV trees for collision detection are
characterized by a low number of primitive intersection
tests.

It is not clear yet, if there is a single measure which
should be optimized during the construction of a BV hier-
archy in order to achieve an optimal tree for collision de-
tection. Obviously, the following criteria should guide the
construction algorithm:� The total volume of all BVs should be small [1].� The tree should be balanced in terms of polygon

counts.� The volume of overlap of two siblings should be
small.

Our construction of DOP-Trees can be contrasted to
“insertion” methods [9, 2] and “bottom-up” methods [1].
We proceed in a “top-down” fashion starting with the com-
plete set of polygons, splitting the set at each node.

For our application it is very important, that the con-
struction process be fast, so that it can be done at load time.
Therefore, we make use of several heuristics and estima-
tions which try to emulate the criteria listed above.

The input to the construction algorithm is a setF of
k-DOPs (each of them encloses one of the polygons of the
object) and a setC of points which are the barycenters of
the polygons.

The algorithm starts by findingci; cj 2 C with al-
most maximal distance2. Then it determines that orienta-
tion which is “most parallel” tocicj. Now we sortC along
that orientation, which induces a sorting onF .

After these preliminaries (which are done for each step
of the recursion), we can splitF in two partsF1 andF2.
We start withF1 = fi, F2 = fj, wherefi; fj are associ-
ated toci; cj, resp. Then, we consider all otherf 2 F in
turn and assign them toF1 orF2, whichever BV increases
less. If both BVs ofF1 andF2 would increase by the same
amount (in particular, if they would not increase at all), thenf is added to the set which has fewer polygons so far.

This algorithm seems to produce very good trees. In
particular, they are fairly well balanced. Therefore, the av-
erage depth is almost the same for all sets of orientations
(which has been verified by our experiments). The follow-
ing table shows a histogram of the depth of the leaves of
the 6-DOP-Tree for two objects. The sphere has approx-
imately 20,000 polygons, while the car door has approxi-
mately 3,300 polygons:

depth 10 11 12 13 14 15 16
sphere 0 0 1 375 8853 13233 642
car door 92 740 1639 659 162 42 26

Other heuristics have been implemented and tested, but the
one described above has produced the best results.

4.3 Geometric robustness and accuracy

The construction algorithm is geometrically robust and can
be applied to all unstructured models. No adjacency infor-
mation is required. There are no connectivity restrictions
and the faces can be degenerate (a line segment or a point),
which happens frequently in CAD data.

The overlap test is very robust, since it involves only
multiplications, additions, and comparisons. A small�

2We compute only a near-optimal pair by a simpleO(n) heuristic.

margin guards against arithmetic round-off errors. Actu-
ally, that guard can be applied to the DOPs while the DOP-
Tree is being constructed (by inflating them a little), so dur-
ing traversal, no� additions/subtraction need to be done.
No error accumulation can occur during traversal of the
tree.

5 Benchmarks and results

It is extremely difficult to evaluate and compare collision
detection algorithms, because in general they are very sen-
sitive to specific scenarios, i.e., the relative size of the two
objects, the relative position to each other, the distance, etc.
We propose a simple benchmark program which (hope-
fully) eliminates these effects. It has been kept very simple
so that other researchers can easily reproduce our results
and compare their algorithms to ours3.

Our test scenario involves two identical objects which
are positioned at a certain distance from each other. The
distance is computed between the centers of the bounding
boxes of the two objects. Then one of them performs a full
revolution around the z-axis (which is pointing towards the
viewer in Figure 2) in a fixed, large number (here 2000)
of small steps. With each step a collision query is done,
and the average collision detection time for that distance is
computed. This procedure is done for different distances,
which yields graphs as shown in Figures 4, 5.

We have carried out extensive experiments using this
benchmark procedure with different objects, both synthetic
and real-world CAD data. Synthetic objects are spheres,
tori, cylinders in various resolutions from 1,000 polygons
through 100,000 polygons. The CAD data are depicted
in Figure 2. The complexity ranges from� 3,000 to�
120,000 polygons. All objects are scaled to fit in a cube of
size23.

All test have been done on a SGI R10000 (194 MHz).

5.1 The optimal number of orientations

Obviously, there are two contradictory effects when the
number of orientations of DOP-Trees is increased: on the
one hand, they can better approximate the convex hull of
the set of polygons enclosed by them; on the other hand, an
overlap test between them is more expensive.

Three different sets with 6, 8, and 14 orientations have
been tested: the faces of 6-DOPs have the same normals
as a cube, 8-DOPs have normals of an octahedron, and 14-
DOPs have normals of the union of the former two.

The results are depicted in Figures 4 and 5. From the
figures it becomes clear why comparing collision detection

3The source code of the “main loop” and the synthetic ob-
jects can be ftp’ed fromhttp://www.igd.fhg.de/�zach/-
coldet/benchmark.html. The CAD objects can be obtained via
the author (for scientific purposes only).

0

0.5

1

1.5

2

2.5

3

3.5

0 20000 40000 60000 80000 100000

tim
e

/ m
ill

is
ec

polygons per torus

3 slabs
4 slabs
7 slabs

Figure 6: As complexity increases the average colli-
sion detection time increases only slightly for DOP-
Trees.

avg. time / millisec
k-DOP-Tree

#polygons k = 6 k = 8 k = 14
door 3391 0.27 1.81 0.38
lock 20898 3.02 24.6 3.10
car 60755 0.42 5.25 0.59
pipes 124736 1.69 232 23.7

Table 1: Comparison of 6-, 8-, and 14-DOPs. There
is no significant advantage of 14-DOPs over 6-DOPs.

algorithms is difficult: Depending on the situation and the
particular objects chosen for the tests, the collision query
times can vary by an order of magnitude.

We feel that a fair measure for the overall performance
is the mean collision detection time averaged over all dis-
tances and all rotations. The average time for tori is shown
in Figure 6 while Table 1 summarizes the results for all
CAD objects.

There doesn’t seem to be a significant and general per-
formance benefit from using 14 orientations compared to 6
orientations. It is not clear to us why 8 orientations perform
so bad.

We also compared the memory requirements and con-
struction time among DOP-Trees using 6, 8, or 14 orienta-
tions. As expected, construction time increases slightly as
the number of orientations increases (see Table 2). Also,
the amount of memory required increases slightly (see Ta-
ble 3). This is due to the fact that the depth of trees doesn’t
change with different sets of orientations.

0

0.5

1

1.5

2

2.5

3

3.5

0 0.5 1 1.5 2 2.5

tim
e

/ m
ill

is
ec

distance

3 slabs
4 slabs
7 slabs

0

10

20

30

40

50

60

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

tim
e

/ m
ill

is
ec

distance

3 slabs
4 slabs
7 slabs

Figure 4: Two tori (53824 polygons each), one of them
is rotating. At each distance, 2000 rotations and col-
lision queries have been performed. The time shown
is the average collision detection time.

Figure 5: The locks (20898 polygons each) are differ-
ent in that most of the polygons are in the interior, b/c
it has many parts on the inside. This might explain the
“inversion” of the shape of the curve.

time / sec
orientations

#polygons 6 8 14

door 3391 0.14 0.17 0.19
lock 20898 1.3 1.4 1.8
car 60755 4.2 4.7 6.4
pipes 124736 9.4 10.3 13.8

Table 2: Construction time of the BV hierarchy for var-
ious CAD and synthetic objects. The time increases
by about 10 percent when 14-DOPs are used instead
of 6-DOPs.

MB
orientations

#polygons 6 8 14

door 3391 0.1 0.1 0.1
lock 20898 1 1 2
car 60755 5 6 9
pipes 124736 11 13 19

Table 3: The amount of memory required by a DOP-
Tree with various orientation sets. 14-DOP-Trees
need about 10 percent more memory than 6-DOP-
Trees.

avg. time / millisec
#pgons 6-DOP-Tree OBB-Tree speedup

door 3391 0.27 0.34 1.2
lock 20898 3.0 2.2 0.7
car 60755 0.42 1.1 2.6
pipes 124736 1.67 1.04 0.6
tori 12544 0.28 0.33 1.2
spheres 22952 0.48 0.56 1.1
tori 73984 0.47 0.43 0.9
spheres 97032 1.02 0.73 0.7

Table 4: Summary comparing the performance of
DOP-Trees and OBB-Trees.

5.2 Comparison of DOP-Trees and OBB-Trees

Since there is no significant advantage in 14-DOPs over 6-
DOPs, we used 6-DOPs to compare DOP-Trees with OBB-
Trees. For OBB-Trees, the Rapid implementation [10] has
been used.

Figures 7 and 8 show the results of the benchmark for
DOP-Trees and OBB-Trees. Table 4 summarizes the re-
sults for several other objects. All timings include the time
to transform the (necessary) vertices and normals.

Table 5 shows the amount of memory required by
DOP-Trees and OBB-Trees. For both, memory usage de-
pends linearly on the number of polygons. At each node
DOP-Trees store only 6 floats whereas an OBB-node stores
(at least) 18 floats. The table indicates that DOP-Trees need
about 4-8 times less memory. (For the memory compari-
son, we have changed alldoubles tofloats in the Rapid

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.5 1 1.5 2

tim
e

/ m
ill

is
ec

distance

6-DOP-Tree
OBB-Tree

0

1

2

3

4

5

6

7

8

9

10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

tim
e

/ m
ill

is
ec

distance

6-DOP-Tree
OBB-Tree

Figure 7: Comparison of DOP-Trees and OBB-Trees
for the car model.

Figure 8: Comparison for the door lock.

MB
#polygons 6-DOP OBB

door 3391 0.1 1
lock 20898 1 8
car 60755 5 21
pipes 124736 11 44
tori 12544 0.1 9
spheres 22952 1 17
tori 73984 6 60
spheres 97032 9 73

Table 5: A comparison of memory requirements in-
dicates that DOP-Trees need about 4-8 times less
memory then OBB-Trees.

code [10]. Of course, the memory required by the list of
vertices and polygons is counted, too.)

For virtual reality applications to be utilized at floor
shops and at design evaluation sessions it is important that
startup time be as short as possible. Since it is not desirable
to store an abundance of auxiliary data structures with a vir-
tual environment on disk, construction time of data struc-
tures needed for collision detection should be minimal.

Table 6 summarizes the comparison of the construc-
tion time of the data structures for DOP- and OBB-Trees.

6 Conclusion and future work

We have developed and implemented a hierarchical data
structure for fast and exact collision detection of polygo-
nal models with very large polygon counts. The algorithm
is general-purpose and makes no assumption about the in-

time / sec
#polygons 6-DOP-Tree OBB-Tree

door 3391 0.1 0.4
lock 20898 1.3 4.5
car 60755 4.2 10.5
pipes 124736 9.4 18.4
tori 12544 0.6 2.4
spheres 22952 1.3 5.4
tori 73984 4.8 16.1
spheres 97032 6.7 25.6

Table 6: Comparison of the construction time of the
BV hierarchy for various CAD and synthetic objects.
The construction of DOP-Trees is about 2-4 times
faster.

put model. It utilizes discrete oriented polytopes (DOPs)
for bounding volumes. We show that “re-aligning” rotated
DOPs can be done by a simple affine transformation of their
plane offset representations. Also, we have presented a new
method of constructing DOP-Trees.

We have carried out extensive and thorough experi-
ments to analyze the impact of the orientation count on
performance, construction time and memory usage. Our
experiments indicate that 6-DOPs (i.e., boxes) are as good
as 14-DOPs.

Our algorithm using DOP-Trees is about as fast as
Rapid using OBB-Trees. Furthermore, DOP-Trees are sig-
nificantly more memory efficient and can be constructed
much faster than OBB-Trees.

There are several issues of hierarchical collision de-
tection which still need to be investigated. One of them is

the characterization and construction of optimal BV hier-
archies for collision detection. While our method of con-
structing DOP-Trees performs quite well, it would be inter-
esting to develop precise criteria for the construction of op-
timal BV trees in the sense of minimum average collision
detection time. Also, it would be interesting to increase
the orientation count even further to verify our hypothesis
stated above.

So far, we have applied our hierarchical data structures
only to the problem of collision detection. However, we
feel that it has great potential for other applications, such as
ray-tracing, interference detection of curved surfaces, and
point-location and range queries.

Finally, the algorithm is a good candidate for imple-
mentation in hardware, since the flow of control is quite
simple, and the overlap test involves only simple linear
arithmetic.

References
[1] G. Barequet, B. Chazelle, L. J. Guibas, J. S. B. Mitchell,and A. Tal.

BOXTREE: A hierarchical representation for surfaces in 3D.Com-
puter Graphics Forum, 15(3):387–396, Sept. 1996.

[2] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger.The R�-
tree: An efficient and robust access method for points and rectan-
gles. InProc. ACM SIGMOD Conf. on Management of Data, pages
322–331, 1990.

[3] K. Chung. Quick collision detection of polytopes in virtual environ-
ments. In M. Green, editor,Proc. of the ACM Symposium on Virtual
Reality Software and Technology, pages 125–131, 1996.

[4] G. M. H. Clifford A. Shaffer. A real-time robot arm collision avoid-
ance system.IEEE Transactions on Robotics and Automation, 8(2),
April 1992.

[5] D. P. Dobkin and D. G. Kirkpatrick. A linear algorithm fordetermin-
ing the separation of convex polyhedra.J. Algorithms, 6:381–392,
1985.

[6] M. Erdmann and T. Lozano-Pérez. On multiple moving objects.
Algorithmica, 2:477–521, 1987.

[7] A. García-Alonso, N. Serrano, and J. Flaquer. Solving the colli-
sion detection problem.IEEE Computer Graphics and Applications,
pages 36–43, May 1994.

[8] E. G. Gilbert, D. W. Johnson, and S. S. Keerthi. A fast proce-
dure for computing the distance between complex objects in three-
dimensional space. IEEE Journal of Robotics and Automation,
4(2):193–203, 1988.

[9] J. Goldsmith and J. Salmon. Automatic creation of objecthierar-
chies for ray tracing.IEEE Computer Graphics and Applications,
7(5):14–20, May 1987.

[10] S. Gottschalk. Rapid library. http://www.cs.unc.edu/ geom/OBB/-
OBBT.html, Vers. 2.01.

[11] S. Gottschalk, M. Lin, and D. Manocha. OBB-Tree: A hierarchi-
cal structure for rapid interference detection. In H. Rushmeier, ed-
itor, SIGGRAPH 96 Conference Proceedings, Annual Conference
Series, pages 171–180. ACM SIGGRAPH, Addison Wesley, Aug.
1996. held in New Orleans, Louisiana, 04-09 August 1996.

[12] M. Held, J. T. Klosowski, and J. S. Mitchell. Real-time collision
detection for motion simulation within complex environments. In
Siggraph 1996 Technical Sketches, Visual Proceedings, page 151,
New Orleans, Aug. 1996.

[13] P. M. Hubbard. Interactive collision detection. InIEEE Symposium
on Research Frontiers in VR, San José, California, pages 24–31,
October 25–26 1993.

[14] P. M. Hubbard. Collision detection for interactive graphics applica-
tions. IEEE Transactions on Visualization and Computer Graphics,
1(3):218–230, Sept. 1995. ISSN 1077-2626.

[15] T. L. Kay and J. T. Kajiya. Ray tracing complex scenes. InD. C.
Evans and R. J. Athay, editors,Computer Graphics (SIGGRAPH ’86
Proceedings), volume 20, pages 269–278, Aug. 1986.

[16] M. C. Lin and D. Manocha. Efficient Contact Determina-
tion Between Geometric Models. PhD dissertation, University
of California, University of North Carolina Chapel Hill, URL:
ftp://ftp.cs.unc.edu/pub/techreports/94-024.ps.Z, 1991(?).

[17] K. Mehlhorn and K. Simon. Intersecting two polyhedra one of which
is convex. In L. Budach, editor,Proc. Found. Comput. Theory, vol-
ume 199 ofLecture Notes Comput. Sci., pages 534–542. Springer-
Verlag, 1985.

[18] D. E. Muller and F. P. Preparata. Finding the intersection of two
convex polyhedra.Theoret. Comput. Sci., 7:217–236, 1978.

[19] I. J. Palmer and R. L. Grimsdale. Collision detection for animation
using sphere-trees.Computer Graphics Forum, 14(2):105–116, June
1995.

[20] M. Reichling. On the detection of a common intersectionof k
convex polyhedra. InComputational Geometry and its Applica-
tions, volume 333 ofLecture Notes Comput. Sci., pages 180–186.
Springer-Verlag, 1988.

[21] G. Zachmann. The BoxTree: Enabling real-time and exactcolli-
sion detection of arbitrary polyhedra. InInformal Proc. First Work-
shop on Simulation and Interaction in Virtual Environments, SIVE
95, University of Iowa, Iowa City, July 1995. The OX Association
for Computing Machinery.

