ADB-Trees: Controlling the Error of Time-Critical Collision Detection

Jan Klein Gabriel Zachmann
Heinz Nixdorf Institute and Dept. of Computer Graphics and Virtual Reality
Institute of Computer Science University of Bonn, Germany
University of Paderborn, Germany Emaibch@cs.uni-bonn.de

Email: janklein@upb.de

the same time, humans cannot distinguish between
physically correct angbhysically plausiblebehav-

ior of objects (at least up to some degree) [4]. Since
collision detection is still the major bottleneck of
many of these simulations, it is obvious that this is

Figure 1: Some objects of our test suite: body ofwhere we can achieve the best speedup.
a car, lock of a car door, and a set of pipes. (Data Therefore, we introduce the novel framework of

courtesy of VW and BMW) collision detection using an average-case approach,
thus extending the set of techniques for plausible
Abstract simulation. To our knowledge, this is the first time

We present a novel framework for hierarchical col-that thequality of collision detection can be de-
lision detection that can be applied to virtually all creased in a controlled way (while increasing the
bounding volume (BV) hierarchies. It allows an ap-Speed), such that a numeriteasureof the quality
plication to trade quality for speed. Our algorithm Of the results is obtained.
yields an estimation of the quality, so that appli- Conceptually, the main idea of the new algorithm
cations can specify the desired quality. In a timedS to considersets of polygonst inner nodes of
critical system, applications can specify the maxi-the BV hierarchy, and then, during traversal, check
mum time budget instead, and quantitatively assegedirs of sets of polygons. However, we neither
the quality of the results returned by the collisioncheck pairs of polygons derived from such a pair
detection afterwards. of polygon sets, nor store any polygons with the
Our framework stores various characteristics10des. Instead, based on a small number of param-
about the average distribution of the set of poly-eters describing theistributionwithin the polygon
gons with each node in a BV hierarchy, taking onlysets, we will derive an estimation of the probability
minimal additional memory footprint and construc- that thereexistsa pair of intersecting polygons.
tion time. We call such augmented BV hierarchies
averagedistribution treesor ADB-trees 2 Related Work
We have implemented our new approach by aug- . . .
menting AABB trees and present performance meal:}oundlng volume hierarchies have proven to be a

surements and comparisons with a very fast preVi_/ery efficient data structure for rigid collision detec-

ous algorithm, namely the DOP-tree. The resultdion: and, to some extent, for deformable objects.

. One of the design choices with BV trees is the
show a speedup of about a factor 3 to 6 with only
approximately 4% error. type of BV. In the past, a wealth of BV types has

been explored, such as spheres [8, 16], OBBs [7],
. DOPs [12, 21], Boxtrees [1, 22], AABBs [13, 19],

1 Introduction and convex hulls [6].

Fast collision detection of polygonal objects is Alternatives to BV hierarchies are approaches
needed in many highly interactive applications suchhat utilize the graphics hardware [14,15,17]. How-
as virtual prototyping and 3D games. Most of theseever, all of them compete with the rendering mod-
applications simulate some kind of more or less reule for the graphics resources (unless one spends
alistic object behavior. another board just for the collision detection).

It has often been noted previously, that {her- BV hierarchies lend themselves well to time-
ceived qualityof a virtual environment and, in fact, critical collision detection, i.e., the scheduler in-
most interactive 3D applications, crucially dependgerrupts the traversal when the time budget is ex-
on the real-time response to collisions [18]. Athausted. This has been observed by several re-

VMV 2003 Munich, Germany, November 19-21, 2003

searchers [5, 8]. Hubbard presented the idea of Conceptually, the intersection volume dfand
interruptible collision detection using sphere treesB, AN B, is partitioned into a regular grid (see Fig-
[8]. Dingliana and O’Sullivan [5] are concerned ure 2). If a cell containenoughpolygons of one
with modelling contacts based on interrupted spher8V, we call it a possible collision celand if a cell
tree traversals. The method described there cais a possible collision cell with respecttband also
be applied in our framework too. However, theywith respect taB, we call it acollision cell (a more
do not provide any theoretical foundations con-precise definition is given in Section 3.2). Given
cerning the error incurred by an incomplete traverthe number of possible collision cells frorh and
sal. In addition, their methods do not supportB, resp., we can compute the probability that there
application-driven “levels-of-detail” of collision de- are at least: collision cells inA N B. This prob-
tection, where the application can specify an allow-ability can be used to estimate the probability that
able error rate beforehand. the polygons fromA and B intersect. For the com-

A different approach to reducing query times isputations, we assume that the probability of being
to try to learn and model the query probability dis- a possible collision cell is evenly distributed among
tribution either before the hierarchy construction [2]all cells of the partitioning because we are looking
or at runtime [3] (i.e., the construction is done on-for an algorithm that works well in the average case
demand). However, our framework can be com-where the polygons are uniformly distributed in the
bined with theirs very well and easily. BVs.

Probabilistic methods have been applied to other An outline of our traversal algorithm is shown
problems of computer graphics, such as out-of-corén Figure 3. Function computeProb estimates the
walkthroughs [9] and the randomized z-buffer [20]. probability of an intersection between the polygon
To our knowledge, however, there is neither lit-sets of two BVs. By descending first into those sub-
erature about probabilistic collision detection nortrees that have highest probability, we can quickly
about algorithms using a probabilistic analysis ofincrease the confidence in the result and determine
an average-case approach to control the quality anghe end of the traversal. Basically, we are now deal-
speed of collision detection. ing with priorities of pairs of nodes, which we main-

. tain in a priority queue.

3 Controlling the Error The quality and speed of the collision detection
Virtually all hierarchical collision detection ap- strongly depends on the accuracy of the probabil-
proaches traverse the hierarchies simultaneously iy computation. Several factors contribute to that,
an algorithm, which allows to quickly zoom into ar- such as the kind of partitioning and the size of the
eas of close proximity. As mentioned in the previ-polygons relative to the size of the cells.

ous section, it is, of course, possible to just cut off There are two other important parameters in our
this traversal any time the application or schedulefrayersal algorithmp,,i, andkm:», that affect the
deems suitable. The problem with this approach igyality and the speed of the collision detection.

In contrast, our novel approach enables an applit performs a collision detection. air of colli-
cation to trade accuracy for speed in a controlledsion nodess found if the probability of an inter-
fashion, so that it always has a “measure of confisection between their associated polygons is larger
dence” into the result reported by the algorithm. thanp, ;... A collision is reported if at least,.,,
p0|ygﬂ$\,7 Figure 2: We partition the such pairs have been found. The smafigsi,, or

intersection volume by a f,.,., the shorter is the runtime and, in most cases,
grid. Then, we determine the more errors are made.

the probability that there The remainder of this section explains this frame-
sva [7H are collision cells where \ork more precisely in a top-down manner.
polygons of different ob-

povgonnBY 8| jects can intersect (high- 32 Terms and Definitions
BV B lighted in grey).

—1

. For the sake of accuracy and conciseness, we intro-
3.1 Overview of our Approach duce the following terms and definitions. We treat
Our idea is to guide and to abort the traversal by théhe termsbounding volumgBV) and nodeof a hi-
probability that a pair of BVs contains intersecting erarchy synonymousd4 and B will always denote
polygons. BVs of two different hierarchies.

999

traverse(A, B) quadrangles Figu.re 4 A cubic collision cell
priorityQueuey; k:=0; ¢ with side lengtha. Areac.(A)
ginsert(A, B,1); \ and Area.(B) n’21ust be' at_ least
while ¢ is not empty do >/ MaxArea(c) = a*v/2, which is ex-

actly the area of the two quadrangles.

A, B := q.pop;
for all children A[7] and B[j] do bound for the probability that a collision occursdn
p := computePropA[q], B[j]); is denoted ad. B(cang).
. If:_kfl' Let us conclude this subsection by the following
if k> kynin return”collision”; important definition.
if p > 0 g.insert(Ali], Blj],p); Definition 5 (Pr[c(AN B) > x]) The probabil-
return”no collision”; ity that at leastz collision cells exist inA N B is

Figure 3: Our algorithm traverses two BV hierar- denoted agr(c(AN B) > .
chies by maintaining a priority queue of BV pairs Overall, given the probability’r[c(ANB) > 1],
sorted by the probability of an intersection. a lower bound for the probability that the polygons

from A and B intersect is given by
Definition 1 All polygons of the object contained

in BV A or intersecting4 are denoted aB(A). Pr(P(A)NP(B) # o] >
Let ¢ be a cell of the partitioning ot N B. The Pric(ANB) >1]-LB(canB). (1)
total area of all polygons iP(A) clipped against A better lower bound is given in Section 3.6.2,

cellcis denoted agireac(A). wherex > 1is used forPr[c(A N B) > z]. Sec-
MaxArea(c) denotes the area of the largest poly-tion 3.6.1 will derive Pric(A N B) > x], while
gon that can be contained completely in eell Section 3.6.3 will derivel B(canzs). -

Definition 2 (possible collision cell) Given a BV 33 ADB-Trees

A and a celle. ¢ is a possible collision cellif i . .
Areac(A) > MaxArea(c). As mentioned before, our approach is applicable

to virtually all BV hierarchies by augmenting them

Definition 3 (collision cell) Given two intersecting with a simple description of the distribution of the
BVs A and B as well as a partitioning ot N B. set of polygons. The resulting hierarchies are called
Then, A and B have a (commongollision celliff ADB trees In the following, we explicitly mention
Jc @ Areac(A) > MaxArea(c) A Areac(B) > the type of BV only if necessary.
MaxArea(c) (with suitably choseMaxArea(c)). Our function computeProbX, B) needs to esti-
mate the probabilityPr[c(A N B) > z] that is de-
fined in the previous section. However, partitioning
A N B during runtime is too expensive.

Therefore, we partition each BV during the con-
struction of the hierarchy into a fixed number of
cuboidal cells, and then we count the number of
possible collision celaccording to Definition 2 and
store it with the node. Note that, thanks to our
average-case approach making the assumption that
each cell of the partitioning has the same probability
fto be a possible collision cell, we are not interested
in exactly which cells are possible collision cells,
_but only in their number. As a consequence, this ad-

jects have bounded curvature in most vertices, thgitional parameter per node inc_urs onlyavery_ small
approximation by a planar polygon fits better angncrease in the memory footprint of the BV hierar-

better as the polygon set covers smaller and smalléihy' Itis .computed durlr)g preprocessing after the
a surface of the object. construction of the BV hierarchy. We explain this

computation more precisely in Section 3.4.
Definition 4 (LB(cang)) Given an arbitrary colli- Note that we do not need to store any polygons
sion cellc from the partitioning ofA N B. A lower or pointers to polygons in leaf nodes. A possible

Definitions 2 and 3 are actually the first steps
towards computing the probability of an intersec-
tion among the polygons of a pair of BVs. In
particular, definition 3 is motivated by the follow-
ing observation. Consider a cubic celith side
length a, containing exactly one polygon from A
and B, resp. Assumingrea.(A) = Area.(B) =
MaxArea(c), then we must have exactly the con-
figuration shown in Figure 4, i.e., an intersection,
if we chooseMaxArea(c) = a®v/2. Obviously, a
set of polygons is not planar (usually), so even i
Area.(A) > MaxArea(c) there might still not be
an intersection. But since almost all practical ob

999

intersection is determined solely based on the probvol(A’) < Vol(c4), which is the size of one cell

abilities described so far.
In addition to the ADB-trees, we will need

of A. If such a child node containsnoughpoly-
gons (in some sense), then we increaseA) by

a number of lookup tables in order to computel. Therefore, we do not need to partitiohinto

Pric(A N B) > z] efficiently (see Section 3.6).

a grid and test each cell. Of course, the recursive

Fortunately, they do not depend on the objects nosearch for such cells could end at a leaf notle
on the type of BV, so we need to precompute theThen, if this node contairenoughpolygons, we ap-

lookup tables only once.

3.4 Counting Possible Collision Cells

pe(A') =1

proximate the number of possible collision cells by

Vol(A') 1
Vol(ea) S/voics Due to space
Vol(ca)

We propose two algorithms for computing the num-limitations, this is only discussed in the extended

ber of possible collision cells. It is convenient to do
this after the BV hierarchy has already been built.

version of this paper [10].
Let ¢o denote the cost for checking one node if

The first one is very Simp|e and computes an exit isa possible collision cell. Then, the runtime for
act value of the number. It partitions each nodecomputingpc(A) for all nodes can be estimated by

into a grid, clips the polygons associated with the
node, inserts the fragments into the grid, and counts
the number of possible collision cells. Assuming a

complete binary BV hierarchy, the runtime of this
algorithm can be estimated as

Ty = cinlogm + c’lm

wheren is the number of polygons ana is the
number of nodes in the hierarchy; is the cost of
clipping and inserting one polygon, whitg is the

d+1
2y
21

d
T2 = ZCQQi(
i=0

= 622d+1(d —1)4+2<comlogm

because for a node with deptmaximal2?¢ =1 —2
child nodes have to be checked.

Obviously, T is better, becausg > log m, and
because; is a very expensive operation compared
to c2. Indeed, our experiments in Section 4 show

(average) cost of counting the number of possibleéhat our second algorithm is substantially faster so

collision cells of one node.

posColCellgA, A")
pc:=0;
if Vol(A") < Vol(ca) then
if Area(A’) > MaxArea(ca) then
return 1;
else
if A" is a leaf then
if Area(A’) > MaxArea(A’) then

_ Vol(4') 1 .
returnl Vollen) * 3Tvoiary
Vol(c)

else
for all children A’[z] do
pc := pc+ posColCellsd, A'[i]);
returnpc;

Figure 5: The number of possible collision cells
in BV A can be approximated efficiently by

propagating polygon areas up through the tree.

ca denotes an arbitrary cell ofd, pc(A)
posColCell$A, A).

that it can be performed at startup time.

3.5 Probability Parameters
As will be explained in Section 3.&r[c(ANB) >
z] can be computed from 3 parameters only:
s = # cells contained i N B,
sa = # possible collision cells froml in AN B,
sp = # possible collision cells fron? in AN B.
They can be determined very fast during the col-

lision detection process [11]. Figure 6 gives an
overview of the algorithm computePrgh, B).

computeProh(A, B)
computes, s4,55;
look up for Pr{c(A N B) > x|
using(s,sa, sg);
estimatePr[P(A) N P(B) # 2] by
Prlc(An B) > z]andLB(canB);

Figure 6: computeProby, B) estimates the proba-
bility Pr[P(A)NP(B) # @] by only 3 parameters

The second algorithm approximates the numbethat can be efficiently computed on-the-fly.

of possible collision cellspc(A), for a nodeA by

the algorithm shown in Figure 5. Its main idea is to3-6 Probability Computations

use the sub-tree oA for the computation opc(A).
The algorithm looks for child noded’ of A with

In this section, we explain the computation of the
probability Pr{c(A N B) > z] and its usage.

999

3.6.1 Probability of collision cells

Given a partitioning ofA N B and the numbers
s,s4,sB, the question is: what is the probability
that at leastc of the s cells are possible collision
cells of thes4 cells and aralso possible collision
cells of thesp cells? This is the probability that at
leastx collision cells exit.

Note that thes 4 + sp possible collision cells are
randomly but not independently distributed amon

the s cells: obviously, it can never happen that two

or more of thes4 or sg, resp., possible collision
cells are distributed on the same cell. This proble

can be stated more abstractly and generalized by t

following definition.

Definition 6 (Pr[# filled bins > x]) Given u
bins, v blue balls, andw red balls. The balls
are randomly thrown into thes bins, whereby a

P(B) # @] can be computed by
Pr[P(A)N P(B) # o] >

max
z<min{s4,sp

(1-(1- LB(CAmB))’”)} ®3)

becausg1 — (1 — LB(canp))”) denotes a lower

}{Pr[c(A nB) > a]

g})ound for the probability that in at least one of the

z collision cells a collision takes place. Note that, if
we use the approximation shown in Observation 1,

rr{his is not a lower bound any longer, larly a good
heestimation of it.

In practice, it is sufficient to evaluate Equation 3
for smallx, because for realistic values€fs 4, s,
andLB(cang) it assumes the maximum at a small
z. Consequently, we bound by a small number
(e.g., 10) in Equation 3. To give an overview of the

bin never gets two or more red or two or morebehaviour of Pr[P(A) N P(B) # @], Figure 7

blue balls. The probability that at leastof the

visualizes Equation 3 for different4 and sg (x

u bins get a red and a blue ball is denoted as$s bounded as described above). Summarizing this

Prl#filled bins > .

If u=s,v=s4andw = sg, this definition
is related to our original problem by the following
observation, because we assume that each cell

the partitioning has the same probability of being a

possible collision cell.

Observation 1
Pric(AN B) > z] = Prlttfilled bins > z].

Now, let us determinePr[# filled bins > =z].
The probability, that exactly of the v bins get a
red and a blue ball, i§}) (“~%) /(%).

Thus, the probability that at leastof the v bins
get ared and a blue ball, is

Prl#filled bins > 2] = 1 — i [

t=0
3.6.2 Probability of collision

Until now, for computing a lower bound for
Pr[P(A) N P(B) # @] (see Equation 1) we have
only used the probability that at leaste colli-
sion cell exists inA N B. Although the algorithm

section, in order to get a better lower bound for the
collision probability, Pr[P(A) N P(B) # 2] can
be computed by Equation 3 instead of Equation 1.

[

Figure 7: ProbabilityPr[P(A) N P(B) # @] for
a fixed s (=300). Left: LB(cang) = 0.5, right:
LB(CAmB) =0.1.

3.6.3 Probability of intersection in a cell

We have already shown how to estimatB(cang)

in a previous paper [11]. Therefore, we only give
the solution for estimating it. Lef4 anddp de-
note the depth of nodd and B in their respective
BV hierarchies an@lmaz 4 , dmaz, the maximum
depths of the hierarchies. Then,

da+ds

dma:cA + dmazB '

LB(canB) =

4 Results

achieves very good quality using only that proba-Because our approach is applicable to most hierar-
bility, we can improve the lower bound by using the chical BV hierarchies, we have decided to imple-

probability thatseveralcollision cells are in the in-

tersection, i.e., by usingrjc(ANB) > z],x > 1.
Let a partitioning ofA N B be given. Then,

a lower bound for the probabilityPr[P(A) N

ment two basic data structures, namely an octree
and an AABB tree, that are used in many VR ap-
plications and that can easily be turned into ADB-
trees. The construction heuristic of the AABB tree

999

is the same as that used for the restricted boxtre4.2 Time and Quality versus Complexity

[22]. Our measurements show that the AABB tree, - .
performs better than the octree by a facter 3. Each plot in Figure 9 shows the runtime for a model

) of varying complexity (the legend gives the number
Therefore, all the following benchmarks were per- : :
formed using our ADB-tree based on AABBS. of polygons per object). In most cases, the runtime

. . . X is fairly independent of the complexity.
A_s_mennone_d in Section 3.1, the quality of the Figure 10 shows the error rates corresponding to
collision detection depends, to some extent, on thﬁ1

number of cells a BV is partitioned into. Accord- .= timings in Figure 9. Here, the error is defined
. h 3p . as the percentage of wrong detections. For mea-
ing to our experiments” cells are optimal. The

number of possible collision cells can be com utedSuring them, we have compared our results with
pC . . PUCC,) exact approach. Only collision tests are consid-
by our algorithms shown in Section 3.4. For our

.) ered where at least the outer BVs, which enclose the
models, the exact algorithm needs about 2 minutes . -

. : .. “Whole objects, intersect. Apparently, the error rates
on average for the computation of possible collision

cells for one complete BV hierarchy, while the ap_are always relatively low and mostly independent of

o N
proximative algorithm needs only less than 2 sec-the complexities: on average, only 1.89% (sharan),

0, 0, i i-
onds, for our most complex model of 200,000 poly-1'54A) (door lock), and 2.10% (pipes) wrong colli

2 sions are reported if the objects have a distance be-
gons. All our measurements were performed usin

0, 0,
the exact algorithm, but the approximative one re%\Neen 0.4and2.1, and about 3.19% (sharan), 1.71%

. -) (door lock), and 3.15% (pipes) wrong collisions are
duces the qual.lty of the collision detection only by reported for distances between 1 and 2.
about 0.2% points on average.

We implemented our new algorithm in C++. As
of yet, the implementation is not fully optimized.
In the following, all results have been obtained on dn this section, we examine how the runtime de-
2.4 GHz Pentium-1V with 1 GB main memory. pends on the quality of the collision detection.

For timing the performance and measuring the As mentioned in Section 3.1, the runtime and the
quality of our algorithm, we have used a set ofquality can be influenced by the valuesf;, and
CAD objects, each of them with varying complexi- kmin (See also Figure 3): the smalj@f.» Or kmin,
ties (see Figure 1 in the Color Plates Appendix). the shorter is the runtime and, usually, the more er-

Benchmarking is performed by the procedurerors are made.
proposed in Zachmann [22], which computes aver- Figure 11 on the left shows the correlation be-
age collision detection times for a range of distance$ween the runtime ang,,, (car, 20026 polygons).
between two identical objects. The corresponding error rates are shown in the mid-
. i L dle. Obviously, a®..i» increases the error rate de-
4.1 Distribution of Possible Collision Cells reases. There are a few exceptions, where more
One premise of our average-case approach is therrors are made when using a larges;,.. We con-
assumption that the probability of being a possiblgecture that this is caused by pairs of BVs where
collision cell is evenly distributed among all cells corresponding polygons (that do intersect) have a
of the partitioning (see Section 3.1). Here, we givelow probability of intersection. Fap,,.., = 0.9 and
some empirical results suggesting that in practicabm.» = 0.99 the errors differ only by less than 2%
cases this assumption is actually valid. points while forp,..» = 0.9 andp,.:n = 0.5 the

Given an ADB-tree, we can identify corre- errors differ by about 5% points on average (object
sponding cells of all nodes by a number € distances between 1.2 and 2).

{1,...,512}. Thus, for allz we can count over In Figure 11 (right) the timings for differeiit,,
all nodes how often that cell is a possible collision(the humber of pairs of collision nodes that have to
cell throughout the tree (this numbéi(x) < n). be found before the traversal stops) are compared

Figure 8 shows the distribution of the possible(car, 20026 polygons). Due to space limitations, the
collision cells for different models with varying corresponding errors can only be found in the ex-
complexities. tended version of this paper [10]. Only about 0.2%

Obviously, our assumption seems to be met bypoints less errors are madeif,;,, increases from 5
almost all objects occurring in practice. An ex-to 10, while 2% points less errors occurkif,;» is
ception might be the door-lock model wiBd7290 changed from 1 to 5 (object distances between 1.2
polygons, wherenax{db(x)} andmin{db(x)} are and 2). Comparing the timings fét.;, = 5 and
about 30% larger and smaller than the average. kmin = 10, it is questionable whether an increase

4.3 Time versus Quality

999

distribution of possible collision cells (car) distribution of possible collision cells (pipes)

A R

distribution of possible collision cells (lock)
m ii

(i 1 J I
i\ i‘\iii ui4\>5w\ii1\ii| liiiiiiiiiii‘wr

ot A,y ol

12000 25000

— 12624 |
— 62023
— 207290

— 9814
— 21295
— 81932

M
— 20026
— 28167
—— 60755

10000

ot
m iivi \i I i iif W iM i iii ri\i i ii»‘ii Ni,ii“«if\“ 20000

8000

Rl ety

" —124736|'

= /g 15000
5 6000

L A T N

E<]
O 10000

4000

2000 5000

0+
0

0+
0

0

100 200 300

cell number x

400 500 100 200 300

cell number x

400 500 100 200 300

cell number x

400 500

Figure 8: Histogram of the number of timedh(x), cell z occurred as a possible collision cell in the
ADB-tree. The number in parentheses in the legend gives the number of polygons.

in accuracy by 0.2% points justifies a decrease in An interesting extension of our new algorithm
speed by a factor 2.3. would be the modelling of contacts, and an estima-

) tion of separation distance or penetration depth.
4.4 Performance Comparison

A runtime comparison between our approach andRéferences

a DOP tree algorithm can be found in Figure 9.[1] P. K. Agarwal, M. de Berg, J. Gudmundsson,

We have implemented the DOP tree with the same
care as for our new approach. The runtime for the
DOP tree is only shown for a single resolution at
which the highest performance was achieved usin
the DOP tree approach. As you can notice, our alg
rithm is always remarkably faster, e.g., in the case of
the car body our new algorithm is 3 times faster
on averageKmin = 10,pmin = 0.99) and > 6
times faster if the error rate may increase by onI)P]
0.2% points Emin = 5,Pmin = 0.99, see also
Figure 11). (4]

5 Conclusion and Future Work

In this paper we have presented a general method to
turn a conventional hierarchical collision detection[®!
algorithm into one that uses probability estimations
to decrease the quality of collision detection in a
controlled way. To our knowledge, this is the first (6]
approach to this problem.

Our approach is made possible by augmenting
traditional BV hierarchies with just a few addi-
tional parameters per node, which are utilized duryy
ing traversal to efficiently compute the probability
of a collision occurring among the polygons of a
pair of BVs.

We have implemented our new ADB-trees|g]
(average-distribution trees) based on AABBs and
octrees and present performance measurements and
comparisons with a fast traditional algorithm. Thel[9]
results show a speedup of about a factor 3 to 6 with
only about4% error on average. Furthermore, er-

M. Hammar, and H. J. Haverkort. Box-trees and R-
trees with near-optimal query time. Rroc. Seven-
teenth Annual Symposium on Computational Geom-
etry (SCG 2001)pages 124-133, 2001.

S. Ar, B. Chazelle, and A. Tal. Self-customized
BSP trees for collision detectio@omputational Ge-
ometry: Theory and Applicationd5(1-3):91-102,
2000.

S. Ar, G. Montag, and A. Tal. Deferred, self-
organizing BSP trees. IBurographics pages 269—
278, 2002.

R. Barzel, J. Hughes, and D. N. Wood. Plausible mo-
tion simulation for computer graphics animation. In
Proc. Eurographics Workshop Computer Animation
and Simulationpages 183-197, 1996.

J. Dingliana and C. O’Sullivan. Graceful degrada-
tion of collision handling in physically based ani-
mation. Proc. Eurographics 200019(3):239-247,
2000.

S. A. Ehmannand M. C. Lin. Accurate and fast prox-
imity queries between polyhedra using convex sur-
face decomposition.Proc. Eurographics 200120
(3):500-510, 2001.

S. Gottschalk, M. Lin, and D. Manocha. OBB-Tree:
A hierarchical structure for rapid interference detec-
tion. In SIGGRAPH 1996 Conference Prppages
171-180, 1996.

P. M. Hubbard. Approximating polyhedra with
spheres for time-critical collision detectionACM
Transactions on Graphi¢d5(3):179-210, 1996.

J. Klein, J. Krokowski, M. Fischer, M. Wand,
R. Wanka, and F. Meyer auf der Heide. The ran-
domized sample tree: A data structure for interactive

ror rates and performance are almost indepen(:le"\)\t’ewish to thank Birgitta Derenthal, and Jens Krokowski for valu-

of the number of polygons. able discussion and their support. This work is partially supported

Currently, we are investigating the exploitation by DFG grant ME 872/8-1, the Future and Emerging Technolo-

f distributi . d . gies programme of the EU under contract number IST-1999-14186
of curvature distributions in order to improve el’ror(ALCOM-FT),amd the DFG program “Aktionsplan Informatik” by

rates and performance. grant ZA292/1-1.

999

pipes lock

e
®

——9814 . 06 —— 12624
—— 21295 X o ——62023
81932 : . 2 v —— 207290
. DOP (62023)

o
>

—— 124736
1 DOP (9814

time / millisec
°
S
time / millisec
°
>

o
N

04 06 08 1 12 14 16 18 2 22 04 06 08 1 12 14 16 18 2 22 04 06 08 1 12 14 16 18 2 22
distance distance distance

Figure 9: Timings for different models and different polygon couhts:{, = 10 andp,:» = 0.99). Also,
a runtime comparison to a DOP tree is shown (see Section 4.4).

car pipes lock
61 [—20026 81[——o814 9 i 12624
5 28167 71| 21205 8 62023
L, 60755 <6 81932 < Z 207290
% 5511124736 e
53 g4 84
G2 &3 T3
2 2
* 1 1
0+ ——————— 01 —— 0
04 0,6 08 1 12 14 16 18 2 22 04 06 08 1 12 14 18 2 22 04 06 08 1 12 14 16 18 2 22
distance distance distance
Figure 10: Error rates corresponding to the timings in Figure 9.
car (20026 polygons) car (20026 polygons) car (20026 polygons)

037

025 —— pmin=0.99 50 { [— pmin=0.50 025] —— kmin=1
o pmin=0.9 pmin=0.90 " kmin=5
& 02 pmin=0.5 % pmin=0.99 § 02 Kkmin=10
Eo1s 30 = o5 A
- IS) =
g o1 30 @ 01
S | £

0,05 10 S 005 1

o— 0+ o sl e
04 06 08 1 12 14 16 18 2 22 04 06 08 1 12 14 16 18 2 22 04 06 08 1 12 14 16 18 2 22

distance distance distance

Figure 11: Runtime and error comparisons for the car body with 20,000 polygons. Left, center: timings
and error rates for different,,;n, (kmin = 10); right: Timings for differentt,,ir, (Prmin = 0.99).

walkthroughs in externally stored virtual environ- [16] I.J. Palmer and R. L. Grimsdale. Collision detection

[10]

[11]

[12]

[13]

(14]

[15]

ments. InProc. VRST 2002pages 137-146, Hong
Kong, China, 2002.

J. Klein and G. Zachmann. Controlling the error [17]

of time-critical collision detection using ADB-trees.
Tech. Rep. tr-ri-03-242, Institute of Computer Sci-
ence, University of Paderborn, 2003http#/

www.upb.de/cs/janklein

J. Klein and G. Zachmann. Time-critical collision
detection using an average-case approactPrac.
VRST Osaka, Japan, 2003.

J. T. Klosowski, M. Held, J. S. B. Mitchell,
H. Sowrizal, and K. Zikan. Efficient collision detec-
tion using bounding volume hierarchies/ioDOPs.

IEEE Transactions on Visualization and Computer
Graphics 4(1):21-36, 1998.

T. Larsson and T. Akenine-8ler. Collision detec-
tion for continuously deforming bodies. IBuro-

graphics pages 325-333, 2001. short presentation.[21]

J.-C. Lombardo, M.-P. Cani, and F. Neyret. Real-
time collision detection for virtual surgery. In

Proc. of Computer Animatigpages 82—-90, Geneva, [22]

Switzerland, 1999.

K. Myszkowski, O. G. Okunev, and T. L. Kunii.
Fast collision detection between complex solids us-
ing rasterizing graphics hardwar&he Visual Com-
puter, 11(9):497-512, 1995.

999

(18]

[19]

[20]

for animation using sphere-treeBroc. Eurograph-
ics 1995 14(2):105-116, 1995.

M. Shinya and M.-C. Forgue. Interference detection
through rasterizationThe Journal of Visualization
and Computer Animatiqr2(4):132—-134, 1991.

S. Uno and M. Slater. The sensitivity of presence to
collision response. lfProc. VRAIS page 95, Albu-
querque, New Mexico, 1997.

G. van den Bergen. Efficient collision detection
of complex deformable models using AABB trees.
Journal of Graphics Tool2(4):1-14, 1997.

M. Wand, M. Fischer, |. Peter, F. Meyer auf der
Heide, and W. StraBer. The randomized z-buffer
algorithm: Interactive rendering of highly complex

scenes. InSIGGRAPH 2001 Conference Prpc.

pages 361-370, 2001.

G. Zachmann. Rapid collision detection by dynam-
ically aligned DOP-trees. IfProc. VRAIS 1998
pages 90-97, Atlanta, Georgia, 1998.

G. Zachmann. Minimal hierarchical collision detec-
tion. In Proc. VRST 2002pages 121-128, Hong
Kong, China, 2002.

