Supplemental Material for the SIGGRAPH 2005 Poster "The Expected Running Time of Hierarchical Collision Detection"

Jan Klein * University of Paderborn

Gabriel Zachmann[†] Clausthal University

Figure 1: Models of our test suite. From left to right: Infinity Triant (www.3dbarrel.com), lock (courtesy of BMW) and a pipes model.

Figure 2: Number of BV overlap tests depending on the number n of leaves (left, center: artificial BVHs, right: BVHs for models shown in Fig. ??). Left: the distance dc between centers of the root BVs is set to 1. Center: if α_y and α_z are chosen so that $p^{(l)}=0.5$, the number of BV overlap tests is linear in n, independent of the distance dc. Right: plots for our models at distance dc=0.4.

^{*}e-mail: janklein@uni-paderborn.de

[†]e-mail: zach@in.tu-clausthal.de

Figure 3: If p > 0.25, the running time can be expressed by $O(n^c)$ where $0 < c \le 2$. Left: the exponent c for the runtime $T(n) = n^c$ is shown depending on the probability p. Right: T(n) depending on n for different choices of p.

Figure 4: Left: general configuration of the boxes, assumed throughout our probability derivations. For sake of clarity, boxes are *not* placed flush with each other. Middle: The ratio of the length of segments L and L' equals the probability of A_1 overlapping B_1 . Right: ditto for the probability of A_2 overlapping B_1 . In 3D, L and L' are rectangles instead of segments, but the approach is exactly analogous.

Figure 5: Denotations for computing $o^{(l)}$ for a child pair. The case "12" is symmetric to "21", and the case "11" is trivial. Given $o^{(l-1)}$, the x-overlap of $(A^{(l-1)},B^{(l-1)})$, we can easily compute $o^{(l)}$ for each case: $o_{11}^{(l)}=o^{(l-1)},o_{21}^{(l)}=o^{(l-1)}-\omega,o_{12}^{(l)}=o^{(l-1)}-\omega,o_{22}^{(l)}=o^{(l-1)}-2\omega$, with $\omega=a_x^{(0)}\alpha_x^l(1-\alpha_x)$ and $a_x^{(0)}=0$ the extent of the root BV.