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Abstract

We propose a new definition of the implicit surface for a noisy
point cloud that allows for high-quality reconstruction of the sur-
face in all cases. It is based on proximity graphs that provide a
more topology-based measure for proximity of points. The new
definition can be evaluated very fast, but, unlike other definitions
based on the moving least squares (MLS) approach, it does not suf-
fer from artifacts.

1 Moving Least Squares

An appealing definition of the surface over a noisy point cloudP ∈
R3 is the zero setS= {x| f (x) = 0} of the implicit function f (x) =
n(x) · (x− a(x)) [Alexa et al. 2003], wherea(x) is the weighted
average of all pointsP, andn(x) is determined by moving least
squares. Usually, a Gaussian kernel (weighting function)θ(d) =
e−d2/h2

,d = ‖x−p‖, is used, but other kernels work, too.

There are several variations of this simple definition, but for sake
of clarity, we will stay with this basic one. Our new method works
with all of its variants.

The problem with all of them is that the influence of cloud points
p ∈ P is based solely on the Euclidean distance‖x− p‖. This
produces artifacts in the surfaceS(see Fig. 1).

Figure 1: Surface artifacts produced by naı̈ve kernel, shown here
for a 2D point cloud, represented by black dots. Colors encode the
sign and magnitude off (x). Magenta denotesf (x)≈ 0, i.e., points
that would be considered on the surface.

2 New Surface Definition

We propose to use a different kernel that is based on a much more
reasonable proximity measure than the Euclidean distance. It ap-
proximates geodesic distances onS by utilizing a geometric prox-
imity graph overP. From the variety of different proximity graphs,
we have examined the Delaunay graph DG(P), with additional
pruning, and a variant of the sphere-of-influence graph SIG(P)
[Jaromczyk and Toussaint 1992]. In such proximity graphs, nodesp
andq are connected by an edge if some geometric predicate holds.
The length of an edge is the Euclidean distance‖p− q‖ (or any
other metric). The length of the path between two indirectly con-
nected nodes is a function over its edges’ lengths (not necessarily
just the sum).
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Based on the proximity graph, we compute aclose-pairs shortest-
paths (CPSP) matrix, which is a subset of the all-pairs shortest-
paths matrix. Under reasonable assumptions about the point cloud,
this is sufficient and can be computed in timeO(n) for a 3D point
cloud (n = |P|).
We now define the new kernel as follows. Given some location
x, we compute its approximate nearest neighborp∗ ∈ P; using a
simple k-d tree, this can be done inO(log3n) in 3D.
Starting fromp∗, we determine the distanced(p∗,p) for anyp∈P
as the accumulated length of the shortest path fromp∗ top. This can
be retrieved readily from the precomputed CPSP matrix.
Both the DG(P) and the SIG(P) can be computed efficiently in
O(n) time in 3D for uniformly sampled point clouds. Since the
DG(P) yields a neighbor relation that also includes “long dis-
tance” neighborhoods, some shortest paths can “tunnel” through
space that should really be a gap in the model. Therefore, we prune
edges from DG(P) based on the computation of the local density
of the point cloud.
In contrast, the SIG(P) must be “augmented” by edges, in order to
prevent too many, unreasonably unconnected components. There-
fore, we increase the influence of the nodes in the graph based on
the radius of the k-th nearest neighbor.

3 Results and Conclusion
Our new surface definition over point clouds yields implicit func-
tions, the zero sets of which are much closer to the original surface
(see Fig. 2). This is verified by a series of tests for a number of
different point clouds.
It is easy to implement and can be easily integrated with existing
frameworks based on MLS, such as local polynomial approxima-
tions. The only additional data structure is a matrix of sizeO(n)
encoding all close-pairs shortest-paths in a proximity graph and a
k-d tree. Both data structures can be constructed efficiently.
The asymptotic complexity of our new geodesic kernel is of the
same order as the Euclidean kernel, and our experimental results
show thatf (x) can be computed as fast as before.

Figure 2: With our new definition, there are far fewer artifacts and
there is much less bias (same point clouds as in Fig. 1).
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