Supplemental Material for the Siggraph Sketch
“Nice and Fast Implicit Surfaces over Noisy Point Clouds”

Jan Klein Gabriel Zachmann
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Figure 1: Visualization of the implicit functioi(x) over a 2D point cloud. The kernel for the moving least squares is based on Euclidean
distance or, resp., one of the proximity graphs shown in Figure 2. Poiat&2 with f(x) ~ 0, i.e., points on or close to the surface, are
shown magenta. Red denoté&) >> 0 and blue denote§(x) < 0. (a) point cloud; (b) reconstructed surface using a Euclidean kernel
and the covariance matrix definedBg = ZE:19(||X =Pkl (Pk — i) (P; —Xj); (c) utilizing a covariance matrix centeredak) instead

of x produces a better surface, but it still has several artifacts; (d) surface and fuhttiobased on our more geodesic kernel using the
sphere-of-influence graph.
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Figure 2: Different proximity graphs. (a) Delaunay graph@®), (b) DG(Z?) where edges are pruned according to a global sample density,
(c) pruning by first quartile, (d) pruning by second quartile, (e) sphere-of-influence grag31G
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Figure 3: If the proximity graph is too thin or too dense, artifacts can occur. On the one hand, we prune the standard Delaunay graph. On the
other hand, we augment the standard @¥3 by edges, in order to prevent too many, unreasonably unconnected components. Therefore, we
increase the influence of the nodes in the graph based on the radfitie k-th nearest neighbor, which reflects local point density. Top row:

(a) DG(Z?) where edges are pruned by second quartile, 1G(%?), (c) 2— SIG(Z?), (d) 3— SIG(Z?). In our experiencek = 3 ork = 4

has always worked quite well. Bottom row: the surfaces resulting from these proximity graphs.
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source (a) RMSE=2.50 (b) RMSE=3.49 (c) RMSE=14.68 (d) RMSE=10.45 (e) RMSE 5.86

Figure 4: Root mean square error (RMSE) for a noisy point cloud (left: original surfac&)G(@y?) with edges larger than second quartile
are pruned, (b) 2 SIG(Z?), (c) Euclidean distance kernel, (d) same with reduced bandwid#) Euclidean distance kernel with optimal
bandwidthh that yielded the minimum RMSE; notice the inferior surface quality.
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Figure 5: Left: RMSE depending on the kernel bandwidithaf the Figure 6: Average evaluation time df(x) depending on the
points. The 4- SIG(#?) allows for the best results (lowest RMSE). kernel bandwidthh (size of point cloud: ¢1500 points). The
Right: (a) original surface, (b) corresponding noisy point cloud. timings for 3-SIG and DG are nearly identical (therefore, we

omit one curve). Please note that our implementation is not yet
fully optimized.



Figure 7: More examples. Left: Euclidean kernel; right: egodesic kernel.

Figure 8: More examples. Left: Euclidean kernel; right: egodesic kernel.



