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Surface Definition based on MLS

: weighted average of points at location x

is determined by moving least squares (MLS):

for fixed x and ||n(x)||=1.Minimize

kernel bandwidth

original surface

• Surface can be approximated by implicit function, i.e., 
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Artifacts

1. Unwanted zero sets
2. Bias

Surface reconstruction based on conventional MLS
can suffer from artifacts:

(Artifacts at borders have already been dealt with [Adamson & Alexa, 2004]).
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• Approximating and Intersecting Surfaces from Points [Adamson & Alexa, 
2003]

• Curve Reconstruction from Unorganized Points [Lee, 2000]

• Multi-level Partition of Unity Implicits [Ohtake et al., 2003]

• Smooth Surface Reconstruction via Natural Neighbour Interpolation of 
Distance Functions [Boissonnat & Cazals, 2000]

Related Work
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Our Contribution

• New definition of an implicit surface over a (noisy) point cloud.

• New kernel that approximates geodesic distances using a proximity graph.

• The performance is of the same order as that of the Euclidean kernel.

• Artifacts and root mean square error are significantly reduced.

Euclidean kernel our new geodesic kernel
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New Point Cloud Surface Definition
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Geodesic Distance Approximation

• Take topology of S into account → approximate geodesic distances on S.

• Use a proximity graph where nodes are points in P:

• compute nearest neighbor p* of x.

• d(p*,p) shortest path in graph from p* to p.

original surface
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Close-Pairs Shortest-Paths (CPSP)

• CPSP, which is a subset of APSP, can be precomputed in O(N). 

• decays quickly → compute only paths up to some length r.

• For each pi: SSSP for all points in sphere Si around pi with radius r. 

• If points are uniformly distributed and r =m⋅r(P) → O(1) points in Si.

sampling radius r(P) sphere with radius m⋅r(P) can be covered
by O(m3) spheres with radius r(P)  [Rog63]

h should be chosen so that points up to a distance 
m⋅r(P) around a pi have an influence [KZ04].
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Proximity by Delaunay Graph

• Geodesic distances can be approximated by shortest paths on edges of DG(P).

• Some edges can “tunnel” through space. 

• Prune edges longer than global sampling density or use an 
outlier detection algorithm.

• Best results are achieved by pruning edges with length > Q2 (median).

DG(P)       global           >Q1 >Q2
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Proximity by Sphere-of-Influence Graph

• SIG is sparse: < 18⋅N edges (N = # nodes).

• SIG is not a subgraph of DG.

• Radius of influence: ri = ||pi - nearest(pi)||.

• pi and pj are connected, if ||pi – pj|| ≤ ri + rj → connect points that are locally close.
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r-SIG

• Problems with simple SIG in noisy or
irregularly sampled point clouds: 

• “mini-clusters”
• "detours"

• Consequence:
approximate geodesic distances
are imprecise, because

• close points can only 
indirectly be accessed

• some points are not considered 
due to unconnected components.

• Our solution:
r-th order SIG: use sphere determined by 
r-nearest neighbor.

1-SIG 2-SIG 3-SIG
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Reducing Discontinuities

• Discontinuities in f and S can occur at borders of Voronoi regions.

• ||x1 – x2|| ≈ 0, but ||p*(x1) – p*(x2)|| is “large”.

= k-nearest neighbors of x that are reachable from nearest neighbor.
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Complexity for the 3D Case

• Pre-computations (under reasonable assumptions):

• DG(P) can be determined in O(N) [Attali & Boissonnat, 2002]

• r-SIG(P) can be determined in O(N) on average [Dwyer, 1995]

• CPSP can be determined in O(N).

• Run-time:

• Nearest neighbor in O(log N) by a Delaunay hierarchy [Devillers, 2002].

• BFS allows to determine all points in a sphere around p* of radius m⋅r(P) in O(1).

→ f(x) can be evaluated in O(log N)
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Results
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Fast Evaluation

• The performance for both kernels is of the same order.
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Quality

• Artifacts can be reduced significantly.

Euclidean kernel geodesic kernel
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RMSE depending on Bandwidth

• RMSE:                                    is sampling of the original surface. 

• For nearly all h, our new kernel yields a smaller RMSE.

• New kernel is less sensitive towards h.

• SIG seems to achieve better results in several examples.

point cloud “parallel lines“ point cloud “star“
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RMSE depending on k and r

• Two parameters k and r ( || … ||geo(k) and r-SIG) are very robust.

• If k and r are ∈ [3…6], very similar results are achieved.

r-SIG

point cloud “parallel lines“
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Conclusions and Future Work

• Our new definition of implicit functions over noisy point clouds yields surfaces 
that are much closer to the original surface.

• Less artifacts

• Auxiliary data structures can be constructed efficiently 
and consume only O(N) space.

• f(x) can be evaluated fast

• Models with boundaries. 

• Deformable point clouds.

• Automatic detection of kernel bandwidth by proximity graph.

Future Work
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