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Abstract

A general framework for collision detection is presented.

Then, we look at each stage and compare different ap-
proaches by extensive benchmarks. The results suggest
a way to optimize the performance of the overall frame-
work.

A benchmarking procedure for comparing algorithms
checking a pair of objects is presented and applied to
three different hierarchical algorithms. A new convex
algorithm is evaluated and compared with other ap-
proaches to the neighbor-finding problem.

Keywords: Convex hulls, incremental collision detec-
tion, hierarchical data structures, grid, octree.

1 Introduction

Collision detection is one of the enabling technologies
for many types of physically-based simulation. Such
simluations become increasingly important in VR ap-
plications like virtual prototyping in order to make them
functionally more rich and mature. Other areas are an-
imation systems, robotics, and games.

While there is a wealth of literature on collision detec-
tion algorithms, only few papers describe and evaluate
a complete collision detection system. In addition, there
are only few evaluations as to which algorithms should
be combined in order to maximize performance.

In this paper we will present the collision detection
pipeline which serves as a framework for collision de-
tection systems (see Section 3). It is generic in that most
algorithms presented in the literature can be applied in
the respective stage.

We will then look at each stage of the pipeline and
evaluate and compare various approaches. Section 4
evaluates several hierarchical algorithms, while Sec-

tion 5 presents different approaches to neighbor-finding,
including a new algorithm for convex objects. Finally,
results on parallelization are presented.

In the following, all experiments have been carried
out on a SGI R10000 194 MHz. All times are (unless
otherwise noted) in millseconds.

2 Related work

Research so far has mainly focused on algorithms for
the collision detection problem, given a pair of objects.
Hierarchical algorithms for polygonal objects have been
presented by [GLM96, KHM*98, Zac98, Hub95, OD99,
NAT90]. Non-hierarchical approaches have been pre-
sented by [MPT99, Gei00]. Incremental convex algo-
rithms have been presented by [CLMP95, vdB99, Chu96].

Algorithms for reducing the number of pairs to be
tested have been presented by [CLMP95, BF79, PS90,
YW93, Hub93].

A system solving the dynamic pre-fetching of ob-
jects and auxiliary data, if the complete environment
does not fit in main memory, has been described by
[WLML99], while [AGT99] have presented a collision
detection system for haptic rendering.

3 The pipeline

Collision detection can be regarded as a pipeline of suc-
cessive filters. This concept is somewhat similar to the
concept of a rendering pipeline ([A]88, Bar97, MEP92])
or visualization pipeline. The input of the collision de-
tection pipeline is a set of objects, while the output is a
set of pairs of objects (and possibly polygons).

The front end of the pipeline consists mainly of a
queue which stores objects, registration commands, and
registration queries. Modules interested in collisions
will enter commands and objects registering them with
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Figure 1: Collision detection can be considered as a pipeline of successive filters for pairs of objects. The front end
consumes single objects while the back end produces pairs of colliding objects.

the collision detection module. This is usually done
during the initialization of the system, but can be use-
ful at run-time, too. Likewise, modules can register and
unregister interest in the collision of pairs of objects at
any time.

During run-time, objects, together with their current
position, are entered in the queue when they have been
moved. Exactly when they are entered is determined by
either of two cases: either the object handler does it sort
of “anonymously” whenever a transformation of that
object is changed, or each module does it itself when
a new position of the object has been calculated. The
former case is usually more convenient if an object can
be moved by different independent modules, while the
latter case is more convenient if an object is solely under
the control of one module.

Conceptually, the front end passes on all possible
pairs of objects down the collision detection pipeline
(see Figure 1). After the front end, the collision inter-

est matrix filters out all object pairs of no interest. After
that, object pairs are filtered further by two neighbor-
finding stages and finally by an exact collision test (polyg-
onal collision algorithms can be considered another fil-
ter before the polygon-polygon test). Why and when
we propose two neighbor-finding stages will become
clear in Section 5.

In the following, we will look at each stage in more
detail, beginning with the back end.

4 Obiject level

At this level, we are given one pair of objects and have
to determine their collision status. Research has shown
that hierarchical algorithms can solve this problem very
efficiently.

Although a lot of hierarchical algorithms have been
published in recent years, it has not been clear how they



Figure 2: Our suite of test objects. They are (left to right): a car headlight, the lock of a car door, body and seats of a
car, hose of a car engine, sphere, hyperboloid, torus. (Data courtesy of VW and BMW)

compare to each other. In order to optimize the collision
detection pipeline, one would like to know which algo-
rithm to use at the back end. Maybe there is no single
best algorithm, and different algorithms perform best
for different complexities or types of objects.

In this section, we will compare three algorithms:
OBB-trees [GLM96], BV-trees of k-dops [KHM 98], and
DOP-Trees [Zac98]. The latter two use the same type of
bounding volume, but different algorithms for check-
ing the overlap of two BVs. The former uses oriented
bounding boxes. In contrast to [Zac98], we have deter-
mined 24 as the optimal number of orientations. For the
comparison, we used the implementations Rapid and
QuickCD [Got97, KHM99].

We have chosen these three algorithms because they
work on the same polygonal representation of objects.
If algorithms using different representations are to be
compared (such as those utilizing point clouds [MPT99,
Gei00]), then great care must be exercised so that the er-
ror induced by the different representations is the same
with respect to the original curved surfaces.

4.0.1 Benchmark procedure

We have found, that it is extremely difficult to compare
collision detection algorithms, because in general they
are very sensitive to conditions and scenarios, such as

the relative size of the two objects, the relative position
to each other, the distance, etc. Even the orientation of
the object with respect to its object frame can have a
significant impact on the BV-tree and hence on the effi-
ciency [Zac00, Fig. 3.36].

Our test scenario involves two identical objects which
are positioned at a certain distance d = dstart from each
other. The distance is computed between the centers of
the bounding boxes of the two objects; objects are scaled
uniformly so they fit in a cube of size 23. Then, one of
them performs a full tumbling turn about the z- and
the x-axis in a fixed, large number of small steps (here
2000). With each step a collision query is done, and the
average collision detection time for a complete revolu-
tion at that distance is computed. Then, d is decreased,
and a new average collision detection time is computed,
which yields graphs such as those shown in http://
www.igd.fhg.de/ zach/coldet/index.html. This pro-
cedure is repeated for several different initial object ori-
entations, i.e, object frames, which can make a differ-
ence when constructing the BV tree. The object frame is
rotated about the axis (1,1, 1) so as to neutralize “align-
ments” of the geometry. When plotting the average col-
lision detection time, we average over all “interesting”
distances and all object frames. Here, we have chosen
the range from 2 distance steps before the contact dis-
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Figure 3: Results for the suite of benchmark object as shown
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in Figure 2 (headlight, headlight, door lock, car body, hose,

sphere, hyperboloid, torus). All times have been obtained on a R10000 194MHz, averaging over distance, orientation,

and object frame.

tance through 2 steps after. We believe this reflects rep-
resentative situations for collision detection.

We have carried out extensive experiments with both
synthetic and real-world CAD objects (see Figure 2). All
timings include vertex and normal transforms.

4.1 Results

Figure 3 shows the results of our benchmark suite. The
QuickCD algorithm performs much worse than Rapid
and our DOP-tree. In addition, it depends much more
on the number of polygons. In contrast, Rapid and
DOP-tree depend very little on the number of polygons,
where Rapid depends less; in some cases, collision de-
tection time even decreases slightly as the number of
polygons increases. For most objects, the DOP-tree is
faster, for some it is significantly faster, while Rapid is
slightly faster for others.

With one object (the door lock), there is a remark-
able decrease in collision detection time; we are not
sure why that is, but we suspect this is because with
a finer tesselation the BV-tree construction algorithms
get a better chance of producing good BV hierarchies.
Another reason might be that with this particular ob-
ject the bulk of the polygons are interior ones.

5 Global level

At the global level, we have the “all-pairs” problem
similar to the object level. Here, the basic primitives

are objects. So, in an early stage of the pipeline we need
a “neighbor-finding” filter (or several). At this stage,
objects must be represented by some simple bounding
volume, usually its bounding box or convex hull. Un-
fortunately, methods suitable for the object level, where
the primitives are polygons, are not suitable here, be-
cause usually objects maintain no spatial relationship
to each other.

There are basically two methods to solve the problem,
both of which exploit the assumption of a fairly uni-
form distribution of objects throughout the “universe”.
By this assumption, each object has a small number
of “neighbors” (in some sense). One class of methods
utilizes space partitioning data structures (possibly hi-
erarchical ones), the other class is “object-oriented” in
the sense that objects are maintained in a hierarchy or
sorted in some order.

A hierarchical approach has been proposed by [YW93].
The idea is to improve neighbor-finding performance
by a hierarchy of bounding volumes such as the scene
graph. The complexity is at least nlog n bounding vol-
ume tests. The problem with this approach is that hier-
archies generally need to be rearranged as objects move
around in order to stay efficient. Because the hierarchy
degrades all over, the hierarchy cannot be updated in-
crementally.

The approach pursued by [CLMP95, BF79, PS90] is
the sweeping plane. It works at “object precision” and
has a complexity of at least o(n). Since bounding vol-
umes are sorted along one axis, the data structures lend
itself quite well to incremental updates. A problem is
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Figure 4: Comparison of grid, octree, and "2—2 bounding box
tests. The graph labeled “grid 14" corresponds to a grid
with 143 cells; similarly for the other graphs.

that the sweep plane could potentially intersect many
bounding volumes although they are very far from each
other.

We have evaluated two space indexing approaches,
namely the grid and octree [Ove88, GA93, MSH 92,
HT92]. The advantage of space indexing approaches is
that they work “locally” (defined by the cell size), with
the price that they do not work at object precision but
at cell precision. Our implementations of grid and oc-
tree work incremental so that only those cells have to
be visited which need to be changed [Zac00]. The com-
plexity depends on the size of objects, the granularity
of the data structure, and the number of neighbors.

Figure 4 shows the results of a coparison of octrees,
grids, and the naive n2-method. The scenario is 1 ob-
jects moving inside a cube (no exact collision detection).
In order to keep the density! constant as the number of
objects increases, the size of the cube has been increased
accordingly.

In dynamic environments, octrees seem to be always
less efficient than grids. This is in contrast to results
obtained by [MSH92] for ray tracing, which suggest
octrees in favor over grids. Another result is that with
very small numbers of objects, the n2-method performs
better than the grid.

Here, density is defined as the average number of bounding volume
overlaps per frame.

5.1 Convex hull test

Convex hulls are much tighter bounding volumes than
bounding boxes, so we tried to determine whether or
not a convex hull test would gain any performance.

We have chosen to use a convex hull algorithm which
trades accuracy for speed, i.e., it is probabilistic. Since
in our case there is always an exact collision detection
check after the convex hull test, this does not introduce
wrong results.

The convex algorithm We have developed an algo-
rithm which just needs the set of vertices of the con-
vex hull and its adjacency map. The algorithm is based
on the notion of linear separability: P and Q do not
intersect iff there is a plane h such that all vertices
of P and Q are on different sides. Such a plane is
called a separating plane. Let P = {p!,...,p"},Q =
{q',...,9"} C R3; then, P and Q are linearly sepa-
rable, iff Jw € R3,wy € RVi,j: (p,—1)- (w,wp) >
0, (—¢/,1) - (w,wg) > 0.

The algorithm is based on the perceptron learning
rule [HKP91]. Let Z = {z} := {(p/, 1), (—¢/,1)} be
the set of vertices, and w? an initial plane. If @' is not a
separating plane, i.e.,, 3z : z-w' < 0, then a new plane
is computed by w'*! := w! + 7 - z. 17 is a “temperature”
which is used for simulated annealing. The algorithm
terminates when a separating plane has been found, or
when the maximum number of loops has been reached.

By saving the plane w for each pair of objects, this al-
gorithm can be turned into an incremental algorithm
very easily. In addition, checking whether or not a
plane is separating can be done very quickly by hill-
climbing, because the two sets of vertices are known to
be convex.

We have found that a maximum number of 300 loops
is sufficient, i.e., the algorithm either has determined
a separating plane or it will never determine one, no
matter how many more loops are being performed.

Comparison with Lin-Canny We compared the sepa-
rating planes algorithm with the Lin-Canny algorithm
as implemented in I_collide [CLM"]. The benchmark-
ing procedure is comprised of two spheres, one of them
stationary, the other orbiting around the first with vari-
ous distances. For the separating planes algorithm, the
maximum number of steps was set to 300. Times are
averaged over 5,000 samples for each distance. At all
distances, there were only 0-3 wrong results, except for
distance 2.000060 which yielded 1256 wrong results.
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Figure 5:  Comparison of |_collide and our separating planes algorithm with respect to distance, number of polygons,

and rotational velocity. In the upper two graphs, the numbers in parentheses denote the number of polygons of each
object. In the lower left graph, the numbers in parentheses denote rotational velocity. In the lower right graph, the

numbers denote polygon count.

Figure 5 shows how the two algorithms depend on
various parameters, namely distance, number of poly-
gons, and rotational velocity.

In addition to being about twice as fast, it seems that
the separating plane algorithm is much more robust
than I_collide [Zac00, Sec. 3.4.3]. Maybe these problems
persist because Voronoi regions are magnified a little bit
in order to avoid other problems.

5.2 Comparison of neighbor-finding algo-
rithms

2
In order to determine the optimal neighbor-finding al-

gorithm, one has to benchmark each one with subse-

quent exact collision detection,? because there are a lot
of interactions.

On the one hand, grids are essentially in O(n), while
the separating planes algorithm and I_collide are in
O(n?). On the other hand, there is quality: by this
we understand how often a neighbor-finding algorithm
passes a pair of objects to the exact collision detection
although they do not collide. Obviously, the grid has a
lower quality than convex hull based algorithms. An-
other property is the dependence on object complexity:
the grid is independent of object complexity, while con-
vex hull based algorithms usually depend on it.

If one would do a timing of only the neighbor-finding algorithms,
then the trivial one, which passes all pairs on to the exact collision
detection, would win.
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Figure 6 shows that there is a break-even point: with
only very few objects, the convex hull based algorithms
perform better because of their better quality; with many
objects, the grid performs better because of its O(n)
complexity. It seems also, that for few objects with
very low complexity, the Lin-Canny algorithm is better
suited than the separating planes algorithm for neighbor-
finding. Surprisingly, the brute-force approach testing

"2—2 bounding boxes performs very well; it seems to have
a very small constant factor, so that it will exhibit the
n?-characteristic only with many more objects than 100.

5.3 Implications

Assuming that objects have at least a moderate polygon
count (> 1000), the collision detection pipeline should
implement both the separating planes algorithm and a
grid for the neighbor filtering stage.

With 5 or less objects, the naive approach testing ”2—2
bounding boxes should be used. With 10-30 objects,
the separating plane algorithm alone should be used.
And with more than 50 objects a grid should be used.
Of course, these thresholds will depend somewhat on
object complexity.

Since grids are outperformed by the separating planes
algorithm with low object numbers, we believe that a
further performance gain can be achieved by combin-
ing the two: object pairs passing the former should be 5
further filtered by the latter. Assuming that the first4
neighbor-finding stage needs time Ts(n), i.e., assuming

it has inear complexity,® such an approach is more effi-
cient if
n?  Ts(n)
< _
TP

P, S (7’1) 2
where Ps(n) is the number of pairs passing the first
neighbor-finding stage (like the grid) and T, is the time
needed for one neighbor-test of the second stage (like a
convex algorithm).

6 Parallelization

The collision detection pipeline offers several possibil-
ities of parallelization: pipelining, concurrency, coarse-
and fine-grain parallelization. We have not yet investi-
gated a parallel pipeline, i.e., running each stage of the
pipeline concurrently to the others. Making the whole
collision detection pipeline concurrent to other mod-
ules of the system is very easy: since our framework al-
ready provides a queue at the front-end, this only needs
to be implemented as a double-buffer with access con-
trol.4

At the back-end, several pairs of objects can be
checked simultaneously, using dynamic workload allo-
cation, which we call coarse-grain parallelization. This
yields very good speedups, provided there are always
enough pairs passing through the neighbor-filtering

Grids meet this assumption.
We have, of course, implemented our collision detection module con-
currently, and the results are entirely satisfying.
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stage, i.e., the environment is dense enough. Figure 7
shows some timing results for a scenario where sev-
eral objects are bouncing off each other inside a cube.
The timing includes all stages of the collision detection
pipeline, although only the back-end has been paral-
lelized. It has been carried through on a 6-processor
194 MHz R10000 Onyx.

Sometimes, only one object pair passed through the
neighbor-filter. In that case, a parallel version of the ex-
act collision detection algorithm itself should be used.
For hierarchical algorithms, a dynamic load-balancing
scheme should be used, because different branches of
the BV-tree need to be descended to highly different
levels. The implementation must be careful, otherwise
synchronization overhead will be too high.

7 Conclusion and future work

We have presented the pipeline as a general framework
for collision detection systems. This pipeline consists of
several stages, filtering lists of pairs of objects.

We have compared three different hierarchical colli-
sion detection algorithms. Our extensive experiments
suggest that the DOP-tree algorithm [Zac98] is to be
preferred over Rapid [GLM96] and QuickCD [KHM 98]
in most cases, where it is about a factor 2 faster.

A probabilistic algorithm for collision detection of
convex objects has been presented and compared to the
Lin-Canny algorithm [LC92]. We have found that our
probabilistic algorithm performs about twice as fast,
while producing only about %.wrong answers.

In order to evaluate the importance of the quality of
a neighbor-finding method versus its speed, we have
compared four different methods. Our experiments in-
dicate that with few objects, a more precise but a bit
slower convex algorithm should be preferred, while for
large object numbers, the grid or bounding box method
performs better.

Finally, we have evaluated the performance of a par-
allelized back-end of the pipeline. Our results show
that if the density of the environment is large compared
to the number of processors, then good speed-ups can
be yielded, although we have not parallelized the rest
of the pipeline.

So far, our parallelization still contains some sequen-
tial sections and barrier synchronizations. It would be
interesting to investigate further speed-ups by other
schemes such as a parallel pipeline, or by extending our
scheme to all stages of the pipeline.

For the neighbor-finding stage, the sweep-and-prune
algorithm proposed by [CLMP95] would be interest-
ing to compare to the algorithms considered in this
paper. In addition, we would like to verify our hy-
pothesis explained above, that combining a grid with
a subsequent convex algorithm (such as our separating
planes algorithm) would improve the performance of
the neighbor-finding stage for large object numbers.

Besides comparing further hierarchical algorithms us-
ing our benchmark suite (like sphere trees [Hub95]),
non-hierarchical algorithms like [MPT99, Gei00] should
be considered as well. In order to do that fairly, errors
resulting from different representations must be taken
into account.
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