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Abstract

In this paper, we present a novel approach for parallel sorting on stream processing architectures. It is
based on adaptive bitonic sorting. For sorting n values utilizing p stream processor units, this approach
achieves the optimal time complexity O((nlogn)/p).

While this makes our approach competitive with common sequential sorting algorithms not only from a
theoretical viewpoint, it is also very fast from a practical viewpoint. This is achieved by using efficient
linear stream memory accesses and by combining the optimal time approach with algorithms optimized
for small input sequences.

We present an implementation on modern programmable graphics hardware (GPUs). On recent GPUs,
our optimal parallel sorting approach has shown to be remarkably faster than sequential sorting on the
CPU, and it is also faster than previous non-optimal sorting approaches on the GPU for sufficiently large
input sequences. Because of the excellent scalability of our algorithm with the number of stream processor
units p (up to n/ log? n or even n/ log n units, depending on the stream architecture), our approach profits
heavily from the trend of increasing number of fragment processor units on GPUs, so that we can expect
further speed improvement with upcoming GPU generations.

1 Introduction

Sorting is one of the most well-studied problems in computer science since it is a fundamental problem in
many applications, in particular as a preprocessing step to accelerate searching. Due to the current trend
of parallel architectures finding their way into common consumer hardware, parallel algorithms such as
parallel sorting are becoming more and more important for the practice of programming.

While the classical programming model used in languages like C/C++ had been very successful for the
development of non-parallel applications as it provides an efficient mapping to the classical von Neumann
architecture, this model does not map very well to next generation parallel architectures which demand
further input from the programmer to exploit the parallelism of an algorithm more effectively. For de-
veloping efficient applications on such architectures with maximum programmer productivity, alternative
programming paradigms seem to be required [Ama05]. The stream programming model has shown to be
a promising approach going in this direction. Furthermore, the stream programming model provided the
foundations for the architecture of modern programmable high-performance graphics hardware (GPUs) that
can be found in today’s consumer hardware.

However, sorting on stream architectures is not much explored until now. Recent work on sorting on
stream architectures includes several approaches based on sorting networks with O(n log2 n/p) average
and worst-case time, but to our knowledge no sorting algorithms for stream processors with optimal time
complexity O(n logn/p) have been proposed so far.

Our approach, which is based on Adaptive Bitonic Sorting [BN89], achieves this optimal time complexity
on stream architectures with up to p = n/ log n processor units. The approach can even be implemented on
stream architectures with the restriction that a stream must consist of a single contiguous memory block, in

* A shortened version of this paper appeared in [GZ06]
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which case the optimal time complexity is achieved up to p = n/ log” n units. Altogether this means that
our approach will scale well to practically any future stream architecture.

Although we specify our approach completely in a general stream programming model, it has been
designed with special attention to the practicability on modern GPUs, hence the name GPU-ABiSort. The
GPU implementation and timings we provide in this paper show that our approach is not only optimal
from a theoretical viewpoint, but also efficient in practice. Because of the scalability of our approach, we
conjecture that the performance benefit of our parallel algorithm compared to sequential sorting will be even
higher on future GPUs, provided that their rapid performance increase continues.

The rest of this paper is organized as follows: In Section 2 we will describe the related work on GPU-
based sorting and on parallel sorting in general. In Section 3 we will summarize the stream programming
model that lays the foundations for the specification of our approach. In Section 4 we will recap and
slightly improve the classic adaptive bitonic sorting in the sequential case. We will present our novel
optimal parallel sorting approach on stream architectures in Section 5 and supplement the description with
some GPU-specific details in Section 6. In Section 7 we will show how to combine this asymptotically
optimal approach with algorithms specifically tuned to small input sequences to obtain an even better overall
performance in practice. Finally, we will provide the timings of our GPU implementation in Section 8. In
addition, Appendix A provides a documented pseudo code of our sorting approach on stream architectures.

2 Related work

2.1 Optimal parallel sorting

Many innovative parallel sorting algorithms have been proposed for several different parallel architectures.
For a comprehensive review, we refer the reader to [Ak190].

Especially parallel sorting using sorting networks as well as algorithms for sorting on a CREW-PRAM
or EREW-PRAM model have been extensively studied. Ajtai, Komlos, and Szemeredi [AKS83] showed
how optimal asymptotic complexity can be achieved with a sorting network. Cole [Col88] presented a
parallel merge sort approach for the CREW-PRAM as well as for the EREW-PRAM, which achieves optimal
asymptotic complexity on that architecture. However, although asymptotically optimal, it has been shown,
that neither the AKS sorting network nor Cole’s parallel merge sort are fast in practice for reasonable
numbers of values to sort [GR88, Nat90].

Adaptive bitonic sorting [BN89] is another optimal parallel sorting approach for a shared-memory EREW-
PRAM architecture (also called PRAC for parallel random access computer). It requires a smaller number
of comparisons than Cole’s approach (less than 2nlogn in total for a sequence of length n) and has a
smaller constant factor in the running time. Even with a small number of processors it is efficient: In its
original implementation, the sequential version of the algorithm was maximally 2.5 times slower than quick
sort (for sequence lengths up to 2!%) [BN89].

Besides, the main motivations for choosing this algorithm as basis for our parallel sorting approach on
stream architectures were the following observations: First, adaptive bitonic sorting can run in O(log2 n)
parallel time on a PRAC with O(n/logn) processors. This allows us to develop an algorithm for stream
architectures with only O(log2 n) stream operations, as we will show in this paper. Note that a low number
of stream operations is a key requirement for an efficient stream architecture implementation (see Section
3.1). Second, although originally designed for a random-access architecture, adaptive bitonic sorting can be
adapted to a stream processor, which does not have the ability of random-access writes, as we will show in
this paper.

Adaptive bitonic sorting is based on Batcher’s bitonic sorting network [Bat68], which is a conceptually
simpler approach that achieves only the non-optimal parallel running time O(log2 n) for a sorting network
of n nodes.

2.2 GPU-based sorting

Several sorting approaches on stream architectures have been published so far. Apparently all of them are
based on the bitonic or similar sorting networks and thus achieve only the non-optimal time complexity
O((nlog®n)/p) on a stream architecture with p processor units (in worst and average case since sorting
networks are data-independent).
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Purcell et al. [PDC*03] presented a bitonic sorting network implementation for the GPU which is based
on an equivalent implementation for the Imagine stream processor by Kapasi et al. [KDR*00]. Kipfer et
al. [KSW04, KW05] implemented a bitonic as well as an odd-even merge sort network on the GPU.

Govindaraju et al. presented an implementation based on the periodic balanced sorting network [GRMO05]
and, more recently, also an implementation based on the bitonic sorting network [GRHMO5]. The latter has
been highly optimized for cache efficiency and is the fastest of the approaches above. On an NVIDIA
GeForce 7800 GTX GPU it performs more than twice as fast as the best quick sort implementation on a
single-core Intel Pentium IV CPU (up to the maximum data size that can be handled on such a GPU). How-
ever, because of the non-optimal time complexity of the bitonic sorting network it is not clear to what extent
their approach will be competitive to optimal sorting on the CPU in the future, especially with the advent
of multi-core CPUs, on which optimal parallel sorting can be implemented. As in other bitonic sorting
network based approaches, their GPU implementation is restricted to power-of-two sequence lengths.

In a recent paper [GGKMO5], Govindaraju et al. embedded the GPU-based bitonic sorting algorithm into
a hybrid CPU/GPU sorting approach which is capable of processing large out-of-core databases and wide
sort keys. This is achieved by adding a key generator stage and a reorder stage, which are performed on the
CPU, as well as separate reader and writer stages to transfer data between disks and main memory using
direct memory access (DMA). The resulting hybrid bitonic-radix sort technique utilizing GPU and CPU
demonstrates nicely how GPU-based sorting in general can be made applicable to large databases and wide
sort keys independent of current GPU register and memory size restrictions. This technique should also be
transferable to alternative GPU-based sorting approaches.

3 The stream programming model

3.1 The basics

In the stream programming model [KDR*00, Owe02, BFH*04, Owe05], the basic program structure is
described by streams of data passing through computation kernels. A stream is an ordered set of data of
an arbitrary (simple or complex) data type. Kernels perform computation on entire streams or substreams,
usually by applying a function to each element of the stream or substream (in parallel or in sequence).
Kernels operate on one or more streams as inputs and produce one or more streams as outputs.

Programs expressed in the stream programming model are specified at two levels: the stream level and
the kernel level (possibly using different programming languages at both levels). Computations on stream
elements, usually consisting of multiple arithmetic operations, are specified at the kernel level. At the stream
level, the program is constructed by chaining these computations together.

Furthermore, at the stream level it is possible to derive a substream from a given stream. A substream can
be defined as a contiguous range of elements from a given stream. This way we can declare any contiguous
block of stream memory as a stream or substream on which stream operations can be performed. On some
stream hardware (including the GPU), a substream can also be defined by multiple non-overlapping ranges
of elements from a stream.

The execution of a certain kernel for all elements of a stream or substream is invoked by a single operation
on the stream level (stream operation). Since in theory all kernel instances for a single stream operation
may be executed in parallel, the number of stream operations of a given stream program also provides a
theoretical bound for the parallel running time of an algorithm. Therefore, if an identical operation is to
be performed on a number of data elements, it is more efficient if these data elements reside in a common
stream, on which a single stream operation can be applied, than if they are contained in multiple small
streams, which would require the execution of multiple stream operations.

In addition to improving the scalability of an approach, the reduction of the number of stream operations
is also very relevant for the practical performance of an algorithm on a given stream hardware. This is
because of the (constant) overhead associated with each stream operation. Current stream hardware, espe-
cially GPUs, have the best throughput for large streams (consisting of hundreds or more elements) [Owe05].
Furthermore, it can be assumed that an operation on a substream defined by a single large contiguous range
of elements is more efficient than the same operation on a substream defined by numerous small ranges of
elements.
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3.2 The target architecture for our approach in more detail

While the stream programming model described in the previous section was originally developed for special
stream processor hardware such as Imagine and Merrimac [KDR*00, KRD*03], also the programmable
graphics hardware (GPUs) contained in recent PCs have very similar capabilities, and thus recently the
stream programming model is also often used to describe general purpose applications and algorithms
implemented on this kind of hardware. However, since GPUs were originally designed for graphics appli-
cations, there are some GPU-specific properties and limitations when implementing stream programs for
the GPU.

On the GPU, streams can be organized as 1D, 2D, or 3D arrays. Unfortunately, streams currently have
restrictions on their size in each dimension (usually 2048 or 4096 elements on recent GPUs). This restriction
is especially unpleasant for 1D streams which can thus be used only for a very small amount of stream
memory. However, larger 1D streams can be represented by packing the data into a 2D stream. Each time
an element of such a stream is accessed from a kernel via an index, the 1D index must be converted to a 2D
index [BFH*04]. In 2D, we define a substream as a rectangular block or a set of multiple (non-overlapping)
rectangular blocks of successive elements from a 2D stream.

On the GPU, gathering from a stream, i.e. random reads from a computed address, is possible, although
in general less efficient than streaming reads. Scattering to a stream, i.e. random writes to a computed
address, is not possible directly. It can at best be emulated on recent GPUs (see [BFH*04]), but such an
emulation has a large overhead and, depending on the used technique, either increases the asymptotic time
per processor or endangers the scalability of the algorithm by performing random writes successively that
could theoretically be executed in parallel. Therefore, such an emulation is not suitable for our approach.

Summarizing, our targeted processor model is a stream processor with the ability to gather but without
the ability to scatter. To apply the technique of adaptive bitonic sorting, originally proposed for an EREW-
PRAM architecture, to such a target model, random access writes have to be replaced by stream writes,
preferably to contiguous stream blocks as large as possible.

4 The sequential case

In the following, we will give a quick recap of the classic adaptive bitonic sorting approach for the sequential
case (Section 4.1). Afterwards, we will propose a small modification of the merge algorithm, which will
lead to a slightly more efficient implementation on stream architectures (Section 4.2).

Note that for simplicity, we assume in this description that the length of the input sequence n is a power
of two. This can be achieved by padding the input sequence. (Alternatively, Bilardi and Nicolau show
an extended variant of their algorithm that works for arbitrary n [BN89].) Further, it is assumed that all
elements of the input sequence are distinct. Distinctness can be enforced by using the original position of
the elements in the input sequence as secondary sort key.

4.1 The classic adaptive bitonic sorting approach

As already mentioned, the adaptive bitonic sorting approach [BN89] is based on the bitonic sorting scheme
originally proposed by Batcher [Bat68]. This is a merge-sort based scheme, where the merge step is per-
formed by reordering a bitonic sequence.

A sequence is called bironic if there is a value of j such that after rotation by j elements, the sequence
consists of a monotonic increasing part followed by a monotonic decreasing part. In this context, rotation
by j elements, j € {0,...,n — 1}, denotes the following operation on the sequence: (ag,...,an—1) —
(aj,...,an-1,00,...,a;_1). For an arbitrary j, the rotation is defined as the rotation by j mod n.

For bitonic sorting, an algorithm is needed to transform a bitonic sequence into its corresponding mono-
tonic increasing (or monotonic decreasing) sequence. With such an algorithm, the merging of two sorted
sequences can be performed as follows: Assuming that the two sequences are sorted in opposite sorting
directions (otherwise one of them would have to be reversed), the concatenation of the two sequences yields
a bitonic sequence. Thus the result of the transformation into a monotonic increasing (or decreasing) se-
quence corresponds to the result of merging the two input sequences according to the respective sorting
direction.

A key idea of bitonic sorting is to perform this transformation, which is called bitonic merge, recursively.
For simplicity, we assume that the length of the bitonic input sequence is a power of two. Furthermore,

Technical Report IfI-06-11



6 A. GreB, G. Zachmann

0 2 35 7101113151412 9 8 6 4 1

\0 3}5\764}1|151412|9l81011|13

2
l 1 I 1 I 1
2 7 6 4 5/ 810 11 9/15 14 12 13

<
8 10 11 9(15 14 12 13
lonpod || ogfd |

Vics
o

L )
< 3 > g

2| 4 8 9|11 10({12 13|15 14
L

ol 1] 2| 3| 4] 5| 6| 7| 8] 9]10[11]12]13]14]15 2|"3] 4] 7

o
T~
o

11 10/12 1315 14

SE>- i o

11)12/13] 14| 15

Figure 1: Bitonic merge of 16 values. Left: Each element of the first half is compared with its respective
element in the second half. The minimum values are written to the first half, the maximum values to the
second half. Right: This can be achieved by exchanging a block of |j*| values from the two halves (marked
red).

~

we assume in the following that a monotonic increasing sequence has to be constructed. (A monotonic
decreasing sequence could be constructed in an analogous manner.) Then the recursive scheme of the
bitonic merge is as follows:

Bitonic merge:

e Letp = (po,... ,p%,l) be the first half and ¢ = (qo, ..., q%,l) the second half of input sequence a =
(ao,...,an-1),1.e.p; = a; and ¢; = Qitn.

e Letp’ and ¢’ be the component-wise minimum and maximum, respectively, of p and g, i.e. p; = min(p;, ¢;) and
q; = max(pi, ¢i).

e Then the following proposition holds (as we will show):
(*) p’ and ¢’ are bitonic sequences, and the largest element of p’ is not greater than the smallest element of ¢’.

e Apply the bitonic merge recursively to the sequences p’ and ¢'. Afterwards, the concatenation of the two results
yields the monotonic increasing sequence.

Figure 1 left demonstrates this algorithm on a bitonic sequence of 16 values.

We will shortly explain proposition (*) here (a more detailed proof can be found in [BN89]): It is easy
to see that for each bitonic sequence a consisting of n elements, there is a j* € {—%,..., 5 — 1} such that
after rotation of a by j* elements, all elements of the first half, which we call p*, are not greater than any
element of the second part, which we call ¢*. (Note that it is sufficient to prove this for sequences consisting
of a monotonic increasing part followed by a monotonic decreasing part.) Moreover it is obvious that p* and
q* are bitonic sequences since they are parts of a bitonic sequence. If we rotate p* and ¢* by —;* elements,
these sequences are equal to p’ and ¢, respectively, which follows from the definition of p’, ¢ and the fact
that, per definition of p*, ¢*, each p; cannot be greater than ¢;. Therefore, proposition (*) follows from the
definition of the sequences p*, ¢* and the mentioned property that they are bitonic.

From these observations, we can derive an alternative method for determining the sequences p’ and ¢’. It
is easy to see that if we have determined a value of j* € {—%,..., 5 — 1} satisfying the above definition,
p’ and ¢’ can be constructed from p, ¢ by exchanging the first j* elements of p with the first 7* elements of
q (in the case of j7* > 0) or by exchanging the last —;* elements of p with the last —;* elements of ¢ (in
the case of j* < 0). This is demonstrated in Figure 1 right.

Consequently, j* is an index such that in case of

J5>20: po>qo, ..y DPjr-1>Gje-1, Pix < Qi ooy P11 < qng
J5<0: po<qo, .., Pryji-1<qmijeo1, DPriyjcr > quije, ..., Pooi>qnog

If we assume that all elements of the input sequence a are distinct (what we will do in the following),
we can determine which of the two cases (j* > 0 or j* < 0) applies by a single comparison, for example
according to the equivalence j* > 0 <> pz 1 < gz _;. Thereafter, the exact value of j* (which is uniquely
determined by the above definition in the case of distinct input elements) can be determined by a binary
search. (In the case of j* > 0 this means that, starting with i = 7 — 1, 4 is decremented by a certain value
if p; < g;, and incremented if p; > ¢;.)

Thus we have a method to determine j* in logarithmic time (using log n comparisons for a sequence con-
sisting of n elements). The key idea of the adaptive bitonic sorting approach [BN89] is to use this technique
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to reduce the time complexity of the bitonic merge. For this purpose, also the number of exchanges (or data
transfer operations in general) that is required to calculate p’ and ¢’ from a given j* has to be logarithmic.

To achieve this, the elements of a given bitonic sequence are stored as nodes of a binary search tree, which
is called bitonic tree. The assumption that the sequence length n is a power of two allows us to use only
fully balanced binary trees. Each node of the tree contains an element of the subsequence (ag, .. ., Gn—2)
in such a way that the in-order traversal of the tree yields this subsequence in correct order. a,_1, the last
element of the sequence, is stored separately (called spare node).

The benefit of using a binary tree is that a whole subtree (containing 2* — 1 sequence elements for a
k € {0,...,logn — 1}) can be replaced with another subtree by a single pointer exchange. This way, we
can efficiently construct p’ and ¢’ during the binary search for determining the value of j*. This leads to the
following algorithm for the construction of p’ and ¢’, which operates on the bitonic tree that corresponds to
the given bitonic sequence:

Adaptive min/max determination:

Phase 0: Determine, which of the two cases applies:
(a) root value < spare value or
(b) root value > spare value
Only in case (b):
Exchange the values of root and spare.
Let p be the left and q the right son of root.
Fori=1,...,logn — 1:
Phase ¢: Testif: value of p > value of q (%)
If condition (**) is true:
Exchange the values of p and q as well as
in case (a) the left sons of p and q,
in case (b) the right sons of p and q.
Assign the left sons of p, q to p, q iff
case (a) applies and condition (**) is false or
case (b) applies and condition (**) is true;
otherwise assign the right sons of p, q to p, q.

Note that root contains the sequence element pz_; and spare the sequence element gz _; (where p, ¢
are the two halves of the given bitonic sequence). Therefore, case (a) corresponds to j* > 0 and case (b) to
j* < 0 according to denotations above.

The described method requires log n comparisons and less than 2 log n exchanges for the determination
of p’ and ¢’. If this method is used within the bitonic merge scheme described before, we get a recursive
merge algorithm in O(n) which is called adaptive bitonic merge. This is because on each recursion level
k € {0,...,logn — 1} (called stage in the following) there are 2% sequences, each of them having the
length ologn—k §u ona stage k, we need ok (log n — k) comparisons, which makes a total of 2n —logn — 2
and thus a linear time complexity for the whole merge algorithm.

Note that the bitonic tree does not need to be rebuild on each stage. Instead, we can formulate the
adaptive bitonic merge algorithm completely on the basis of the bitonic tree:

Adaptive bitonic merge:

e Assume that a bitonic tree (for a sequence consisting of n elements) is given by the nodes root and spare.
e Execute phases 0, .. .,logn — 1 of the adaptive min/max determination algorithm as described above.
e Apply the adaptive bitonic merge recursively
1. with root’s left son as new root and root as new spare node,
2. with root’s right son as new root and spare as new spare node.
(Finally, the in-order traversal of the whole bitonic tree results in the monotonic ascending sequence that was to
be determined.)

Using the adaptive bitonic merge as merge algorithm in a classic recursive merge sort scheme the way
it was described at the beginning of this section finally gives us the sequential version of adaptive bitonic
sorting. It has a total running time of O(nlogn) for input sequences of length n. Before extending this
approach to a parallel algorithm for stream architectures, we will at first propose a slight modification of the
classic adaptive bitonic merge algorithm presented in this section, which eliminates the distinction of cases
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and thus will make an implementation on stream architectures easier and also more efficient.

4.2 Adaptive bitonic merge simplified

As described in the previous section, at the heart of the adaptive bitonic merge is an adaptive min/max deter-
mination algorithm that determines the component-wise minimum as well as the component-wise maximum
of the bitonic sequences p and ¢ in O(log n) time. As minimum and maximum are commutative, the result
does not change if p and q are exchanged before applying this algorithm. Therefore, it is easy to assure that
for any input sequences p, ¢ the inequality pz _; < gz _; holds by simply exchanging p and ¢ if applica-
ble. This way, case (b) in the algorithm will be reduced to case (a). If this potential exchange of p and ¢
is incorporated in phase O of the algorithm, this results in the following simplified implementation of the
algorithm:

Adaptive min/max determination:

Phase 0: If root value > spare value:
Exchange the values of root and spare
as well as the two sons of root with each other.
Let p be the left and q the right son of root.

Fori=1,...,logn — 1:

Phase ¢: If value of p > value of q:
Exchange the values of p and q
as well as the left sons of p and q.
Assign the right sons of p, q to p, q.

Otherwise:
Assign the left sons of p, q to p, q.

In comparison to the implementation described in Section 4.1 only a single pointer exchange was added.
Instead, it was possible to remove the distinction of cases.

5 Adaptive bitonic sorting on stream architectures

Based on the sequential sorting approach described in the previous section, we will now develop our op-
timal parallel sorting approach for stream architectures. For simplicity, we will initially ignore the fact
that random-access writes are not possible on our targeted architecture, and start the description with an
overview of the general outline of our approach.

5.1 GPU-ABiSort basic outline

On each recursion level j = 1,...,logn of the adaptive bitonic sort, the adaptive bitonic merge algorithm
has to be applied to 2!°¢™~J bitonic trees, each consisting of 2/ nodes. As explained in Section 4.1, the
merge is performed in j stages. In each stage k¥ = 0,...,7 — 1, the adaptive min/max determination

algorithm is executed on 2” subtrees for each pair of bitonic trees that is to be merged. Therefore 2!°8 7.2k
instances of the adaptive min/max determination algorithm can be executed in parallel in that stage. On a
stream architecture this potential parallelism can be exposed by allocating a stream consisting of 2'°8 =7tk
elements and executing a kernel on each element.

The adaptive min/max determination algorithm consists of j — k phases, where each phase reads and
modifies a pair of nodes from a bitonic tree. Let us assume that a kernel implementation is given that
performs the operation of a single phase of the adaptive min/max determination algorithm. (How such
a kernel implementation is realized without random-access writes will be described in Section 5.2.) The
temporary data that has to be preserved from one phase of the algorithm to the other are just two node
pointers (p and q) per kernel instance in case of the simplified version of the algorithm, which was described
in Section 4.2. Thus each of the 2!°8" =7+ elements of the allocated stream should consist of exactly two
node pointers. When the kernel is invoked on that stream, each kernel instance reads a pair of node pointers
p. q from the stream, performs a phase of the adaptive min/max determination algorithm using p, q (as
described in Section 4.2), and finally writes the updated pair of node pointers p, q back to the stream. This
is illustrated in Figure 2.
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Figure 2: To execute several instances of the adaptive min/max determination algorithm in parallel, where
each instance operates on a bitonic tree of 22 nodes, 3 kernel invocations are required. This figure illustrates
the operation of these 3 kernels. On the left, the node pointers contained in the respective input stream
are shown as well as the comparisons performed by the kernel program. On the right, the node pointers
written into the respective output stream are shown as well as the modifications of the child pointers and
node values performed by the kernel program according to the algorithm described in Section 4.2.
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5.2 Eliminating random-access writes

Since the targeted stream architecture does not support random-access writes, we have to find a way to
implement a kernel that modifies node pairs of the bitonic tree without random-access writes. This means
that we can output modified node pairs from the kernel only via linear stream write. But this way we
cannot write back a modified node pair to its original location where it was read. (Otherwise we would
have to process the nodes in the same order as they are stored in memory, but the adaptive bitonic merge
processes them in a random, data dependent order.) Of course we have to assure that subsequent stages of
the adaptive bitonic merge use the modified nodes instead of the original ones, if we output the modified
nodes to different locations in memory.

Fortunately the bitonic tree is a linked data structure where all nodes are directly or indirectly linked to
the root (except for the spare node). This allows us to change the location of nodes in memory during the
merge algorithm as long as we update the child pointers of their respective parent nodes (and keep the root
and spare node of the bitonic tree at well-defined memory locations). This means that for each node that is
modified during the algorithm, also its parent node has to be modified to update its child pointers.

Recall that the adaptive bitonic merge traverses the bitonic trees downwards along certain paths. If any
node on that path is to be modified, also all previously visited nodes on that path have to be modified to
update their child pointers. Therefore we use the following strategy to assure the correct update of child
pointers: We simply output every node visited during this traversal to a stream. At the same time we update
the child pointers of these nodes to point to those locations where the modified child nodes will be stored in
the next step of the traversal. This implies that we use a common output stream for all steps of the traversal
and define in advance to which locations the modified nodes will be stored in each step. Since in a single
merge stage no node is visited more than once, obviously a stream providing space for n nodes (or 5 node
pairs) is sufficient for the output of all phases of that stage. Figure 3 demonstrates the operation of the
stream program using the described stream output technique. More details about the actual implementation
of the kernel programs will be given in Appendix A.2.

While the stream memory used for the temporary node pointers p and q may be freed and reused in each
stage of the adaptive bitonic merge (see Section 5.1), it is not possible to reuse the memory of the node
output stream in the sense that modified node pairs are written to the same memory locations in each stage
of the merge, as this might result in overwriting nodes that are still in use. The reason for this is that a single
stage of the adaptive bitonic merge does not visit all nodes of the bitonic tree (except for the last two stages);
thus the output of a certain merge stage may contain nodes with children that have not yet been modified
(as in Figure 3 lower right) or were modified and written to the node output stream in a previous stage.

A simple solution would be to append the output of every stage to a large stream without overwriting
nodes written in previous stages. However, this would increase the memory requirement further, which
might be an issue when sorting large sequences on a stream architecture with limited amount of stream
memory. Therefore, we present a more light-weight memory layout for the node output stream in the
following section that only requires a stream providing space for n nodes (or % node pairs) in total; i.e. we
specify to which parts of a stream of that size the output of each merge stage should be directed such that
only those locations are overwritten that do not contain valid nodes anymore.

5.3 Reducing the memory overhead

As outlined in Section 5.1, on every stage k of a recursion level 5 of the adaptive bitonic sort exactly
ologn—j . 9k kernel instances are executed simultaneously; and since each kernel instance modifies and
writes a single node pair to the stream, the output of every phase of stage k consists of exactly that amount
of node pairs. Therefore, for each phase we have to specify a contiguous block of stream memory (which we
call substream) providing space for 2!1°8™"~7 . 2 node pairs. We do this as follows: For the whole recursion
level j, we allocate a single stream with a total size of 5 node pairs and use certain parts of that stream as
output in every phase of the algorithm as specified in Table 1.

This scheme is based on the following observations: In phase 0 of a stage k, all tree nodes of the levels
0,...,k are modified and written. Thus any tree node of a level O, ...,k that has been written previous
to that phase will not be further required in subsequent phases and can be overwritten safely. (Note that
according to the substream specification above, tree nodes of the levels 0, . . ., k are always contained in the
first 2% - 21°8"~J node pairs of the stream.) Furthermore, in phase 1 of stage k, all tree nodes of level k + 1
are modified and written. Thus in this phase, all previously written nodes of level k£ + 1 can be overwritten.
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Figure 3: This figure illustrates a detail of the stream program implementation of the adaptive min/max
determination algorithm that was not shown in Figure 2: how the nodes that are modified by the kernel
program are written back using only linear stream writes. This is achieved by allocating a node output
stream (in addition to the streams holding the node pointers p and q) and by defining in advance to which
part of the stream the modified nodes will be written in each phase of the algorithm. If for example these
stream parts (substreams) are chosen as shown in the upper left, the operation of the three phases of the
algorithm for bitonic trees of 23 nodes is as depicted. Note that these three phases together correspond to a
single stage of the adaptive bitonic merge. The subsequent stages will write to different substreams of the
same output stream. (How to choose these substreams without having to increase the total size of the stream

will be explained in Section 5.3.)

phase ‘ start of substream ‘ end of substream
0 0 2~ . gloan—J
1 Qk . 210gn—j 2k+1 . Zlogn—j

i>1 (2k+i—1 + 2k) 2logn—j

(2k+i—1 + 2k+1) 2logn—j

Table 1: Specification of the stream memory blocks (substreams) to which modified node pairs are written
for each phase of stage k. Here the memory locations are given in the unit of node pairs.
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output stream layout: tree levels

of node pair at stream memory location
stage | phase | 0O 1 2 3 4 5 6 7
0 0 0s
0 1 11
0 2 22
0 3 33
1 0 10 1s
1 1 22 22
1 2 33 33
2 0 21 20 21 2s
2 1 33 33 33 33
3 0 32 31 32 30 32 31 32 3s

Figure 4: Output stream layout for the last recursion level (j = 4) of sorting n = 2* values.

output stream layout: tree levels of node pair at stream memory location
stage | phase | 0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 0s Os
0 1 11 11
0 2 22 22
0 3 33 33
1 0 10 1s 10 1s
1 1 22 22 22 22
1 2 33 33 33 33
2 0 21 20 21 2s 21 20 21 2s
2 1 33 33 33 33 33 33 33 33
3 0 32 31 32 30 32 31 32 3 32 31 32 30 32 31 32 3s

Figure 5: Output stream layout for recursion level j = 4 of sorting n = 25 values. (In this case, the merge
algorithm is applied to two bitonic trees. Nodes belonging to the second bitonic tree are shown in red.)

Using this scheme, the output of the last step of the merge (which was directed to the full stream of
5 node pairs) contains all 2loen—37 completely modified bitonic trees of recursion level j (each of which
represents now a fully sorted sequence of length 27) in a non-interleaved manner. This stream is then
used as input for the subsequent recursion level 5 + 1 of the adaptive bitonic sort. Since at the end of each
recursion level all input tree nodes have been replaced by modified nodes in the output stream, it is sufficient
to allocate two streams of & node pairs for the whole sort algorithm and alternately use one them as output
stream in each recursion level.

Figures 4 — 5 demonstrate this stream layout when the merge is performed on one bitonic tree of 2% nodes
(Figure 4) or simultaneously on two bitonic trees containing 2* nodes each (Figure 5) assuming a sequential
execution of all stages. The numbers in these tables specify the tree level of each node in the output stream
(where 0 corresponds to the root); s is the spare node of the bitonic tree. While the node pairs shown in
deep black are those written in the respective phase (indicated on the left), the node pairs shown in gray are
the ones still accessible from previous phases. Note that the order of the nodes written in phase 0 of each
stage k (shown in bold font) corresponds to an in-order traversal of the k upper levels of the bitonic tree.

Appendix A summarizes the whole algorithm up to this point.

5.4 GPU-ABiSort in O(log” n) stream operations

Since each stage k of a recursion level j of the adaptive bitonic sort consists of j — k phases, O(logn)
stream operations are required for each stage. Together, all j stages of recursion level j consist of % G2+ % J
phases in total. Therefore, the sequential execution of these phases requires O(log2 n) stream operations
per recursion level and in total O(log3 n) stream operations for the whole sort algorithm.

While this already allows to achieve the optimal time complexity O((nlogn)/p) for up to p = n/log?n
stream processor units, we will present in the following an improved GPU-ABiSort implementation for
stream architectures that allow the specification of substreams consisting of multiple separate memory
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output stream layout: tree levels of node pair at stream memory location
step | stages | O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 0 0s Os
1 0 11 11
2 0,1 10 1s 10 1s 22 22
3 0,1 22 22 22 22 33 33
4 1,2 21 20 21 2s 21 20 21 2s 33 33 33 33
5 2 33 33 33 33 33 33 33 33
6 3 32 31 32 30 32 31 32 3 32 31 32 30 32 31 32 3s

Figure 6: Output stream layout for recursion level j = 4 of sorting n = 2° values (cf. Figure 5) when
executing the merge stages partially overlapped.

blocks, which requires only O(log2 n) stream operations for the whole sorting (and is thus theoretically
capable of achieving the optimal time complexity for up to n/ log n stream processor units). The reduction
of the number of stream operations by the factor O(log n) is accomplished by adapting a technique from the
parallel PRAC implementation of the adaptive bitonic sorting [BN89]: Instead of a completely sequential
execution of all stages, we execute them partially overlapped.
By observing which tree levels are visited in each of the phases and in which phases they have been
visited the last time before, we notice that phase ¢ of a stage k can be executed immediately after phase ¢+ 1
of stage k — 1. Therefore, we can start the execution of a new stage every other step of the algorithm (cf.
[BN8&9]), which leads to an adaptive bitonic merge implementation in a total of 2logn — 1 steps and thus
in O(logn) stream operations for each of the log n recursion levels of the adaptive bitonic sort.
For such an improved implementation, the previously used specification to which memory locations
modified nodes are written in each phase of the algorithm (see Table 1) is still applicable. However, instead
of defining a single contiguous memory block as substream in each step of the algorithm, now multiple
memory blocks together form a substream that is to be used as output stream for the corresponding stream
operation. In this context, the memory blocks that form a common substream correspond to those phases
that can be executed in the same step of the algorithm (and thus potentially in parallel) according to the
above observation. Figure 6 shows the respective stream layout. As it can be seen there, the memory blocks
belonging to a single step of the algorithm do not overlap.
Finally, we can summarize the complete sorting algorithm at the stream level as follows:
GPU-ABiSort:
for each recursion level j of the adaptive bitonic sort, i.e. for j = 1,...,logn:
{

ko := 0  (first active stage of a step of the merge)

ki1 :=0 (last active stage of a step of the merge)

for each step ¢ of the merge, i.e. fors =0,...,25 — 2:

{
if 7 is even (and ¢ > 0): increment ko by 1
if i >= logn: decrement k; by 1

the substream to be used as output in this step is defined by the memory blocks
that are, according to Table 1, associated with the following phases:

stage ko phase i — 2ko, stage ko + 1 phase ¢ — 2(ko + 1), ..., stage k1 phase i — 2k;

invoke a kernel on all elements of that substream (which performs a step of the
adaptive min/max determination and updates child pointers, see Section 5.2)

6 GPU-specific details

6.1 Distinctness of input and output streams

In the preceding section, we assumed that it is possible to use the same stream as input and output of a
stream operation. However, on current GPUs input and output streams must always be distinct (and it is
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currently not sufficient to use just distinct substreams from the same stream for input and output).

For the stream holding the temporary node pointers p and q (see Section 5.1) we apply the ping-pong
technique commonly used in GPU programming: We allocate two such streams and alternately use one of
them as input and the other one as output stream.

For the stream holding the modified node pairs (see Section 5.2) this technique cannot be applied since
not all stream elements are modified in each step of the algorithm. Therefore, in our current implementation,
we allocate two such streams and permanently use one of them as input and the other one as output stream.
After each step of the algorithm, all nodes that have just been written to the output stream are simply copied
back to the input stream.

6.2 GPU-ABiSort using a 2D stream layout

For most applications, we can expect that the input sequence will be longer than the maximum allowed
size of a 1D stream on current GPUs (see Section 3.2). Therefore, in our GPU implementation we have to
pack our stream contents (i.e. the node pointers and the modified node pairs) into 2D streams. We tested
two different possibilities to map the 1D stream contents to 2D streams, a row-wise mapping as well as a
Z-order mapping, which will be described in the following.

6.2.1 Row-wise 1D-2D mapping

The simplest solution is a row-wise mapping, i.e. if a is an index corresponding to the location of a node
in the 1D stream, this node will be mapped to the location (¢ mod w, |a/w]) in the 2D stream (where w
specifies the width of the 2D stream). We thereby assume that the width w is a power of two.

To be able to use the stream program described in Section 5.4 with such a 2D stream without further
modifications, it is necessary that the contiguous memory blocks which define a substream correspond to
rectangular blocks of the 2D stream after the mapping. Our specification of these memory blocks according
to Table 1 meets these demands: The length [ of each block is a power of two. Furthermore, the start
location s of each block is a multiple of . Hence, if [ < w, then w is obviously a multiple of [, just like
the start location s and the end location s + [ of the block, and thus the block is located completely within
a single line of the 2D stream after the mapping. And if [ > w, then [ as well as s are multiples of w, and
thus the block spans the complete lines 2, ..., 2 + i — 1 of the 2D stream after the mapping.

6.2.2 Z-order 1D-2D mapping

A disadvantage of the row-wise mapping described above is that it is not very GPU-cache-friendly. This
has the following background: In the previous description of our approach (and also in the pseudo code in
Appendix A) we clearly differentiated between streaming reads and random-access reads. In the original
stream programming model this distinction was motivated by the fact that streaming reads can be imple-
mented more efficiently in hardware since their memory access patterns are fully known in advance and
thus for these read accesses no conventional cache logic is needed that tries to predict which data will
be required in future memory accesses based on heuristics [KRD*03]. However, current GPUs (or more
precisely their fragment processor units) do not differentiate between streaming reads and random-access
reads and thus use the same cache logic for both types of read accesses [BFH*04]; and this cache logic is
obviously optimized for the use case of accessing 2D texture data during rasterization, for which in general
a cache architecture where each cache block holds a square or near-square region of the texture data is
favorable [HG97]. As a consequence, for streaming reads from a rectangular memory block (substream) of
a 2D stream the maximum read bandwidth is only achieved if this substream has a square or near-square
shape (as it was demonstrated by performance tests in recent work [GRHMO0S5, GGKMO05]).

Since this is generally not the case for the substreams obtained by using the row-wise mapping described
above, we propose the usage of an alternative, GPU-cache-optimized mapping between 1D and 2D streams
where the 2D space is mapped to 1D along a space-filling curve known as Z-order or Morton order [Mor66]:

Assuming that a 1D integer index « is given, which has the bit representation (as1, ..., a1, ag). Then this
index is mapped to the 2D index (a,, a,) where a, has the bit representation (asp, . .., a2, ag) and a, has
the bit representation (as1, . .., as, a1). This mapping has some nice properties, which are easy to see:

e For any q, the 1D index 2 - a is mapped to the 2D index (2 - ay, az).
e For any s that is a power of two and any a < s, s + a is mapped to (s, + Gz, Sy + ay).
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e For any [ that is a power of two, I’ = [ — 1 is mapped to (I}, [,

either I, + 1 =1, +lorl,, +1=2-(, +1).

Since according to the memory layout specified in Table 1 the length [ of each memory block is a power
of two and its start location s is a multiple of [, it follows from the last two propositions that the interval
of 1D indexes {s,...,s + '} with I’ = 1 — 1 is mapped to the contiguous 2D block {s,,..., s, + I/} x
{sy,--+,8y +1,}, which has square (I}, + 1 = [; + 1) or near-square (I}, + 1 = 2 - (I}, + 1)) shape.

Since it would be too expensive to calculate the mapping between 1D and 2D indexes in the GPU kernel
programs (especially on current GPUs that do not support integer bit operations), we process and store all
addresses in the kernel programs directly in form of 2D indexes (where we represent a 2D index by two 16
bit integer values packed into a 32 bit field). Using these 2D indexes, the address calculations required in
the kernel programs are less trivial, but can easily be resolved by utilizing the propositions above.

), where (I, +1) - (I, +1) = [ and

7 GPU-ABiSort optimizations

In the following, we will describe how the practical running time of our asymptotically optimal algorithm
presented in Sections 5 — 6 can be further improved. Therefor we will combine the adaptive bitonic sort and
the adaptive bitonic merge with respective algorithms specifically tuned to small sequence lengths. This
follows the common practice of combining sorting algorithms with optimal asymptotic complexity (like
merge or heap sort) with sorting algorithms that are fast for small sequence lengths (like insertion sort).

7.1 Optimized replacement for the first recursion levels of the sort

For parallel merge-based sorting on a PRAM architecture with less processors than values to sort (p < n),
it is a common technique that in a first step, p blocks of n/p values are sorted locally (i.e. each processor
sorts n/p values using a standard sequential algorithm). This way, the actual parallel merging algorithm can
start by merging pairs of sorted blocks, each containing n/p elements, instead of pairs of single elements.

The same technique can also be applied to a stream architecture by implementing such a local sort as a
kernel program. However, since there is no random write access to non-temporary memory from a kernel,
the number of values that can be sorted locally by a kernel is restricted by the number of temporary registers
as well as by the maximum data size that can be written to the output stream by a single kernel instance.

On recent GPUs, the maximum output data size of a kernel is 16 x 32 bit. As we sort value/pointer
pairs (consisting of 2 x 32 bit each) in our implementation, we start with with a local sort of 8 value/pointer
pairs per kernel. As known from standard sequential sorting approaches, O(n?) algorithms are in practice
often faster than asymptotically optimal algorithms for sorting such a small number of values. In our GPU
implementation, the local sort is performed in a single stream operation by an efficient odd-even transition
sort implementation. (The comparison order of odd-even transition sort, that makes it also applicable as
sorting network, allows for better SIMD optimizations than those of several other O(n?) sorting algorithms.)

After the local sort, a further stream operation converts the resulting sorted sequences of length 8 pair-
wise to bitonic trees, each containing 16 nodes. Thereafter, the GPU-ABiSort approach can be applied as
described in Section 5, starting with j = 4. Hence we have replaced the recursion levels j = 1,. .., 3 of the
adaptive bitonic sort by an optimized sort for small sequence lengths.

7.2 Optimized replacement for the last stages of each merge

In addition, the remaining recursion levels of the sort can also be accelerated. For this purpose, we can use a
bitonic merge implementation which is faster than the adaptive bitonic merge implementation from Section
5 for a certain (small) sequence length n’ but not necessarily asymptotically optimal. Such a specialized
merge implementation for a certain sequence length n’ can be used to speed up the merge executions for all
sequence lengths n > n'. This is based on the recursive definition of bitonic merging: Bitonic merging of
n' values is a subroutine of the bitonic merge of n > n’ values. Consequently, the last log n’ stages of the
adaptive bitonic merge can be replaced by an alternative bitonic merge implementation for n’ values.
While it would be possible to use one of the previous GPU implementations of the bitonic sorting network
for this purpose (see Section 2.2), we currently use an own implementation of the (non-adaptive) bitonic
merge for the fixed sequence length n’ = 16 instead, which is performed in a single stream operation.
(To meet the afore-mentioned per-kernel output size restriction of current GPUs, each bitonic sequence of
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output stream layout: tree levels of node pair at stream memory location

step | stages | O 1 2 3 4 5 6 7 8 9 10 11 .. 17 18 19

0 0 0s

1 0 11

2 0,1 10 1s 22

3 0,1 22 22 33

4 0,1 33 33 44

5 0,1 44 44 55

6 1 55 55

Figure 7: Output stream layout for adaptive bitonic merging of 26 values if an optimized bitonic merge of
24 values is applied afterwards.

length 16 is processed by two kernel instances: one of them outputs the merged lower half p’ and the other
one the merged upper half ¢'.)

The optimized merge approach for arbitrary sequence lengths n starts with adaptive bitonic merging
exactly as described in Section 5 with the only difference that the last 4 stages are left out. In consequence,
if the stages are executed overlapped as described in Section 5.4, the total number of steps reduces to
2logn — 5, and in the last 3 remaining steps only a reduced number of node pairs has to be processed (only
those node pairs belonging to the remaining log n — 4 stages). As an example, Figure 7 shows for the last
recursion level of sorting n = 2% values, which node pairs are processed by the adaptive bitonic merge
algorithm when taking the reduced number of stages into account. After this incomplete adaptive bitonic
merge, the contents of the output stream do not yet correspond to an in-order node traversal of the bitonic
tree, as it was the case with the full adaptive bitonic merge. Thus, before the optimized bitonic merge for
n’ = 16 can be applied, its input sequences of length 16 have to be determined by an in-order node traversal
starting simultaneously from all output nodes of phase 0 of the last executed stage of the adaptive bitonic
merge. Implemented as a kernel program, this traversal can also be performed in a single stream operation.
Then, the optimized bitonic merge for n’ = 16 is executed, and finally, the merged 16-value sequences are
converted back to bitonic trees, as it was done after the local sort described in Section 7.1.

8 Results

The usual application scenario of a sorting algorithm is the sorting of arbitrary data (e.g. records of a
database) based on a sort key, in our case a 32-bit floating point value. On the CPU this is implemented
efficiently by sorting an array consisting of value/pointer pairs, where the value is used as sort key and the
pointer refers to the associated data. (An alternative would be to sort a pure pointer array whose entries point
to records containing the sort key, but according to own tests this alternative has shown to be clearly less
efficient in general.) We also implemented GPU-ABiSort in such a way that the input and the final output
of the sorting is given as an array of value/pointer pairs. Since we can assume (without loss of generality)
that all pointers in the given array are unique, we can use these pointers at the same time as secondary sort
keys for the adaptive bitonic merge.

We compared the performance of GPU-ABiSort with sorting on the CPU using the C++ STL sort func-
tion (an optimized quick sort implementation) as well as with the (non-adaptive) bitonic sorting network
implementation on the GPU by Govindaraju et al., called GPUSort [GRHMO05]. Our GPU-ABiSort imple-
mentation includes the optimizations covered in Section 7. Contrary to the CPU STL sort, the timings of
GPU-ABiSort do not vary significantly dependent on the data to sort (because the total number of compar-
isons performed by the adaptive bitonic sorting is not data dependent). For the following timings, we use
value/pointer pairs with uniformly distributed random floating point sort keys.

Table 2 shows the timings on an AGP bus PC system with an AMD Athlon-XP 3000+ CPU and an
NVIDIA GeForce 6800 Ultra GPU with 256 MB memory. On this system, our approach achieves 1.9 — 2.6
times speed-up compared to CPU sort for n > 2'7 (using the Z-order 1D-2D mapping presented in Section
6.2.2) and up to 2.4 times speed-up compared to GPUSort (in its original implementation by [GRHMO0S5]).

Note that also GPUSort was optimized with respect to cache efficiency [GRHMO05].! Nevertheless, on

! However, the authors use a different strategy to achieve the cache efficiency. They employ a row-wise 1D-2D address mapping
similar to the one presented in Section 6.2.1, but combined that with a decomposition of streams into square tiles of size B X B as
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800 i
200 |~ CPU sort
—~ 600 | —— GPUSort
[72] : a
g so0l "~ GPU-ABiSort
—— _ : b
£ 400 | GPU-ABiSort
) |
= 300
5200 +
100
0 = ' ! ‘
32768 65536 131072 262144 524288 1048576
sequence length
n CPU sort | GPUSortfGRHMO05] | GPU-ABiSort" GPU-ABiSort”
32768 12 - 16 ms 13 ms 11 ms 8 ms
65536 27 -35ms 29 ms 21 ms 16 ms
131072 62 —77 ms 63 ms 45 ms 31 ms
262144 | 126 — 160 ms 139 ms 95 ms 64 ms
524288 | 270 — 342 ms 302 ms 208 ms 133 ms
1048576 | 530-716 ms 658 ms 479 ms 279 ms

Table 2:  Timings on a GeForce 6800 system: a) using row-wise 1D-2D mapping (see Section 6.2.1),
b) using Z-order 1D-2D mapping (see Section 6.2.2).

the GeForce 6800 GPU our approach beats GPUSort even if we use the non-cache-optimized, row-wise
1D-2D mapping described in Section 6.2.1.

We also tested our implementation on a PCI Express bus PC system with an AMD Athlon-64 4200+ CPU
and an NVIDIA GeForce 7800 GTX GPU with 256 MB memory, see Table 3 for the results. Even though
this system has not only a more recent GPU but also a CPU of a newer generation, the speed-up of our
approach compared to CPU sorting has significantly increased to a 3.1 — 3.5 times speed-up for n > 217,
Furthermore, up to the maximum tested sequence length n = 22°, our approach is up to 1.3 times faster
than GPUSort, and as expected this speed-up is increasing with the sequence length n.

The timings of the GPU approaches assume that the input data is given in GPU memory as it is for
example the case when the sorting is needed for a GPU-based application such as [PDC*03] or [KSW04].
When embedding the GPU-based sorting into an otherwise purely CPU-based application, the input data
has to be transfered from CPU to GPU memory before the application of our approach, and afterwards the
output data has to be transfered back from GPU to CPU memory. However, the overhead of this transfer is
usually negligible compared to the achieved sorting speed-up: According to our measurements, the transfer
of 220 (1.048.576) value/pointer pairs from CPU to GPU and back takes in total roughly 100 ms on our
AGP bus PC and roughly 20 ms on our PCI Express bus PC.

9 Conclusions and future work

We presented a novel approach for parallel sorting on stream architectures. As opposed to any previous
sorting approach on stream processors, it achieves the optimal time complexity O((nlogn)/p). Further-
more, our approach performs also very well in practice, which is caused by a well-chosen stream memory
layout and by several optimizations we incorporated into our approach.

follows: Based on the observation that the cache usage is non-optimal for streaming reads from non-square substreams (cf. Section
6.2.2), they split non-square substreams into multiple smaller substreams such that no substream covers more than one B X B sized
tile (ideally B x B should correspond to the size of a GPU cache block). Then all substreams lying within a single B X B tile are
processed consecutively. On a GeForce 7800 this technique achieves in fact near optimal read bandwidth with the parameter B = 64,
as it was shown by experiments in [GGKMO05]. However, in general it is hard to guess the optimal value for this parameter since
no information about cache characteristics is disclosed by GPU vendors. (In contrast our Z-order based 1D-2D mapping is a cache-
oblivious strategy, i.e. it is independent of hardware configuration parameters such as the size of the GPU cache or of a cache block.)
The available GPUSort implementation simply uses the parameter B = 64 for any GPU architecture independent of its actual cache
characteristics, which might be one of the reasons why GPUSort performs so much worse on the GeForce 6800 than on the GeForce
7800, showing a notably larger performance difference between these GPUs than our and several other approaches.
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n CPU sort | GPUSortfGRHMO05] | GPU-ABiSort
32768 9—-11ms 4 ms 5 ms
65536 19 - 24 ms 8 ms 8 ms

131072 46 — 52 ms 18 ms 16 ms
262144 98 — 109 ms 38 ms 31 ms
524288 | 203 — 226 ms 80 ms 65 ms
1048576 | 418 —477 ms 173 ms 135 ms
500 w w
450 I — CPU sort
__ 400 r —— GPUSort
g 301 —— GPU-ABiSort
o 300
= 250 |
o 200
g 150
= 100 |
50 ¢

O 1 1 1
32768 65536 131072 262144 524288 1048576

sequence length

Table 3: Timings on a GeForce 7800 system (using Z-order 1D-2D mapping).

We implemented our approach on modern programmable graphics hardware (GPUs). The timings we
obtained with this implementation are very promising, especially with regard to the performance improve-
ments that can be expected with upcoming GPU generations. The implementation of our approach has
shown that optimal parallel sorting on stream processors is indeed very efficient in practice.

As it was said, in our implementation we assumed that the length of the input sequence is a power of two
(as it was also done in GPU sorting network implementations). However, it should certainly be possible to
incorporate the extension of the adaptive bitonic sorting approach to non-power-of-two sequence lengths by
the use of pruned bitonic trees [BN89] into our approach. The efficient implementation of such an extension
remains a task of future work.

Finally, it would be interesting to explore to what extent the tree traversal and node modification tech-
niques developed in this approach can be helpful for the adaption of other adaptive or hierarchical algorithms
to the stream programming domain.
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A Implementation in detail

In this appendix, we present the complete pseudo code of the unoptimized version of GPU-ABiSort running
in O(log®n) stream operations (as of Section 5.3). It contains neither the reduction of the number of stream
operations by the factor O(logn) described in Section 5.4 nor the runtime optimizations presented in Sec-
tion 7. Since the pseudo code represents a general stream program, also the GPU-specific implementation
details described in Section 6 are not covered here.

Some stream program compilers such as Brook for GPUs [BFH*04] assure that all read accesses initiated
by a certain kernel program are carried out before any write access by this kernel to the same stream. We
assume the same semantic in our pseudo code, thus hiding the implementation details necessary to avoid
possible conflicts when using the same stream as input and output of a certain kernel (as described in Section
6.1 in a GPU-specific context).

Since the reader might not be familiar with the syntax of stream programming languages like Brook, we
use a syntax much closer to the C++ standard for the given pseudo code, augmented by just a few stream
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programming specific constructs and keywords, which are shortly described in the following text.

A.1 GPU-ABiSort main routine

Basic data types (Listing 1): Let us assume that the sequence to sort is given as a stream of data values
of an arbitrary base type value_t. We further assume that a comparison operator > is given for this base type
that defines a total order on the data. In our implementation, we use a base type value_t consisting of two
fields: a floating point primary sort key and a unique id, which is used as secondary sort key to assure the
total order required by the adaptive bitonic sort algorithm. The latter field can at the same time be used as a
pointer to an arbitrary data record associated with the sort key (see Section 8).

A bitonic tree node (type node_t) consists of a data value (of type value_t) and pointers to the left and
right child node. Instead of real pointers we use indexes (of an integral type index_t) in this implementation.
For leaf and spare nodes, these indexes are not used and can be set to arbitrary values.

// let value_t be the base type of the data to sort, e.g.
struct value_t {
float key; // primary sort key
voidx id; // unique id (or data pointer) used as secondary sort key

1

// including usual comparison operators such as
bool operator > (value_t p, value_t q) { return p.key > q.key ||
(p.key == g.key && p.id > qg.id); }

typedef int index_t;

// bitonic tree node:
struct node_t {
value_t value;
index_t left; // index of left son
index_t right; // index of right son
N

Listing 1: Pseudo code of basic type definitions for GPU-ABiSort

GPU-ABiSort main routine (Listing 2): Let us assume that a sub-routine GPUABiMerge takes 29877
bitonic trees, each consisting of 27 nodes, as input and simultaneously applies the adaptive bitonic merge
algorithm to these trees. For sorting a sequence consisting of n values, the main routine GPUABiSort has to
call this sub-routine for each recursion level j = 1, ..., logn of the adaptive bitonic sort (see Section 5.1).

The input bitonic trees are passed to GPUABiIMerge as a stream of bitonic tree nodes of the afore-
mentioned base type node_t (parameter bitonicTrees). More precisely, to simplify the implementation of
GPUABIMerge (that will be described in Appendix A.2) we assume that this parameter is a stream of 2n
nodes, where the first n nodes are reserved as a working space for GPUABiMerge, and the input bitonic trees
are contained in the second n nodes.

Since after applying our adaptive bitonic merge implementation, the order of the nodes of the 2!°87~J
modified bitonic trees in stream memory corresponds to an in-order traversal of these trees (see Section 5.3),
the data values in that stream can be interpreted as 2'°8™~J fully sorted sequences. Let us assume that the
sub-routine GPUABiMerge returns these sorted sequences simply as a stream of n data values of base type
value_t. We further assume that the sequences have been sorted with alternating sorting directions. To use
the resulting sequences as input for the next recursion level of the adaptive bitonic sort, we have to reinterpret
them as bitonic trees. This can be accomplished by copying (or directing) the output of GPUABiMerge to
the data values contained in the second half of the bitonicTrees stream while the left and right child indexes
in this stream area are left unmodified. Only in the beginning, these left and right child indexes have to be
initialized such as if the stream represents a single large bitonic tree with all nodes stored in order. (Since
the child indexes of spare nodes are irrelevant, this stream can also be interpreted as representing multiple
bitonic trees.)

Notation: The data type stream<t> denotes a stream with elements of base type t. In analogy to C arrays,
s[i] refers to the element from stream s with index i. In addition, s[a .. b] denotes a substream of s that
is defined by the elements of s ranging from index a up to index b, inclusively. Furthermore, for a stream
s of type stream<node_t>, s.value denotes the substream of type stream<value_t> that consists of just the
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value components in s. (Accessing this kind of substream can be implemented on a stream architecture in
several ways, e.g. by striding or using read/write masks.)

Using these notations the line bitonicTrees[n .. 2 x n — 1].value = sourceData in the pseudo code is
equivalent to writing bitonicTrees[i ]. value = sourceDatali — n] inside the for-loop over j = 1,...,logn.
Note also that — unlike the standard C++ semantic — passing streams as parameters or return values might
be interpreted as call-by-reference throughout the given pseudo code, thus the assignment of streams (=)
does not necessarily need to be implemented as copy operations.

// (GPUABiMerge implementation: see Appendix A.2)
stream<value_t> GPUABiIMerge (int n, int j, stream<node_t> bitonicTrees);

// GPU-ABiSort — unoptimized version in O(log”"3 n) stream operations:
stream<value_t> GPUABIiSort (int n, stream<value_t> sourceData)
{
// create a stream providing space for 2 = n tree nodes...
stream<node_t> bitonicTrees (2 * n);

// ...and initialize its second half with the source data and indexes of left and right sons
// set as if the stream represents a large balanced tree with all nodes stored in order
for (int i =n; i <2 % n; i++) {

bitonicTrees[i].left =i — ((i + 1) & ~i) / 2;

bitonicTrees[i].right =i + ((i + 1) & ~i) / 2;
}
bitonicTrees[n .. 2 x n — 1].value = sourceData;

// for each recursion level of the adaptive bitonic sort:

for (int j = 1; j <= log(n); j++) {
// merge 2"(log(n) — j) bitonic trees and finally write the merged
// data back to the substream bitonicTrees[n .. 2 x n— 1].value
bitonicTrees[n .. 2 x n — 1].value = GPUABiMerge(n, j, bitonicTrees);

}

// the result of the last GPUABiMerge contains the fully sorted data
return bitonicTrees[n .. 2 = n — 1].value;

Listing 2: Pseudo code of the GPU-ABiSort main routine

A.2 GPU-ABiMerge sub-routine

Before describing the sub-routine GPUABiIMerge at the stream level, we will describe the implementation
of the required kernel functions, which perform a phase of the adaptive min/max determination algorithm
and update child pointers of the bitonic tree nodes.

Phase 0 kernel (Listing 3): According to the adaptive min/max determination algorithm (see Section
4.2), the input of a kernel instance in phase 0 consists of a root and a spare node from a subtree of the
given bitonic tree. According to the recursion scheme of the adaptive bitonic merge (see Section 4.1),
the root nodes of these subtrees are defined as the children of the root nodes from the previous stage of
the algorithm, which is exactly the output of phase 1 of that stage. Since we assume that the output of that
phase was written linearly to a stream (of type stream<node_t>), the input root nodes of phase 0 can be read
linearly (i.e. via stream read) from that stream. Likewise, also the input spare nodes can be read linearly by
the kernel since they correspond to the root and spare nodes of the previous stage according to the recursion
scheme and thus to the output of phase 0 of the previous stage. Since no child pointers are required for
the spare nodes, we assume that the input spare nodes as well as the output nodes of phase 0 are provided
as streams of type stream<value_t>, i.e. in contrast to the subsequent phases we do not need to output (or
update) child pointers in phase 0. Note that for the nodes written in phase 0, child pointers are required only
after the last stage of the merge algorithm when these nodes are used as input for the next recursion level
of the sort algorithm; but in this case our implementation of the GPUABISort function (see Appendix A.1)
already assures the use of correct child pointers.

Besides the modified tree nodes, each kernel instance further outputs a pair of node pointers to a stream,
which is to be used by the kernel instances of the next phase as input stream as described in Section 5.1.
In this implementation we use a stream of type stream<index_t>, where a pair of successive elements
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represents the two node pointers that were called p and q in the adaptive min/max determination algorithm
presented in Section 4.2.

Notation: In the pseudo code, the body of the kernel function describes the operation performed by each
kernel instance. The keyword instance_index denotes the index of the respective kernel instance. Recall
that from inside the kernel body, the access to streams is restricted (especially no random access write is
possible). Therefore, we distinguish the following access types for the stream parameters of a kernel: The
keyword out marks output streams, to which the output of all kernel instances is written linearly by the
use of the command push_onto_stream. The keyword in marks input streams, from which the input of all
kernel instances is read linearly by the use of the command read_from_stream. The keyword gather (only
used in Listing 4) marks another kind of input stream, a so-called gather stream, which can be accesses
randomly — but read-only — from the kernel using the C array syntax.

// phase 0 kernel:

kernel void phase0 (out stream<index_t> pgidxOutStream, out stream<value_t> nodeValueOutStream,
in stream<node_t> rootInStream, in stream<value_t> spareValuelnStream,
const int numinstancesPerTree)

// alternating sorting direction (where isOdd(x) = x & 1)
bool reverseSortDir = isOdd(instance_index / numlnstancesPerTree);

node_t root
value_t spareValue

read_from_stream(rootIinStream);
read_from_stream (spareValuelnStream);

if ((root.value > spareValue) != reverseSortDir) {
swap(root.value, spareValue);
swap(root.left, root.right);

push_onto_stream (pgidxOutStream, root.left); // new p index

push_onto_stream (pqgidxOutStream, root.right); // new q index

push_onto_stream (nodeValueOutStream, root.value);
push_onto_stream (nodeValueOutStream, spareValue);

Listing 3: Pseudo code of the phase 0 kernel called by GPU-ABiMerge

Phase ¢ > 0 kernel (Listing 4): The kernel phasel implements any phase ¢ > 0 of the adaptive min/max
determination algorithm. At first each kernel instance recovers the p and q indexes from the previous phase
of the algorithm by reading them back from the pqgidx-stream where they have been stored. Then these
indexes are used to read the actual tree nodes p and q via a gather access from the stream containing the
bitonic tree nodes. After these nodes have been compared and possibly modified, the p and q indexes to
be used in the next phase of the algorithm are written to the pgidx-stream. According to the algorithm
described in Section 4.2, the new p and q indexes are set either to the left or to the right child node indexes.
Afterwards, these child node indexes have to be updated by the kernel, since they point to those nodes that
will be replaced by modified nodes in the next phase of the algorithm. Note that in the next phase, the
modified nodes will be written linearly to a stream (via the push_onto_stream command) and thus their
destination will be determined automatically by the stream hardware by iterating through a (sub)stream. To
determine these destination indexes in advance in the current phase and to update the child node indexes
accordingly, the same iterator mechanism can be used: We use a so-called iterator stream, which is a read-
only stream containing a linear ascending sequence of indexes. For such an iterator stream, the hardware
can realize the read_from_stream command using the iterator unit only, i.e. without memory lookups.

Notation: The type iter_stream<t> denotes an iterator stream containing indexes of base type t. Note that
despite of the if statement, the same number of read and write accesses (from in/out streams) is performed
on every control path of the kernel program, as it is required for a kernel implementation.

GPU-ABiMerge sub-routine (Listing 5): The merge algorithm for 2!°8™~J given bitonic trees is per-
formed in j stages and each stage in j — k phases (see Section 5.1). The output of the last phase (i.e. phase
0 of stage j7) finally contains the merged sequences that will be returned by this function. Table 1 in Section
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// phase i > 0 kernel:

kernel void phasel (out stream<index_t> pgidxOutStream, out stream<node_t> nodeOutStream,
in stream<index_t> pqgidxInStream, gather stream<node_t> bitonicTrees,
in iter_stream<index_t> indexGenerator, const int numinstancesPerTree)

// alternating sorting direction
bool reverseSortDir = isOdd(instance_index / numlnstancesPerTree);

index_t pidx = read_from_stream(pqidxInStream);
index_t qidx = read_from_stream(pqidxInStream);
node_t p = bitonicTrees[pidx];
node_t g = bitonicTrees[qidx];

if ((p.value > q.value) != reverseSortDir) {
swap(p.value, q.value);
swap(p.left, q.left);

push_onto_stream (pqidxOutStream, p.right); // new p index
push_onto_stream (pqidxOutStream, q.right); // new g index

// update child pointers of p, q

p.right = read_from_stream(indexGenerator);
q.right = read_from_stream (indexGenerator);
} else {
push_onto_stream (pqidxOutStream, p.left); // new p index
push_onto_stream (pqidxOutStream, q.left); // new q index

// update child pointers of p, q
p.left read_from_stream (indexGenerator);
q.left read_from_stream (indexGenerator);

}

push_onto_stream (nodeOutStream, p);
push_onto_stream (nodeOutStream, q);

Listing 4: Pseudo code of the phase 7 > 0 kernel called by GPU-ABiMerge

5.3 specifies the substreams to be used as output streams for the kernels of each phase. Recall that we re-
served the first n nodes of stream bitonicTrees as a temporary workspace for this function (instead of using
an additional stream of n nodes as suggested in Section 5.3). As already mentioned, the input streams of
phase 0 are exactly those substreams that form the output streams of phase 0 and 1 of the previous stage.
The only exception is phase 0 of the first stage, where the input should consist of the root and spare nodes
of the bitonic trees given in the second half of the stream bitonicTrees. Since according to the GPUABISort
implementation presented in Appendix A.l the nodes of the bitonic tree are stored in-order in the given
input stream, the root and spare nodes are contained at well-defined locations in that stream: Since each
bitonic tree consists of 27 nodes, the 27~ 1th node of each tree is its root node, and the 27th node of each tree
is its spare node.

Notation: For simplicity, we list the root and spare nodes using a set notation at the beginning of the
pseudo code and assign them to those substreams that are used in stage 0 phase 0 as input streams. (As an
alternative, the corresponding kernel program could be implemented in such a way that it reads these root
and spare nodes directly from the given locations by means of striding: each kernel instance would have
to skip 2771 — 1 stream nodes, read the root node from the stream, skip again 2/~! — 1 stream nodes, and
finally read the spare node from the stream.)
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// GPU-ABiMerge — unoptimized version in O(log”"2 n) stream operations:

stream<value_t> GPUABiMerge (int n, int j, stream<node_t> bitonicTrees)
{
int numTrees = 1 << (log(n) — j); // number of given bitonic trees
int numPairsPerTree = 1 << (j — 1); // number of node pairs per input tree

// initialize root and spare input streams of stage 0 phase 0:
int len = numTrees;

bitonicTrees[len .. 2 = len — 1] = { bitonicTrees[n + 1 % numPairsPerTree — 1],
bitonicTrees[n + 3 x numPairsPerTree —
b

bitonicTrees[0 .. len — 1].value = { bitonicTrees[n + 2 x numPairsPerTree — 1].value,

bitonicTrees[n + 4 x numPairsPerTree — 1].value,

. b
for (int k = 0; k < j; k++) { // stage
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iter_stream<index_t>(2 * nextStart .. 2 x (nextStart + len) — 1),
1 << k);

start = nextStart;

}
}

return bitonicTrees[0 .. n — 1].value;

}

Listing 5: Pseudo code of the GPU-ABiMerge sub-routine
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