
1

GPU-ABiSort: Optimal Parallel Sorting
on Stream Architectures

Alexander Greß

Institute of Computer Science II

University of Bonn

Gabriel Zachmann

Institute of Computer Science

Clausthal University
of Technology

Contribution
A sorting algorithm for stream processing architectures,

• which has optimal time complexity O(n log n / p),
in contrast to previous sorting approaches on stream
architectures;

• especially suited for implementation on graphics hardware
(GPUs);

• the optimized GPU implementation outperforms quick-sort
on CPU as well as recent (non-optimal) sorting approaches
on GPUs already for sequence sizes >= 32768.

Our approach is based on the PRAM sorting algorithm
Adaptive Bitonic Sorting (Bilardi, Nicolau 1989).

2

Overview

• Background on stream architectures (and GPUs)

• Recent work on sorting on stream architectures

• Background on adaptive bitonic sorting

• First step towards a stream program

• Actual stream program (no random access writes)

• Implementation issues

• Results / Timings

Background: Stream architectures
Stream Programming Model:

„Streams of data passing through computation kernels.“

• Stream:
Ordered set of data of arbitrary datatype.

• Kernel:
Specifies the computation to be performed on
each element of the input stream.

3

Background: Stream architectures
Sample stream program:

{
 stream A, B, C;
 ...
 kernelfunc1(input: A,
 output: B);

 kernelfunc2(input: B,
 output: C);
 ...
}

A:

B:

C:

data data

data data

data

data

data data data

Background: Stream architectures

• Stream processor prototypes:
Imagine, Merrimac, ...

• Programmable graphics hardware (GPUs):

– Although originally built for graphics rendering,
nowadays similar capabilities to stream processors.

– Current trend: Using the stream programming model to describe
general purpose applications on GPUs (GPGPU).

– But some GPU-specific properties / limitations
(not covered in this talk, see paper).

4

Background: Stream architectures
General restrictions:

• All memory write accesses take place at the end of a kernel

 Limited number of outputs per kernel instance
(since also the number of temporary registers per kernel instance is limited)

• Only (linear) stream writes, no random access writes !

Recent work:
Sorting on stream architectures
• on Imagine:

– Kapasi et al. 2000

• on GPUs:
– Purcell et al. 2003
– Kipfer et al. 2004 / 2005
– Govindaraju et al. 2005

All based on non-optimal-time sorting networks,
most of them on Batcher´s bitonic sorting network.

5

 5 13 2 10 9 6 14 1

 5 13 10 2 6 9 14 1

 2 5 10 13 14 9 6 1

 1 2 5 6 9 10 13 14

Standard merge sort scheme (log n merge steps),
but with alternating sorting directions

Background:
Bitonic sorting

Background:
Bitonic merging
consists of log n steps (stages):

Split the (bitonic) input sequence into two equally sized bitonic
sequences, such that all elements of the first sequence are
not greater than any element of the second one.

Bitonic sequence:
A sequence consisting of an increasing part followed by a

descreasing part after rotation by an arbitrary number of
elements.

e.g. 12343210, 32101234, 21012343

6

 2 5 10 13 14 9 6 1

 2 5 6 1 14 9 10 13

 2 1 6 5 10 9 14 13

 1 2 5 6 9 10 13 14

Background:
Bitonic merging

> > > >

< >> <

< < > >

 2 5 10 13 14 9 6 1

 2 5 6 1 14 9 10 13

 2 1 6 5 10 9 14 13

 1 2 5 6 9 10 13 14

Background:
Bitonic merging

> > > >

< >> <

< < > >

7

Background:
Adaptive bitonic merging
Each stage consists of log n steps (phases).

Idea:

• Find the devider of the partitions by binary search
(instead of linear search).

• Use a binary search tree (bitonic tree).

Perform exchanges by pointer swaps during the search.

Background:
A stage of the adaptive bitonic merge

Pseudo code: Phase 0: Determine, which of the two cases applies:
 (a) root value < spare value or
 (b) root value > spare value
 Only in case (b):
 Exchange the values of root and spare.
 Let p be the left and q the right son of root.

For i = 1, . . . , log n − 1:

Phase i: Test if: value of p > value of q (*)
 If condition (*) is true:
 Exchange the values of p and q as well as
 in case (a) the left sons of p and q,
 in case (b) the right sons of p and q.
 Assign the left sons of p, q to p, q iff
 case (a) applies and condition (*) is false or
 case (b) applies and condition (*) is true;
 otherwise assign the right sons of p, q to p, q.

8

Adaptive bitonic merging -
First step towards a stream program
Basic ideas:

• Implement a single
phase as kernel
function.

• Store all temporary data
to be transfered from
one phase to another in
a stream.

Phase 0: Determine, which of the two cases applies:
 (a) root value < spare value or
 (b) root value > spare value
 Only in case (b):
 Exchange the values of root and spare.
 Let p be the left and q the right son of root.

For i = 1, . . . , log n − 1:

Phase i: Test if: value of p > value of q (*)
 If condition (*) is true:
 Exchange the values of p and q as well as
 in case (a) the left sons of p and q,
 in case (b) the right sons of p and q.
 Assign the left sons of p, q to p, q iff
 case (a) applies and condition (*) is false or
 case (b) applies and condition (*) is true;
 otherwise assign the right sons of p, q to p, q.

Adaptive bitonic merging - First step towards a stream program:

Execute phase 0 kernel...

2 6

4

5 1

3

7 0

15 8

12

0 7

3

4 11

2 10

5

14 6

9

13 1

...

 root spare ... root spare root spare
phase 0
kernel

p0 q0 ...p0 q0 p0 q0

7 > 0 4 < 11 13 > 1

9

 root spare ... root spare root spare

Adaptive bitonic merging - First step towards a stream program:

...result of phase 0 kernel...

2 6

4

5 1

3

0 7

15 8

12

0 7

3

4 11

2 10

5

14 6

9

1 13

...

p0 q0 ...p0 q0 p0 q0

Adaptive bitonic merging - First step towards a stream program:

...execute phase 1 kernel...

2 6

4

5 1

3

0 7

15 8

12

0 7

3

4 11

2 10

5

14 6

9

1 13

...

phase 1
kernel

p1 q1 ...p1 q1 p1 q1

3 < 4 12 > 3 9 > 5

 root spare ... root spare root spare

p0 q0 ...p0 q0 p0 q0

10

 root spare ... root spare root spare

p0 q0 ...p0 q0 p0 q0

Adaptive bitonic merging - First step towards a stream program:

...result of phase 1 kernel...

2 6

4

5 1

3

0 7

15 8

3

0 7

12

4 11

2 10

9

14 6

5

1 13

...

p1 q1 ...p1 q1 p1 q1

 root spare ... root spare root spare

p0 q0 ...p0 q0 p0 q0

Adaptive bitonic merging - First step towards a stream program:

...execute phase 2 kernel...

2 6

4

5 1

3

0 7

15 8

3

0 7

12

4 11

2 10

9

14 6

5

1 13

...

p1 q1 ...p1 q1 p1 q1
phase 2
kernel

5 > 2 8 > 7 6 < 10

11

 root spare ... root spare root spare

p0 q0 ...p0 q0 p0 q0

p1 q1 ...p1 q1 p1 q1

Adaptive bitonic merging - First step towards a stream program:

...first merge stage done

5 6

4

2 1

3

0 7

15 7

3

0 8

12

4 11

2 10

9

14 6

5

1 13

...

Adaptive bitonic merging - First step towards a stream program

Recall the stream programming restrictions:

• All memory write accesses take place at the end of a kernel

 Limited number of outputs per kernel instance



• Only (linear) stream writes, no random access writes !



12

Adaptive bitonic merging - Actual stream program:
Stream writes instead of random access writes

• Can we output the modified nodes linearly to a stream
(i.e. in the order they are visited)?

Recall:
– The order in which nodes are visited is data dependent.
– The number of nodes visited is not data dependent.

• We can, as long as we keep child pointers consistent.
– Because we operate on a fully linked data structure: the bitonic tree.
– i.e. we can change physical memory location of nodes during the

algorithm if we update the corresponding child pointers.

Adaptive bitonic merging - Actual stream program:
Stream writes instead of random access writes

• But how to update the child pointers without random
access writes?

– At the end of each phase, we know which child nodes will be visited
in the next phase.

– We also know to which memory location the modified child nodes
will be stored in the next phase (because of the fixed memory
layout).

• Therefore, we can update the child pointers in advance
(when creating the parent node).

13

Adaptive bitonic merging - Actual stream program:

Execute phase 0 kernel...

2 6

4

5 1

3

7 0

2 10

5

14 6

9

13 1

...

 root spare ... root spare

...0 7 1 13

output substream

Adaptive bitonic merging - Actual stream program:

...execute phase 1 kernel...

p0 q0 ... p0 q0

... ...0 7 1 13 43 95

2 6

4

5 1

3

7 0

2 10

5

14 6

9

13 1

...

output substream

14

Adaptive bitonic merging - Actual stream program:

...execute phase 2 kernel...

...0 7 1 13 43 95 52 106

2 6

4

5 1

3

7 0

2 10

5

14 6

9

13 1

...

p1 q1 ... p1 q1

output substream

Adaptive bitonic merging:

Overlapped execution of phases

Additional improvement to reduce the number of stream
operations (kernel function calls) from O(log3 n) to O(log2 n)
(similar to Bilardi et al.).

See paper.

15

Implementation issues
• Optimization:

The first few merge steps as well as the last few stages of each
merge can be replaced by specially optimized merge
implementations for small sequences
(i.e. sequences up to 16 elements in our implementation).

• GPU-specific implementation issues:
– ensure distinctness of input and output streams

(currently requires additional copying of substreams)
– map all pointers / indexes to the 2D address space of GPU memory;

alternatives:
1) simple row-wise mapping
2) GPU cache optimized 1D-to-2D address mapping

Results
CPU: AMD Athlon-XP 3000+ GPU: NVIDIA GeForce 6800 Ultra

CPU: AMD Athlon-64 4200+ GPU: NVIDIA GeForce 7800 GTX

1) simple mapping to 2D address space
2) cache-optimized mapping to 2D address space

16

Thank you.

