Motivation

Object-Space Interference Detection m Collision detection is a fundamental task in
= Virtual Prototyping

on Programmable Graphics Hardware = Haptic rendering (force-feedback)

= Physically-based simulation
(rigid bodies etc.)

Alexander GreR and Gabriel Zachmann = Medical training/planning systems

. . m Collision detection performance
University of Bonn is critical for

= Responsive VR systems
= Real-time simulation
= Natural interaction

= Need of hardware accelerated algorithms

Previous Work

m Collision detection in graphics hardware m parallel architecture of GPU:
» image-space algorithms: multiple vertex program | fragment program

= RECODE [Baciu et al. 1999] execution units

= vertex and fragment programs are designed to run with
an arbitrary number of execution units

= scalability to future GPUs

= CInDeR [Knott,Pai 2003]
= CULLIDE [Govindaraju et al. 2003]
and further image-space methods
- restricted to objects of certain shape and connectivity m all calculations in floating point
m Hierarchical collision detection (up to 32 bits precision)
= OBBs [Gottschalk et al. 1996] m SIMD instruction set
= DOPs, AABBs [Zachmann 1998, 2002]

= Convex surface decomposition [Ehmann et al. 2001] = high floating point thr
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GPU architecture overview

GPU mem GPU execution units GPU non-temporary mem
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Bounding Volume Tree

inner nodes: bounding volumes
(AABBs in our approach)
leaf nodes: triangles

Simultaneous traversal of two trees:
m all pairs of nodes (S, T)) are considered,
where S; is a node of tree S and
T;is a node of tree T on the same hierarchy level
m for a pair of inner nodes (S;, T)) their child nodes
have to be checked only if the bounding volumes
(BVs) corresponding to S; and T, overlap

Our traversal scheme:
m breadth-first strategy (to exploit parallelism)
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m Collision detection on current graphics hardware
= using programmable graphics hardware (GPU)

= utilizing its SIMD capabilities
and high floating point throughput
(using floating point textures for storage)

implementing an hierarchical algorithm
exact interference detection in object-space
no requirements on shape, topology, connectivity
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Simultaneous overlap testing of multiple BVs

m Central task of the breadth-first traversal:
given: list L, tree node T

determine: list of those nodes from L that overlap with T

m Pseudocode:

overlappingChildren (list L, node T
list L’
for all nodes S from list L do
for all children S; of S do
if S;and T overlap then
L‘.append(S));
return L’
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Simultaneous overlap testing of multiple BVs

m Idea: implement as fragment program

= thereoretically, all overlap tests could be executed in
parallel as they are independent of each other

= parallel execution requires a data structure that allows
direct access to elements (arrays); lists are unsuitable

= arrays can be represented on the graphics hardware by
(floating-point) textures

= make loop vectorizable by using arrays instead of lists
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Simultaneous overlap testing of multiple BVs

Solution: tightly-packed arrays

1. Calculate overlap counts for the children
of all nodes contained in the input array
(i.e. 1if there is an overlap, 0 otherwise)

input: l
om [ « | oa

0 1 1 0 1

Unive

Simultaneous overlap testing of multiple BVs

Naive approach: use arrays with NULL-elements

overlappingChildren (array a, node T): array
array a
for all nodes S; from array a do
for all children S;; of S; do
if S;;and T overlap then
a‘[2j+] = S;;
else
a‘[2j+i] := NULL
return a’

= vectorizable, but unsuitable for parallel execution by a fragment
program where one execution unit is assigned for each output
array element o
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Simultaneous overlap testing of multiple BVs

2. Build a tree by summing up overlap counts
corresponds to a mip-map; total size O(n)
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Simultaneous overlap testing of multiple BVs

Successively construct the output arra
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Simultaneous overlap testing of multiple BVs

3. Successively construct the output array
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Simultaneous overlap testing of multiple BVs

Successively construct the output array

Simultaneous overlap testing of multiple BVs

3. Successively construct the output array

output:
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0 1 1 0 1 1 0 1
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The overall simultaneous traversal scheme

m Pseudocode using a queue:

traverse (node S, node T):

queve g; a
arraya:={S};
q.insert(a, T); (o | B n
while g is not empty do
{
(aT): P;
q.pop.
for all children T; of T do
{
array a‘:= overlappingChildren(a, T;)
g.append(a‘, T;);

The overall simultaneous traversal scheme

m Subroutine overlappingChildPairs():

= is vectorizable as an array is used for input/output and
there are no other dependencies between iterations

= its subroutine overlappingChildren() is — as described —
executed by a fragment program

> ldea: implement as vertex program
= the input array can be specified using vertex array(s)
= the output array must be written to vertex array(s), too

m requires the new ARB_super_buffer
OpenGL extension
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The overall simultaneous traversal scheme

m Pseudocode using 2D arrays:
traverse (node S, node T):

arays =(5) ;|
arrayb:={(a, T)};
while b is not empty do

O3 G OdE Ol

b := overlappingChildPairs(b)

overlappingChildPairs (array b): array
array b’

for all (aj, T,) from array b do
2 3
for all children Tj; of T; do . .

aE oaa

S —— e
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Implementation details

m Mapping of data structures to GPU memory:

one call of overlappingChildPairs() corresponds to rendering n
lines of lengths my ... m,,_; into a 2D buffer, where n is the
length of array b and mj is the length of array g,

the nodes of tree S, which are referenced by the elements of
arrays aj, are stored in sets of 1D textures (up to three textures
per hierarchy level)

the nodes of tree T, which are referenced by the elements of
array b, are stored in vertex arrays (one per hierarchy level)

the lengths of the arrays &, which are determined inside the
subroutine overlappingChildren(), are written to an additional
vertex array (using ARB_super_buffer extension)

transformation matrixes for trees S and T can be passed to thr_e‘._
fragment and vertex program units as program parametersg
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Implementation details

m Hardware limitations:
= the number of nodes for each hierarchy level (and therefore the
number of triangles of a single mesh) may not be larger than
the max. allowed texture size M (usually M=2048)
- larger meshes have to be split into multiple sub-meshes with
max. M triangles each
m Possible optimizations:
= avoid unnecessary calls of overlappingChildPairs() when array
b contains only empty arrays a; (can be determined by querying
an occlusion count using the ARB_occlusion_query extension)
by using 2D textures of height M for every hierarchy level i
and packing multiple 2D arrays into these textures,
M/2 meshes can be processed simultaneously by a
single batch (i.e. a single overlappingChildPairs() call)
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Questions?

Conclusions and Future Work

m Summary:

= hierarchical collision detection using programmable
graphics hardware

= all calculations done in object-space, not image-space
= no requirements on shape, topology, connectivity

m Ongoing and future work:
= in-depth performance analysis of our implementation

= the usage of bounding volumes other than AABBs
and of enhanced tree traversal schemes are to be
evaluated
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