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Abstract
We present novel algorithms for updating bounding volume hierarchies of objects under-
going arbitrary deformations. Therefore, we introduce two new data structures, the kinetic
AABB tree and the kinetic BoxTree.
The event-based approach of the kinetic data structures framework enables us to show that
our algorithms are optimal in the number of updates. Moreover, we show a lower bound
for the total number of BV updates, which is independent of the number of frames.
Furthermore, we present a kinetic data structures which uses the kinetic AABB tree for
collision detection and show that this structure can be easily extended for continuous col-
lision detection of deformable objects.
We performed a comparison of our kinetic approaches with the classical bottom-up update
method. The results show that our algorithms perform up to ten times faster in practically
relevant scenarios.

1 Introduction
Bounding volume hierarchies for geometric objects are widely employed in many areas
of computer science to accelerate geometric queries. Such acceleration data structures
are used in computer graphics for ray-tracing, occlusion culling and collision detection,
to name but a few; They are also used in other areas such as geographical databases,
molecular simulation, or robotics. Usually, a bounding volume hierarchy is constructed
in a pre-processing step which is suitable as long as the objects are rigid.

However, deformable objects play an important role, e.g. for creating virtual envi-
ronments in medical applications, entertainment, and virtual prototyping
[Teschner et al., 2005]. If the object deforms, the pre-processed hierarchy becomes in-
valid.

In order to still use this well-known method for deforming objects as well, it is nec-
essary to update the hierarchies after the deformation happens.

Most current techniques do not make use of the temporal and spatial coherence of
simulations and just update the hierarchy by brute-force at every time step or they sim-
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ply restrict the kind of deformation in some way, in order to avoid the time consuming
per-frame update of all BVs.

On the one hand, we all know that motion in the physical world is normally continu-
ous. So, if animation is discretized by very fine time intervals, a brute-force approach to
the problem of updating BVHs would need to do this at each of these points in time. On
the other hand, changes in the combinatorial structure of a BVH only occur at discrete
points in time. Therefore, we propose to utilize an event-based approach to remedy this
unnecessary frequency of BVH updates.

According to this observation, we present two algorithms to update hierarchies in a
more sensitive way: we only make an update if it is necessary. In order to determine
exactly when it is necessary, we use the framework of kinetic data structures (KDS).
To use this kind of data structures, it is required that a flightplan is given for every
vertex. This flightplan may change during the motion, maybe by user interaction or
physical events (like collisions). Many deformations caused by simulations satisfy these
constraints, like keyframe animations and many other animation schemes.

Beyond this, our algorithms can handle all objects for which we can build a bounding
volume hierarchy, including polygon soups, point clouds, and NURBS models. Our
algorithms are even flexible enough for handling insertions or deletions of vertices or
edges in the mesh during run-time.

In the following, we first present a kinetization of an AABB tree and show that the
associated update algorithm is optimal in the number of BV updates (This means that
every AABB hierarchy which performs less updates must be invalid at some point of
time).

Moreover, we prove an asymptotic lower bound on the total number of update oper-
ations in the worst case which holds for every BVH updating strategy. This number is
independent from the length of the animation sequence under certain conditions.

In order to reduce the number of update operations, we propose a kinetization of the
BoxTree. A BoxTree is a special case of an AABB, where we store only two splitting
axis per node. On account of this, we can reduce the overall number of events.

Furthermore, we use the kinetic data structure framework not only to update the hier-
archies, but also for the collision detection. Therefore we present the kinetic incremen-
tal collision detection. We use a separation list to keep track of the spatial and temporal
coherence during collision detection.

Finally, we present the results of a comparison to the running times of hierarchical
collision detection based on our novel kinetic BVHs and conventional bottom-up up-
dating, resp.

2 Related Work
Many methods using bounding volume hierarchies have been developed for collision
detection of rigid bodies and have been also adopted for deformable objects, includ-
ing axis-aligned bounding volumes (AABBs) [van den Bergen, 1997, Provot, 1997], k-
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Dops [Klosowski et al., 1998], OBBs [Gottschalk et al., 1996] and spheres
[Palmer and Grimsdale, 1995]. Since the objects deform, the hierarchies must be up-
dated regularly and the cost of these updates can be high. [van den Bergen, 1997]
showed that updating is about ten times faster compared to a complete rebuild of an
AABB hierarchy, and as long as the topology of the object is conserved, there is no
significant performance loss in the collision check compared to rebuilding.

Several techniques to speed up the updates during each time step were proposed, in-
cluding top-down, bottom-up updates and hybrid strategies [Bergen, 1998].
[Mezger et al., 2003] accelerated the update by omitting the update process for several
time steps. Therefore, the BVs are inflated by a certain distance, and as long as the en-
closed polygon does not move farther than this distance, the BV need not to be updated.
There also exist some stochastic methods [Klein and Zachmann, 2003, Lin, 1993] for
deformable collision detection, but they can not guarantee to find exact collisions and
even a single missed collision can result in an invalid simulation.

[Knott and Pai, 2003] used hardware frame buffer operations to implement a ray-
casting algorithm to detect static interferences between polyhedral objects. Therefore,
the precision is constrained by the dimension of the viewport. Another hardware-based
approach is given by [Heidelberger et al., 2004]. They use layered depth images with
additional information on face orientation for the collision detection. Govindaraju et al
[Govindaraju et al., 2005] use chromatic decompositions and the GPU to speed up the
triangle tests using 2.5D overlap tests. However, for the broad phase, they use bottom-
up updates of an AABB hierarchy. Furthermore, the algorithm is restricted to polygonal
meshes with fixed connectivity.

[Lau et al., 2002] proposed a collision detection framework for deformable NURBS
surfaces using AABB hierarchies. They reduce the number of updates by looking for
special deformation regions.

Another approach for the special case of morphing objects
[Larsson and Akenine-Moeller, 2003], where the objects are constructed by interpo-
lating between some morphing targets, is to construct one BVH and fit this to the
other morph targets, such that the corresponding nodes contain exactly the same ver-
tices. During runtime, the current BVH can be constructed by interpolating the BVs.
[Fisher and Lin, 2001] use deformed distance fields for the collision detection between
deformable objects.

[James and Pai, 2004] introduced the BD tree which uses spheres as BVs and leads
to a sub-linear-time algorithm for models which represent the deformation as linear su-
perposition of precomputed displacement fields. However, the deformation is restricted
to reduced deformable objects.

There also exist first approaches of collision detection using the event-based ki-
netic data structures (KDS): [Erickson et al., 1999] describes a KDS for collision de-
tection between two convex polygons by using a so-called boomerang hierarchy.
[Agarwal et al., 2002] and [Speckmann, 2001] developed a KDS using pseudo triangles
for a decomposition of the common exterior of a set of simple polygons for collision
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detection. However, all these approaches could not be extended to 3D-space or are
much too expensive in practice.

3 Overview of our Approach

In this section we start with a quick recap of the kinetic data structure framework and
its terminology.

The kinetic data structure framework (KDS) is a framework for designing and analyz-
ing algorithms for objects (e.g. points, lines, polygons) in motion which was invented
by [Basch et al., 1997]. The KDS framework leads to event-based algorithms that sam-
ples the state of different parts of the system only as often as necessary for a special
task. This task can be for example the computing of the convex hull of a set of moving
points and it is called the attribute of the KDS.

A KDS consists of a set of elementary conditions, called certificates, which prove
altogether the correctness of the attribute. Those certificates can fail as a result of the
motion of the objects. This certificate failures, the so-called events, are placed in an
event-queue, ordered according to their earliest failure time. If the attribute changes
at the time of an event, the event is called external, otherwise the event is called inter-
nal. Thus sampling of time is not fixed, but determined by the failure of some certain
conditions.

As an example we can assume the bounding box of a set of moving points in the
plane. The bounding box is the attribute we are interested in. It is build by four points
Pt
{max,min},{x,y} which have the maximum and minimum x- and y-values at a certain

time point t. For every inner point Pt
i we have Pt

i [x] < Pt
max,x[x], Pt

i [y] < Pt
max,x[y],

Pt
i [x] > Pt

min,x[x] and Pt
i [y] > Pt

min,y[y]. These four simple inequations are the certifi-
cates in our example. If an inner point moves out if the bounding box due to its motion,
e.g. Pt2

i [x] > Pt2
max,x[x], this causes an external event at the point of time t + ∆t when

Pt+∆t
i [x] = Pt+∆t

max,x[x] (see Fig. 1). If Pt
i [x] > Pt

j[x] and Pt3
i [x] < Pt3

j [x] for points that are
not in Pt

{max,min},{x,y}, this causes an internal event.
We measure the quality of a KDS by four criteria: A good KDS is compact, if it re-

quires only little space, it is responsive if we can update it quickly in case of a certificate
failure. It is called local, if one object is involved in not too many events. This guar-
antees that we can adjust changes in the flighplan of the objects quickly. And finally,
a KDS is efficient, if the overhead of internal events with respect to external events is
reasonable.

In our case, the objects are a set of m polygons with n vertices. Every vertex pi has a
flightplan fpi(t). This might be a chain of line segments in case of a keyframe animation
or algebraic motions in case of physically based simulations. The flightplan is assumed
to use O(1) space and the intersection between two flightplans can be computed in
O(1) time. The flightplan may change during simulation by user interaction or physical
phenomena, including collisions. In this case, we have to update all events
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Figure 1: Assume a set of moving points in the plane. P{max,min},{x,y} for the current
bounding volume of this points. At some time, P5 will become smaller than Pmin,y, this
causes an event.

Algorithm 1: Simulation Loop

while simulation runs do
calc time t of next rendering
e← min events in event-queue
while e.timestamp < t do

processEvent(e)
e← min events in event-queue

check for collisions
render scene

The attribute is, in case of the kinetic AABB tree and the kinetic BoxTree, a valid
BVH for a set of moving polygons. An event will happen, when a vertex moves out of
its BV.

The kinetic data structures we will present have some properties in common, which
will be described as follows.

Algorithm 2: Check{BV a of object A, BV b object B}

if overlap ( a, b ) then
if a and b are leaves then

test_primitives( a, b )
else

forall children a[i] of a do
forall children b[j] of b do

Check( a[i], b[j] )
else

return
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P1

P3

P2

Figure 2: When P1 becomes larger than the maximum vertex P2, a Leaf-Event will hap-
pen.

They all use an event-queue for which we use an AVL-Tree, because with this data
structure we can insert and delete events as well as extract the minimum in time O(logk)
where k is the total number of events.

Both algorithms run within the same framework for kinetic updates, which is ex-
plained in Algorithm 1.

Furthermore, our algorithms use although the same procedure for the collision check
(see Algorithm 2).

4 Kinetic AABB-Tree

In this section, we present a kinetization of the well known AABB tree. We build the
tree by any algorithm which can be used for building static BVHs and store for every
node of the tree the indices of these points that determine the bounding box. It is only
required that the height of the BVH is logarithmic.

After building the hierarchy, we traverse the tree again to find the initial events.
There are three kinds of different events:
• Leaf-Event: Assume that P1 realizes the BVs maximum along the x-axis. The a leaf

event happens, when the x-coord of one of the other points P2 or P3 becomes larger
than P1,x (see Fig. 2).

• Tree-Event: Let K be an inner BV with its children Kl and Kr and P2 ∈ Kr is the
current maximum of K on the x-axis. A Tree-Event happens when the maximum of
Kl becomes larger than P2 (see Fig. 3). Analogously Tree-Events are generated for
the other axis and the minima. other axis and the minima.

• Flightplan-Update-Event: Every time a flightplan of a point changes, we get a
Flightplan-Update-Event.

So after the initialization we have stored six events with each BV. In addition, we put
the events in the event queue, sorted by time-stamp.
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P1
P2

Figure 3: When P1, the maximum of the left child-box becomes larger than the overall
maximum vertex P2, a Tree-Event will happen.

P2

P3

P1

Figure 4: To keep the hierarchy valid when a Leaf-Event happens, we have to replace
the old maximum P2 by the new maximum P1, and compute the time, when one of the
other vertices of the polygon, P2 or P3 will become larger than P1. In this example this
will be P3.

During runtime, we perform an update according to Algorithm 1 before each collision
check. In order to keep the BV hierarchy valid, we have to handle the events as follows:
• Leaf-Event: Assume in a leaf BV B, realized by the vertices P1, P2 and P3, the

maximum extend along the x-axis has been realized by P2. With the current event,
P1 takes over, and becomes larger than P2,x. In order to maintain the validity of the
BV hierarchy, in particular, we have to associate P1 as the max x extent of B. In
addition, we have to compute a new event, , we have to compute all the intersections
of the flightplans of all other vertices in B with P1 in the xt-plane. The, an event is
inserted into the queue for that pair with the earliest intersection time (Fig. 4).
But that is not necessarily sufficient for keeping the BVH valid. In addition, we have
to propagate this change in the BVH to the upper nodes. Assume B be the right son
of its father V , so we have check whether P2 had been the maximum of V too. In this
case, we have to replace P2 by the new maximum P1. In addition, the corresponding
event of V is not valid any more because it was computed with P2. So we have to
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P2

P1

P3

Figure 5: In Addition we have to propagate the change to upper Bev’s in the hierarchy
after a Tree-Event. After replacing the P2 old maximum by the new maximum P1 in
the lower left box, we, we have to compute the event between P1 and P3, which is the
maximum of the father BV.

delete this event from the event-queue and compute a new event between P1 and the
maximum of the left son of V .
Similarly we have to proceed up the BVH until we find the first predecessor V with
maxx{V} 6= P2, or until we reach the root. In the first case we only have to compute
another event between maxx{V} and P1 and stop the recursion. (Fig. 5).

• Tree-Event: Let K be an inner node of the BVH and P2 be the maximum along the
x-axis. Assume further, P2 is also the maximum of the left son. When a Tree-Event
happens, P2 will be replaced by P1, which is the maximum of the right son of K
(see Fig. 5). In addition, we have to compute a new event between P1 and P2 and
propagate the change to the upper nodes in the BVH in the same way as described
above.

• Flightplan-Update-Event: When the flightplan of a vertex changes, we have to up-
date all events it is involved in. If a Flightplan-Update-Event happens, we traverse
all of them and update the timestamps.

For measuring the theoretical performance of our algorithm we use the four criteria
of quality given for every KDS.

In addition, we want to show that our data structure is a BVH, even if the object
deforms. Therefore, we need the following definition.
Definition 1 We call a kinetic AABB tree valid, if every node in the tree is a bounding
volume for all polygons in its subtree.
Theorem 1 The kinetic AABB tree is compact, local, responsive and efficient. Further-
more, if we update the BVHs in the manner described above, then the tree is valid at
every point of time.
• Compactness: For a BVH we need O(m) BVs. With every BV we store at most six

Tree- or Leaf-Events. Therefore, we need space of O(m) overall. Thus, our KDS is
compact.
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• Responsiveness: We have to show that we can handle certificate failures quickly.
– Leaf-Events: In the case of a leaf event we have to compute new events for all

points in the polygon, thus the responsiveness depends on the number of vertices
per polygon. If this number is bounded we have costs of O(1). When we prop-
agate the change to upper nodes in the hierarchy, we have to delete an old event
and compute a new one, which causes costs of O(logm) per inner node for the
deletion and insertion in the event-queue, since the queue contains O(m) events.
In the worst case we have to propagate the changes until we reach the root. Thus
the overall cost is O(log2 m) for a leaf event.

– Tree-Events: Analogously, for tree events, we get costs of O(log2 m).
Thus the KDS is also responsive.

• Efficiency: The efficiency measures the ratio of the inner to the outer events. Since
we are interested in the validity of the whole hierarchy, every event is an inner event
because every event changes our attribute. So, the efficiency is automatically given.

• Locality: The locality measures the number of events one vertex is participating in.
For sake of simplicity, we assume that the degree of every vertex is bounded. Thus,
every vertex can participate in O(logm) events. Therefore, a flightplan update can
cause costs of O(log2 m). Thus, the KDS is local.

We show the second part of the theorem by induction over time.
After the creation of the hierarchy, the BVH is apparently valid. The validity will be

violated for the first time, when the combinatorial structure of the BVH changes, this
means, a vertex flies out of its BV.

In case of a leaf, every vertex in the enclosed polygon could be considered to such
an event. The initial computation of the Leaf-Events guarantees, that there exists an
event for the earliest time point this can happen. For the inner nodes, it is sufficient to
consider only the extremal vertices of the children: Assume a BV B with P1 maximum
of the left son Ble f t along the x-axis and P2 maximum of the right son Bright along the
x-axis. This means, all vertices in Ble f t have smaller x-coords than P1 and all vertices
in Bright have smaller x-coords than P2. Thus, the maximum of B along the x-axis must
be max{P1,P2}. Assume w.l.o.g. P1 is the maximum. The vertex Pnext which could
become larger than P1 could be either P2 or a vertex of a BV in a lower level in the
hierarchy becomes invalid before an event at B could happen. Assume Pnext is in the
right subtree, than Pnext must become larger than P2 and therefore Bright has become
invalid sometime before. If Pnext is in the left subtree, it must become larger than P1 and
thus Ble f t has become invalid before.

Summarised, we get a valid BVH after the initialisation, and the vertex which will
violate the validity of the BVH for the first time triggers an event.

We still have to show, that the hierarchy stays valid after an event happens and that
the next vertex which violates the validity also triggers an events.
• Leaf-Event: Assume B the affected leaf and P2 becomes larger than P1, which is the

current maximum of B. As described above, we replace P1 by P2, therefore, B stays
valid. Furthermore, we check for all other vertices in the polygon, which is the next
to become larger than P2 and store an event for that vertex, for which this happens
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x
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t
Figure 6: The flighplans are functions f1 and f2 in the xt-plane and similarly, in the yt-
and zt-planes.

first. This guarantees, that we will find the next violation of the validity of this BV
correctly.
In addition, all predecessors of B on the path up to the root which have P1 as max-
imum become invalid too. Due to the algorithm described above, we replace all
occurrences of P1 on this path by P2. Thus, BVH stays valid. The recomputing
of the events on the path to the root ensures, that the vertex which will violate the
validity provokes a suitable event.

• Tree-Event: Assume B the affected inner node. When an event happens, P2 becomes
larger than P1 which is the current maximum of B, we once again replace P1 by P2,
and therefore B stays valid. For the computation of the new event it is sufficient to
consider only the two child BVs of B as described above. The propagation to the
upper nodes happens analogously to the Tree-Event.

• Flightplan-Update-Event: A Flightplan-Update-Event does not change the combi-
natorial structure of the BVH, thus the BVH stays valid after such an event happens.
But it is possible that the error times of some certificate failures change. To ensure
that we find the next violation of the BVH, we have to recompute all affected events.

Recapitulating, we have show that we have a valid BVH after the initialisation and
the first vertex that violates the validity provokes an event. If we update the hierarchy
as described above, it stays valid after an event happens and we compute the next times
when an event can happen correctly.

Note that by this theorem, the BVH is valid at every time point, not only at the
moments we check for a collision as it is the case with most other update algorithms,
like bottom-up or top-down approaches.
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5 Optimality of the kinetic AABB-Tree
In the previous section we have proven that our kinetic AABB can be updated effi-
ciently. Since there are no internal events, we would also like to determine the overall
number of events for a whole animation sequence, in order to estimate the running time
of the algorithm more precisely.
Theorem 2 Given n vertices Pi, we assume that each pair of flightplans, fPi(t) and
fPj(t), intersect at most s times. Then, the total number of events is in nearly O(n logn).

We consider all flightplans along each coordinate axis separately (see Fig. 6). We
reduce the estimation of the number of events on the computation of the upper envelope
of a number of curves in the plane. This computation can be done by an algorithm using
a combination of divide-and-conquer and sweep-line for the merge step. The sweep-
line events are the sections of the sub-envelopes (we call them the edge-events) and
intersections between the two sub-envelopes (which we call the intersection-events).
Each sweep-line event corresponds to an update in our kinetic BVH.

The total number of sweep-line events depends obviously on s. We define λs(n) as
maximum number of edges of the upper envelope of n functions, whereas two of these
functions intersects at most s times.

For the number of edge-events we get:

2λs

([n
2

])
≤ λs (n) ,

since the two sub-envelopes are envelopes of
[ n

2

]
flightplans.

Furthermore, we get an new edge in the envelope for every intersection-event, thus,
this could be at most λs(n). Therefore we can estimate the total number of events by
the following recursion-equation:

T (2) = CT (n)≤ 2T
(n

2

)
+Cλs(n)

for some constant C. Overall we get:

T (n)≤
logn

∑
i=0

2iCλs(
n
2i )

In order to resolve the inequation, we have to know more about λs(n). Since a to-
tal analysis of λs(n) is to lengthy to be done here, we refer the interested reader
to [Agarwal and Sharir., 1995].

One special characteristic of λs(n) is:
Theorem 3 For all s,n≥ 1 we have: 2λs (n)≤ λs (2n) .
With this theorem, we can solve the recursion equation and get:
Theorem 4 For the computation of the upper envelope of n functions we need at most
O(λs (n) logn) events.
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Figure 7: If a vertex in the left subtree becomes larger than the maximum P2, a Tree-
Event will happen.

Furthermore it is true, that λs(n) behaves nearly linear; more precisely λs(n) ∈
O(n log∗ n) where log∗ n is the smallest number m for which the m-th iteration of the
logarithm is smaller than 1. For example, log∗ n≤ 5 for all n≤ 1020000.

Furthermore, it can be shown that the problem of computing the upper envelope is in
Θ(n logn), which shows that our algorithm is optimal in the worst case.

This demonstrates one of the strengths of the kinetic AABB tree: with classical up-
date strategies like bottom-up, we need O(kn) updates, where k is the number of frames.
However, with our kinetic BVH, we can reduce this to nearly O(n logn) updates in the
worst case. Furthermore, it is totally independent of the number of frames the anima-
tion sequence consists of (or, the frame rate), provided the number of intersections of
the flightplans depends only on the length of the sequence in "wall clock time" and not
on the number of frames.

Moreover, our kinetic AABB is updated only if the vertices that realize the BVs
change; if all BVs in the BVH are still realized by the same vertices after a deformation
step, nothing is done. As an extreme example, consider a translation of all vertices. A
brute-force update would need to update all BVs — in our kinetic algorithm, nothing
needs to be done, since no events occur. Conversely, the kinetic algorithm never per-
forms more updates than the brute-force update, even if only a small number of vertices
has moved.

6 Kinetic Boxtree
The kinetic AABB tree needs up to six events for every BV. In order to reduce the total
number of events, we kinetized another kind of BVH, the BoxTree [Zachmann, 1995],
which uses less memory than the kinetic AABB tree. The main idea of a BoxTree is to
store only two splitting planes per node instead of six values for the extends of the box.
To turn this into a KDS we proceed as follows:
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In the pre-processing step, we build a BoxTree as proposed in [Zachmann, 1995],
but similarly to the kinetization of the AABB tree, we do not store real values for the
splitting planes. Instead, we store that vertex for each plane that realizes it (see Fig. 7).
We continue with the initialization of the events:

There are only two kinds of events:
• Tree-Event: Assume B is an inner node of the hierarchy with splitting plane e ∈
{x,y,z} and assume further minB is the minimum of the right subtree (or maxB the
maximum of the left subtree). A Tree-Event happens, when a vertex of the right
subtree becomes smaller than minB with regard to the splitting axis e, or a vertex of
the left subtree becomes larger than maxB (see Fig. 7).

• Flightplan-Update-Event: Every time if the flightplan of a vertex changes, a Flightplan-
Update-Event happens.

During runtime, we perform an update according to Algorithm 1 before every colli-
sion check. For keeping the BVH valid, we have to handle the events as described in
the following:
Tree-Event: Let K be the node, where the Tree-Event happens and let Pnew be the
vertex in the left subtree of K that becomes larger than the current maximum Kmax.

In this case we have to replace Kmax by Pnew and compute a new event for this node.
Computing a new event is more complicated than in the case of a kinetic AABB tree.
This is because the number of possibilities of different splitting planes and because of
the fact that the extends of the BVs are given implicitly.

For simplicity, we first assume that all BVs have the same splitting axis. In this
case, we have to look for event candidates, vertices, which can become larger than the
maximum, in a depth-first search manner (see Fig. 8). Note that we do not have to look
in the left subtree of the left subtree, because those vertices would generate an earlier
event stored with one of the nodes in the subtree.

If more than one splitting axis is allowed, we first have to search for the nodes, with
the same splitting axis (see Fig. 9).

Then we have to propagate the change to the upper nodes: First we have to search
a node above K in the hierarchy with the same splitting axis. If its maximum is also
Kmax, we have to replace it and compute a new event for this node. We have to continue
recursively until we reach a node O with the same splitting axis but Omax 6= Kmax, or
until we reach the root.
Flightplan-Update-Event: If the flightplan of a point changes, we have to update all
events it is involved in. Therefore, we once again start at the leaves and propagate it to
the upper nodes.

In order to show the performance of the algorithm, we have to show the four quality
criteria for KDS again. Unfortunately, we will see that the kinetic BoxTree is responsive
only in the one-dimensional case.
Theorem 5 The kinetic BoxTree is compact, local and efficient. The responsiveness
holds only in the one-dimensional case. Furthermore, if we use the strategies described
above to update the BVH, we get a valid BVH at every point of time.

We start with the proof of the first part of the theorem:
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Figure 8: In order to compute a new event, we have to look which vertex can become
larger than maxl . In the first level, this could be the maximum of the left subtree, the
vertex 5, and all vertices in the right subtree of (1,2,3,4,5,6). On the next level it could
be the maximum of the left subtree of (3,4,6), thus the vertex 4, and all vertices in the
left subtree.
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Figure 9: If more than one splitting axis are allowed, we have to search for the next level
with the same splitting axis, when we want to look for the next candidates for an event.
We have to visit the red marked nodes when we compute a new event for the root box.

• Compactness: We need space of O(m) for storing the kinetic BoxTree. In addition,
we get at most two events per node, so we have O(m) events overall, so, the kinetic
BoxTree is compact.

• Efficiency: Since we are interested in the validity of the whole hierarchy and every
event leads to a real change of the combinatorial structure of the hierarchy, our KDS
is also efficient.

• Locality: Assuming the tree is not degenerated, one polygon can be involved in at
most O(logm) events, thus the KDS is local.

• Responsiveness: Not so clear is the responsiveness of our KDS, which is due to the
costly computation of new events, where we have to go down the tree in dfs-manner.
If all nodes have the same splitting axis, the computation of a new event costs at
most O(logm), because of the length of a path from the root to a leaf in the worst
case.
But if the other nodes are allowed to use other split-axis too, it could be much more
expensive. Assume that the root BV has the x-axis as split-axis and all other nodes
have y as split-axis (Fig. 10). If an event appears at the root, we have to traverse the
whole tree to compute the next event, so we have costs of O(m logm) and thus, the
KDS is not responsive.
Deletion and insertion of an event in the event-queue generate costs of O(logm) and
in the worst case we have to propagate the change up to the root BV.
Therefore, the overall cost for computing an event is O(log2 m) in the 1D- and
O(m log2 m) in the multidimensional case, thus, the KDS is responsive only in 1D.

The total number of events is nearly in O(n logn) which follows analogously to the
kinetic AABB tree.

We show the second part of the theorem by induction over time. W.l.o.g. we restrict
to prove it only for the maxima, the arguments for the minima follows analogously.
After building the BVH we have a valid hierarchy. It can become invalid if a vertex
P gets larger along some axis than the maximun of some inner node K, i.e., if a Tree-
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Figure 10: In the worst case, all levels have the same split axis, instead of the root. If we
now want to compute a new event for the root, we have to traverse the whole tree.

Event happens. Since we calculate the Tree-Events for every inner node correctly, we
will recognize the first time, when the hierarchy becomes invalid.

We still have to show, that the hierarchy stay valid after an event happen, and that we
find the next event as well.

If a Tree-Events happens, this means some vertex P becomes larger than the maxi-
mum Kmax of a node K, we have to replace all occurrences of Kmax on the way from K
to the root box by P and recalculate the events. This guarantees, that the hierarchy is
still valid and we will find the next violation of the validity of the BVH correctly.

In the case of a Flightplan-Update-Event, the validity of the BVH does not change,
but the error times of the events may change. Thus we have to recompute the times for
all events, the vertex is involved in.

Summarized, the hierarchy is valid after initialisation and the first violation of the
validity is stored as event in the BVH. After an event happens, the hierarchy is valid
again an it is guaranteed, that we find the next violation of the validity. Thus, the BVH
is valid at every point of time.

Recapitulating, we have a second KDS for fast updating a BVH which uses less
events than the kinetic AABB tree but the computation of one single event is more
complicated.

7 Kinetic Incremental Collision Detection
Our kinetic AABB tree and our kinetic BoxTree use the spatial and temporal coherence
only for the updates of the hierarchies. Now we use the KDS framework also for the
proper collision detection. Therefore we use an incremental technique to speed up the
collision check which was first proposed in [Chen and Li, 1999] for collision detection
of rigid bodies.

Our so-called kinetic incremental collision detection uses the kinetic AABB trees.
Given two kinetic AABB-trees of two objects O1 and O2, we first traverse them for the
initialization of the kinetic incremental collision detection as described in Algorithm 2
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Figure 11: Given two BVHs, we get a BV-test-tree from the collision check. Those BV-
pairs, where the traversal stops, build a list in this tree. We call it the separation list.
This list may contain inner nodes, which do not overlap (B, 3), leave nodes which do not
overlap (g, 5) and overlapping leaves (f, 6).

for only one time. Thereby we get a list, the so-called separation list, of colliding BVs
in the BV-test-tree (See Fig. 11). This list contains pairs of BVs from O1 and O2 with
nodes that do not overlap (we will call them the inner nodes), with leaves that do not
overlap and finally, with leaves that do overlap.

During running time of the simulation, this configuration changes, and one of the
following events may happen:
• BV-Overlap-Event: This event happens, if two BVs in the separation list which did

not overlap before so far, now overlap. Thus, this event can happen only at inner
nodes and not overlapping leaves (see Fig. 12).

• Fathers-do-not-Overlap-Event: This event happens, if the father of an inner node or
a not overlapping leaf do not overlap anymore in the BV-test-tree (see Fig. 13).

• Leaves-do-not-overlap-Event: The Fathers-do-not-Overlap-Event cannot occur to
overlapping leaves, because if their fathers do not overlap, even the leaves cannot
overlap. Moreover, they must become not overlapping leaves before, and therefore,
we introduce the Leaves-do-not-Overlap-Event.

• BV-Change-Event: Finally, we have an event which remarks changes of the BV-
hierarchies. This event is comparable to the flightplan-updates of the kinetic AABB-
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BVO1

BVO2

Figure 12: If the BVs move so that they overlap, we get an BV-Overlap-Event.

BvO1

v1l

v1r

P1

v2r

v2l BvO2

Figure 13: If the fathers BvO1 and BvO2 of the BVs v1r, v1l , v2r and v2l do not overlap
anymore, we get a Fathers-do-not-Overlap-Event.

tree or BoxTree, but it is not exactly the same: This is, because an object in the
separation list is composed of two BVs of different objects O1 and O2 and the flight-
plans are attributes to the vertices of only one single object. Therefore, not every
flightplan-update of an object has effect on the separation list (see Fig. 14).
In addition, a BV-Change-Event happens, if the combinatorial structure of a BV in
the separation list changes. Since we use kinetic AABB trees as BVH for the objects,
this can happen is a Tree-Event or a Leaf-Event in the BVH of an object happens.
Surly, not all events cause changes at the separation list.

So, for example, if the BVs of the object do not overlap at the beginning of the
simulation, the separation list only consists of one node which contains the root-BVs of
the hierarchies.

During running time, we have to update the separation list every time an event hap-
pens according to the following rules:
• BV-Overlap-Event:
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Figure 14: If the flightplan of P4 changes, this has no effect on the separation list, and
thus, no BV-Change-Event will happen due to this change.

– node K is inner node: Let K be the inner node with BVs V1 of object O1 and V2
of object O2. In order to keep the separation list valid after the event happens, we
have to delete K from it and insert the child-nodes into the BV-test-tree instead.
This means, if V1 has the children V1L and V1R, and V2 has the children V2L and
V2R we have to put 4 new nodes, namely K1 = (V1L, V2L), K2 = (V1L, V2R), K3 =
(V1R, V2L) and K4 = (V1R, V2R) into the list. Then we have to compute the next time
point t, when (V1, V2) do not overlap. Furthermore, we have to compute the times
ti for the new nodes, when they do overlap. If ti < t we put a BV-Overlap-Event
in the queue, otherwise a Father-Do-Not-Overlap-Event (see Fig. ??).

– if the node K is a not overlapping leaf: In this case we just have to turn the node
into an overlapping leaf an compute the next Leaves-do-not-Overlap-Event.

• Fathers-do-not-Overlap-Event: In this case, we have to delete the corresponding
node from the separation list, and insert his father from the BV-test-tree instead.
Furthermore, we have to compute the new Fathers-do-not-Overlap-Event and BV-
Overlap-Event for the new node and insert the event which will happen first into the
event queue (See Fig. 16).

• Leaves-do-not-overlap-Event: If such an event happens, we have to turn the overlap-
ping leaf into a non overlapping leaf, compute a new Fathers-do-not-Overlap-Event
or rather a BV-Overlap-Event and put it into the event-queue.

• BV-Change-Event: If something in a BV in the separation list changes, e.g. the
fligthplan of a vertex or the maximum or minimum vertex of a BV, we have to
recompute all events, the BV is involved in.

Analogously to the theorems about the kinetic AABB tree and the kinetic BoxTree,
we get a similar theorem for the kinetic incremental collision detection. First we have
to define the "validity" of a separation list:
Definition 2 We call a separation list "valid", if it contains exactly the not overlapping
BVs of the lowest level in the BV-test-tree and the overlapping leaves.
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separation− list

Figure 15: If the BVs BvO1 and BvO2 overlap due to an BV-overlap-Event, we have to
remove them from the separation list and insert the pairs of their child-BVs v1r, v1l , v2r
and v2l

Theorem 6 The kinetic incremental collision detection is compact, local, responsive
and efficient. Furthermore, we get a valid separation list at every point of time if we
update the separation list as described above.

In order to prove the first part of the theorem, we assume, w.l.o.g, that both objects
O1 and O2 have the same number of vertices n and the same number of polygons m:
• Compactness: In order to evaluate the compactness, we have to define the attribute,

we are interested in. In the case of the incremental collision detection, this is the
separation list. In the worst case, every polygon of object O1 collides with every
polygon of O2, thus, the size of a proof of correctness of the attribute, may have size
O(n2).
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For every node in the separation list, we store an event in the event queue, this will
be at most O(n2) in total.
Furthermore, we have to store for every BV the nodes in the separation list in which
it is participating, this could be at most O(n2) too. Summarized, the storage we need
does not exceed the asymptotic size of the proof of correctness and thus, the data
structure is compact.

• Responsiveness:
– Leaves-do-not-overlap-Event: We have to delete the leaf from the overlapping-

leaves-list and insert it into the separation list. This could be done in O(log(n2))
if we organize the lists as AVL-trees. The computation of a new event costs time
O(1), and the insertion in the event-queue of the new event could be done in
O(log(n2)).

– BV-Overlap-Event: The insertion of a new node into the separation list and dele-
tion of the old node needs time O(log(n2)). In addition we have to delete the
links from the old BV to the old node in the separation list and insert the new
ones. If we organise this lists of links as AVL-tree, we get costs of O(logn).

– Fathers-do-not-Overlap-Event: The deletion of nodes and events takes time of
O(log(n2)) again. In addition, we have to look at the separation list, if we have
already inserted the father, since Fathers-do-not-Overlap-Events always happen
for four children at the same time and it could be possible, that we already pro-
cessed the Fathers-do-not-Overlap-Event of another child pair. This takes time
of O(log(n2)).

Overall, our data structure is responsive in all cases.
• Efficiency: To determine the efficiency is more complicated, because it is not clear

which events we have to treat as inner and outer events. Clearly, Leaves-Do-not-
overlap-Events, BV-Overlap-Events and Fathers-do-not-Overlap-Event cause a real
change of the attribute, the separation list, so this events will be outer events. But
classifying the BV-Change-Events is more difficult. Those which happen due to
flightplan updates clearly do not count, because they happen due to user interactions
and could not be counted in advance. But there are also BV-Change-Events which
happen due to changes of the BV-hierarchies, and they could be regarded as inner
events.
Since we use the kinetic AABB tree, there exist at most O(n logn) of these events.
On the other hand, there may be O(n2) outer events and thus the KDS is still respon-
sive, even if we treat the BV-Change-Events as inner events.

• Locality: We also have to pay attention when showing the locality of our data struc-
ture. The objects of the kinetic data structure, are the BVs, not the BV-pairs in the
separation list. And one BV could participate O(n) nodes in the separation list, so
an update would have costs in the worst case of O(n). This is compared to O(n2)
total nodes in the separation list small and our data structure is also local.

In order to show the second part of the theorem, we use induction over time once
again.
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Figure 16: If an Fathers-do-not-Overlap-Event happens, this means BvO1 and BvO2 do
not overlap anymore, we have to remove their child-BVs from the separation list and put
the new node (BvO1, BvO2) into it.
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After the first collision check, we get a valid separation list
The hierarchy becomes invalid, if either the BVs of an inner node or of a not overlapping
leaf do not overlap anymore, or if the father of one of this kind of nodes do not overlap
anymore.

Furthermore it could happen, that the BVs of an overlapping leaf do not overlap
anymore. During initialisation, we compute this points of time as events and store them
sorted by time in the event queue. Thus, we will notice the first point in time, when the
hierarchy becomes invalid.

We have to show, that the separation list is updated correctly if an event happens and
that the next point in time when it becomes invalid provokes an event.
• BV-overlap-Event: If a BV-overlap-Event happens, the separation list becomes in-

valid because the BVs of an inner node overlap. To repair the defect, we have to
remove the node from the list and replace it by its four children. In order to deter-
mine the next time when one of this new nodes becomes invalid we have to calculate
the events and insert them into the event queue..

• Fathers-do-not-Overlap-Event: In case of a Fathers-do-not-Overlap-Event the list
becomes invalid because the BVs of a node K overlapped before and do not overlap
anymore. Thus, K is not the deepest node in the hierarchy whose BVs do not overlap.
So, K must be replaced by its parent node V K.
The hierarchy can became invalid at node V K for the next time, if the BVs of V K
overlap or the predecessor of V K does not overlap anymore. So, we have to compute
what happens first and generate an event and insert it into the event queue. This
guarantees that we will find the next time, when V K becomes invalid.

• Leaves-do-not-Overlap-Event: A Leaves-do-not-Overlap-Event does not affect the
validity separation list. It is sufficient to turn the node into a not overlapping leaf.
In order to recognize the next point of time when this node may violate the validity,
we have to look if either a BV-Overlap-Event or a Fathers-do-not-Overlap-Event will
happen first for this node and insert the corresponding event into the event queue.

• BV-Change-Event: A BV-Change-Event does not affect the validity of the separation
list. But it is necessary to recompute the event times for the corresponding BVs in
the list.

Overall, the validity of the hierarchy is guaranteed at all points of time.
If we want to check for a collision at any time, we only have to test the primitives in

the overlapping leaves for collision.
Though our data structure fulfills all quality criteria of a kinetic data structure, the

bounds of used storage O(n2) or update costs of O(n) for flightplan updates of one
single vertex do not look good. On the other hand these are worst-case-scenarios and
only hold, if all polygons of one object overlap with all polygons of another object.
This case does not happen in real-world applications. In most applications, the number
of overlapping polygons could be shown to be nearly linear.
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8 Calculation of the Events
The calculation of the events depends on the motion of the objects. We tested our
algorithms with keyframe animations and simple velocity fields. The calculation of
events will be described here for these scenarios.

8.1 Velocity Fields
In a velocity field, we simply assign a velocity vector to every vertex. During simula-
tion, we just add the vector to the position of the vertex. Thus, the computation of the
events is given by:
• kinetic AABB tree and kinetic BoxTree: We get an event if a vertex P become larger

than another vertex Q along some axis. Therefore, the computation of an event
corresponds to a line intersection in 2D.
More precisely: Assume two vertices P and Q with velocity vectors p respectively q
and a time point t is given with Px(t) < Qx(t). In order to get the next point of time
t when P becomes larger than Q along the x-axis, we first have to check if qx ≥ px.
In this case, there will never happen an event since Px never will get larger than Qx.
Otherwise, we get t = Qx(t)−Px(t)

px−qx
.

• kinetic incremental Collision Detection: We get events if two BV overlap or do not
overlap anymore.
Assume two BVs A and B with extreme points PA

imax respective PB
imax and minimum

points PA
imin respective PB

imax with i ∈ {x,y,z} at time point t.
– Assume further A and B overlap at time t and we want to get the point of time t

when they do not overlap anymore. Surly, A and B do not overlap⇔ it exists an
axis i ∈ {x,y,z} with PA

imax(t) < PB
imin(t) or PB

imax(t) < PA
imin(t).

Thus, we have to compute the point of time ti for every axis i ∈ {x,y,z} when
PA

imax becomes smaller than PB
imin and PB

imax becomes smaller than PA
imin. Then we

initialise an event with the minimum if this ti.
– If A and B do not overlap at time t, we have to look for the time point t, when they

overlap. We have, A and B overlap⇔ PA
imax(t)≥ PB

imin(t) and PB
imax(t)≥ PA

imin(t)
for all axis i ∈ {x,y,z}.
Thus we have to compute the point of time ti for all i ∈ {x,y,z}, when PA

imin gets
larger than PB

imax and PB
imin gets larger than PA

imax too. We generate an event for the
maximum of the ti.

8.2 Keyframe Animations
In key frame scenarios we get paths of line segments as motion of the vertices if we
interpolate linearly between two keyframes. Since the motion is linear in sections, we
can reuse the results from the section above.

Assume k keyframes K0, . . . ,Kk and l remarks the number of interpolated frames
between two keyframes. We want to compute for the vertices P and Q with positions
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P(t) respectively Q(t) at time t, when the next event between these points will happen,
when P will become larger along the x-axis than Q.

Therefore we first have to detect the actual keyframe K f with l ∗ f ≤ t ≤ l ∗ ( f + 1).
The we get the actual velocity p f and q f for the two points by p f = P(l ∗ ( f + 1))−
P(l ∗ f ) and q f = Q(l ∗ ( f +1))−Q(l ∗ f ).

Now we can compute t when P gets larger than Q, as described in the section before.
If t ≤ m∗ ( f +1) we get the event for P and Q. But if t > l ∗ ( f +1) we have to look at
the next keyframe if the paths of P and Q intersects, and so on (See Algorithm ). Thus,
we have to compute O(l) line intersections for one single event in the worst case.

Algorithm 3: Calc Event{start time t, vertices P, Q}
Compute f with l ∗ f ≤ t ≤ l ∗ ( f +1);
t = l ∗ ( f +1);
while t > l ∗ f do

p = Pl∗( f +1)−Pl∗ f ;
q = Ql∗( f +1)−Ql∗ f ;
p f = p

l ;
q f = q

l ;
Compute t when P gets larger than Q;
f = f +1;

9 Results

We implemented our algorithms in C++ and tested the performance on a PC running
Linux with a 3.0 GHz Pentium IV with 1 GB of main memory. We used two different
types of test scenarios, keyframe animations and simple velocity fields.

There are three scenes with keyframe animations, the first one shows a tablecloth
falling on a table. We tested this scene with several resolutions of the cloth, ranging
from 2k to 16k faces. This scene show the behaviour of our algorithms under heavy
deformation. The two other keyframe scenarios show typical cloth animations. The
first one shows a male avatar with a shirt in resolutions from 32k to 326k deforming
triangles (Fig. 17), the other one a female avatar with a dress reaching from 65k to 580k
deforming triangles (see Fig. 14).

For measuring the speed of updates when the flightplan changes, we used a bench-
mark with two spheres. Every point of a sphere is given a velocity vector which points
away from the midpoint, so that the spheres expand regularly. When they collide, the
velocity vectors of the colliding triangles are reversed. We tested this scene with reso-
lutions from 2k to 40k triangles.

We compared the performance of our algorithms with a bottom-up updating strategy.
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Figure 17: The scenes, with which we tested our algorithm: Two expanding spheres, a
tablecloth falling down, and a cloth animation scene.

First, we consider the number of events. In the high-resolution tablecloth scene, we
have about 400 events per frame and have to update only 1000 values for the kinetic
AABB tree, and even less for the kinetic BoxTree (Fig. 18). In contrast, the bottom-
up approach has to update 60 000 values. Since the computation costs for an event
are relatively high, this results in an overall speed-up of about factor 5 for updating
the kinetic AABB tree. The number of events rises nearly linearly with the number
of polygons, which supports our lower bound for the total number of events of nearly
O(n logn) (see Fig. 18).

The figure also shows that we need less events for the kinetic BoxTrees, but the the
proper collision check takes more time since the kinetic BoxTree is susceptible for
deformations.

A high amount of flightplan updates does not affect performance of the data struc-
tures, they are still up to 5 times faster than the bottom-up updates (see Fig. 21).

In the cloth animation scenes, the gain of the kinetic data structures is highest, be-
cause the the objects undergo less deformation than the tablecloth, and thus we have
to perform less events. In this scenarios we see a performance gain of a factor about
10 (Fig. 21). From Theorem 2, it is clear that this factor increases with the number of
interpolated frames between two keyframes. This is, because the performance of the
event based kinetic data structures only depends on the number of keyframes and not
on the total length of the scene.

Overall, the kinetic AABB performs best, and the running time of the updating op-
erations is independent from the sampling frequency. This means, for example, if we
want to render a scene in slow motion, maybe ten times slower, the costs for updating
are still the same, while they increase for the bottom-up-update by a factor of ten.
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Figure 18: The left diagram shows the average number of events and updates per frame.
The kinetic BoxTree has, as expected, the smallest total number of events and the small-
est number of total updates per event. The diagram in the middle shows that the total
number of updates is significantly lower than the updates needed by the bottom-up-
strategy. Unfortunately, due to the relatively high deformation of the tablecloth and the
high costs for the event-computation, the gain is lesser than expected, but there is still a
significant gain for the kinetic AABB tree and the BoxTree (right diagram).
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Figure 19: The left diagram shows the average total update time for the sphere scenes.
This scene seems to be more appropriate for the KDSs than the tablecloth scene, de-
spite the high amount of flightplan updates. The gain of the kinetic data structures
compared to the bottom-up approach is more than a factor of five. The diagram in the
middle shows the average number of events and updates for the cloth animation with
the women. The ratio seems to be nearly the same as in the tablecloth scene. The
diagram on the right shows the update times in the animation scene with the women. In
this scene we have an overall gain of a factor about 10 for the kinetic AABB compared
to the bottom-up-update.

Figure 20: The second cloth animation scene shows a walking female avatar with a
dress
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Figure 21: The left diagram shows the average update time for the cloth animation scene
with the man, depending on the number of interpolated frames between two key frames.
Since the number of events only depends on the number of key frames and not on the
number of interpolated frames, so, the average update time decreases if we increase
the total number of frames. The diagram in the middle shows the average update time
for the cloth animation scene with the man and shows total time for this scene. In this
scene we have an overall gain of a factor about 10 for the kinetic AABB compared to
the bottom-up-update. The right diagram shows the total time, this means the time for
updates and the proper check time.
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Figure 22: The left diagram shows the average total time for the updates and the collision
checks cloth animation scene with the female avatar. The gain of the kinetic incremental
collision detection compared to the bottom-up approach is about a factor of 5. Due to
the high ammount of BVs in the separation list, it is slower than the kinetic AABB tree.
The diagram in the middle shows the average total time for the same scene depending
on the number of interpolated frames between two keyframes. The kinetic incremental
collision detection benefits of the same phenomena as our other kinetic data structures.
The diagram on the right shows the total times in tablecloth scene. In this scene we
have an overall gain of a factor about 3 for the kinetic incremental collision detection
compared to the bottom-up-update.
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10 Conclusions and Future Work
We introduced two novel data structures and algorithms for updating a BVH over de-
formable objects fast and efficient and one data structure especially for collision detec-
tion between deformable objects.

We presented a theoretic and experimental analysis showing that our new algorithms
are fast and efficient both theoretically and in practice. We used the kinetic data struc-
ture framework to analyze our algorithms, and we have shown an upper bound of nearly
O(n logn) for the updates that are required at most to keep a BVH valid. We also showed
that the kinetic AABB tree and kinetic BoxTree are optimal in the sense that they only
need to make O(n logn) updates.

Our kinetic data structures update bounding volumes or find collisions more than 10
times faster than a bottom-up approach in practically relevant cloth animation scenes.
Even in scenarios with heavy deformations of the objects or many flightplan updates
we have a significant gain by our algorithms.

We believe that the kinetic data structures are a fruitful starting point for future work
on collision detection for deformable objects. We will try to improve the performance
by using trees of higher order than binary trees.

The BoxTree uses less events, but is susceptible to deformations. So it could be a
good strategy to rebuild parts of a BoxTree if the deformation is too strong. This could
also speed up the algorithm.

It is very easy to expand our kinetic incremental collision detection for continuous
collision detection, since we have a valid separation list at every time point. We just
have to add an algorithm for the triangles.

Finally we plan to use our algorithms in other kinds of motion, including physically
based simulations and other animation schemes and other applications like ray-tracing
or occlusion culling.
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