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Abstract

An algorithm for exact collision detection is presented
which can handle arbitrary non-convex polyhedra ef-
ficiently. The approach attains its speed by a hier-
archical adaptive space subdivision scheme, the Box-
Tree, and an associated divide-and-conquer traversal
algorithm, which exploits the very special geometry
of boxes. Boxes were chosen, because they ofter much
tighter space partitioning than spheres.

The traversal algorithm is generic, so it can be en-
dowed with other semantics operating on polyhedra.

The algorithm is fairly simple to implement and it
is described in great detail in an “ftp-able” appendix
to facilitate easy implementation. The construction
of the data structures is very simple and fast. Timing
results show the efficiency of this approach.

Keywords: collision detection, virtual reality, hier-
archical data structures.

1 Introduction

Collision detection is at the core of many different
applications; for example, in physically based simu-
lation and virtual reality. Animation is one of many
applications of physically based simulation. Other ar-
eas are path planning of robots [8], tele-operation [5],
and NC malling. Each of these areas need some kind
of collision avoidance.

There are two major parts characterizing collision
handling: the collision detection and the collision re-
sponse. Although both parts pose interesting prob-
lems, this paper will focus only on the collision de-
tection part. For further reading on the collision re-
sponse part see, for example, 21, 2, 12].

In virtual reality, collision detection can be used to
facilitate intuitive interaction [1], natural manipula-
tion of the environment, any kind of physically based

simulation, and modeling. In general, collision detec-
tion with approprate collision response can make a
virtual reality application look more believable [15].
However, the requirements are most severe. Under all
circumstances, the collision detection must be real-
time in order to attain the effect of immersion.

While good results have been achieved for con-
vex polyhedra, non-convex, arbitrary polyhedra still
present a “hard” problem under real-time constraints.

The algorithm presented inthis paper can deal with
arbitrary polyhedra, meaning just a bunch of poly-
gons here. If two such polyhedra intersect at a given
time, the algorithm will find two (or more) witnesses
(an edge and a polygon). In this paper, we will not
consider the issue of finding the exact time of primal
contact between two polyhedra.

The BoxTree data structure is a binary tree, which
18 a non-uniform, adaptive space subdivision. Be-
cause it 1s non-uniform, we suspect it to out-perform
approaches using uniform subdivisions, like grids (as
in [9]). Furthermore, since it is adaptive, it improves
the expected runtime performance.

The leaves of a BoxTree contain edges and poly-
gons which define the associated polyhedron. A tree
construction algorithm tries to build an optimal tree
with respect to the collision detection algorithm.

The results show that the BoxTree algorithm per-
forms much better than simple (potentially O(n?))
algorithms when object complexity is above a certain
level (= 200 polygons/object).

Due to the recursive refinement nature of the al-
gorithm, 1t can be interrupted at any stage should
the application choose to do so in order to insure a
constant framerate. So, this algorithm is a good can-
didate for adaptive workload balancing.

The hierarchical data structure is built only once
for every object. It does not have to be transformed
as the object moves.
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Outline of the paper. Section 2 describes pre-
vious work done in the field. Section 3 introduces our
new algorithm, while Section 4 provides a detailed
description of the algorithm to build the associated
data structure. Results are presented in Section 5.
The paper concludes with an outlook in Section 6,
and conclusions in Section 7.

2 Previous Work

Collision detection seems to have attracted much at-
tention over the past 15 years. In the beginning, re-
searchers seem to have come from the area of robotics
and computational geometry. Later on, physically
based modeling and animation had a special need for
exact collision detection. Despite its comparatively
long history, real-time exact collision detection has
not been tackled except for the past few years.

Computational geometry first focused on the con-
struction of the intersection of two polyhedra [22, 20].
Later, researchers realized that the detection problem
is interesting by itself and can be solved more effi-
ciently than the construction problem [7, 6, 27].

In the field of robotics, a completely different ap-
proach has been pursued: collisions are detected in
configuration space (see [8], for example). This ap-
proach seems to be well suited for path-planning.

As stated earlier [9], the representation of objects
has great impact on collision detection algonthms.
Non-b-rep representations, e.g., octree, BSP, CSG,
etc., allow/need quite different approaches [4, 23, 24,
30].

For collision avoidance systems, an approzimate
collision delection is quite appropriate [5].

[15], [16] present an object partilioning approach
somewhat similar to ours using spheres instead. How-
ever, the construction of the auxiliary data structures
is much more involved, plus the covering of space with
spheres is inherently redundant. [9] partition the set
of polygons of an object by a uniform grid.

[11] compute the distance between convex polyhe-
dra (or its spherical extension) with approximately
linear complexity. [18, 19] present an incremental
distance algorithm for convex polyhedra. Recently,
[26] added a hierarchy of convex bounding volumes.
However, the algorithms are much more complicated
to implement. A separating plane is used to compute
the distance between convex polyhedra by [13, 1.8].

Collision detection of flexible objectsis needed for
physically based simulation and for animation. Typ-
ical objects are “soft” objects like clouds, clothes,
drops, etc. Flexible objects are treated by [21, 10,
29, 31, 28].

An approach which computes the exact time of col-
lision was given by [3], who use quaternions to repre-
sent orientation and formulate the problem in 7-dim.
configuration space.

3 The BoxTree algorithm

3.1 Motivation for BoxTrees

Here is a very simple algorithm for arbitrary objects
with traditional speed-up improvements:

Check every edge of polyhedron A if it intersects
any of the polygons of polyhedron B, and vice versa.
(Tt is not sufficient to check only the edges of A
agamst polygons of B. It is also not sufficient to
check vertices for being interior.)

Of course, the algorithm above is improved by do-
ing some pre-checks: in a pre-phase, we collect all
polygons of B which are in the bounding box of A.
Then, edges of A are checked only against those poly-
gons of B which have passed this pre-check. This “fil-
tering” is done merely on the basis of bounding boxes,
so 1t is fast enough to improve overall performance.
(The speed-up gained by this phase is about a factor
of 1.5.)

Another very simple pre-check is to test if the edges
e of A are m the bounding box of B. There is no
need to do this in a pre-phase, since every edge is
considered exactly once.

In the following, this algorithm will be called the
“simple” algorithm. It is potentially an O(n?) algo-
rithm. However, to our experience this never hap-
pens in “real” cases: if the objects don’t intersect,
then their bounding boxes don’t overlap much, thus
many polygons and edges won’t pass the bounding
box checks; if the objects do intersect, then there are
probably quite a few intersecting edges/polygons, and
chances are good that we find one pair of those quite
early.

The BoxTree-algorithm will be compared to this
“simple” algorithm in order to give a feeling for the
improvements.

Profilings have shown that most of the time of the
simple algorithm presented above isspent in the inner
loop (the all pairs weakness). Within this inner loop,
most of the timeis spent with the loop construct itself
plus the bounding box check!

The idea is to use a divide-&-conquer approach. It
was inspired by BSP trees, k-d trees, and balanced
bipartitions (known in the area of VLSI layout al-
gorithms). Of course, this involves a pre-processing
step; so this algorithm cannot be used if geometry
changes often during run-time.
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Sphere trees [15, 16] don’t seem to be as well suited
as a tree of boxes, since spheres usually have to over-
lap very much in order to cover all polygons. Also,
constructing a sphere tree doesn’t seem to be as sim-
ple as constructing a BoxTree [16]. ([25] constructs
non-hierarchical sphere coverings for a set of ver-
tices.) Another advantage of BoxTrees is that they
don’t have to be transformed as the associated object
moves, whereas an object’s transformation has to be
applied to its sphere tree.

One can also use a regular grid to partition an
object’s bounding box [9]. But usually, hierarchical
schemes outperform their regular flat counterpart, if
they don’t have to be re-built dynamically.

It is highly desirable that a collision detection al
gorithm can handle arbitrary polyhedra, since most
geometry data, coming from CAD systems, are usu-
ally not well-formed objects: there might be gaps be-
tween polygons belonging to the same object, poly-
gons could overlap, and almost all polyhedra are not
convex by themselves.

The BoxTree-algorithm can handle these polyhe-
dra: objects which are just a collection of plane poly-
gons. Objects may even be self-overlapping.

However, it avoids the disadvantages of the sphere
tree algorithm, because it uses another partitiomng
scheme. Since it is hierarchical, it avoids also the
disadvantages of ssimple grids.

3.2 Outline of the algorithm

The simple algorithm as given above will be improved
by a divide-&-conquer approach which is as follows
(see Figure 1): we divide the bounding boxes of A
and Binto two parts, not necessarily of equal size (we
call them “left” and “right” sub-box); we partition
the set of edges of A into two sets depending whether
they are in the left or the right sub-box; in the same
manner, we partition the set of polygons of B. When
checking edges of A and faces of B for mtersection,
we first check whether bbox(A) intersects bbox(B)
(the non-aligned ones!); if they don’t, we're finished.
If they do, we check all 4 pairs of sub-boxes of A and
B, resp., for intersection. Obviously, we don’t have to
check edges against polygons, for which their boxes
don’t intersect.

Of course, the sub-box pre-processing is done re-
cursively, which is why we will call the whole data
structure a BoxTree.

Sometimes, it is more efficient if we split a box
such that one of the sub-boxes doesn’t contain any
polygons at all (such a box will be called “empty”).
Then, the check between an empty box and another

Figure 1: Only faces and edges of overlapping boxes
have to be checked for intersection. For example,
edges of a.l don’t have to be checked with polygons
of bl.

(non-empty) one is trivial. Of course, “chipping off”
an empty sub-box 1s not always possible, nor is it
always sensible (criteria will be derived below in 4).

BoxTrees will be constructed in model space, ie.,
when no transformations are applied to the object.
When objects are transformed during the simulation,
those boxes have to be transformed as well. However,
we need to transform only the root boxes. We do that
by setting up the recursive traversal appropriately.
Then, no further transformations (of sub-boxes) have
to be done.

The intersection test of two boxes could be done
by the Liang-Barsky algorithm [17]. However, ex-
ploiting the very special geometry of bozes allows a
much more efficient intersection test for two boxes:
we will clip all box-edges parallel to each other at the
same time. This will enable us to re-use many results
during one box/box-check, plus we can re-use all of
the arithmetical computations when descending down
one level in the BoxTree. Special features of boxes
are: the faces form three sets of two parallel faces
each, the edges form three sets of four parallel edges
each, when a box is divided by a plane perpendicu-
lar to an edge, all edges retain their entering/leaving
status.

3.3 Simultaneous Recursive Traversal
of BoxTrees

Simultaneous Recursive Traversal of two BoxTrees
consists of two phases: an initialization phase and
a traversal phase. Here, by “simultaneous” we mean
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Figure 2: This visualization of the Box Tree algorithm
shows, how many and which polygons are actually
considered for intersection. The leaves of the BoxTree
are depicted graphically by boxes.

that the two trees of both objects are traversed syn-
chronously.

The algorithm (see also Figure 2) has the following
pseudo-code outlne:

Simul taneous traversal of BoxTrees

a = boxin A’s BoxTree, b = boxin B’s BoxTree
a.l, a.r are left and right sub-boxes of a

traverse(a,b):
a, b don’t intersect — return
a or b Is empty — return
b leaf —
a leaf —
elementary operation on BoxTree leaves
return
a not leaf —
a.l,b intersect — traverse(a.l,b)
a.r,b intersect — traverse(a.r,b)
b not leaf —
a leaf —
a,b.l intersect — traverse(a,b.l)
a,b.r intersect — traverse(a,b.r)
a not leaf —
a.l,b intemsect —
a.l,b.l intersect — traverse(a.l,b.1l)
a.l,b.r intersect — traverse(a.l,b.r)
a.r,b intersect —

B
left sub-box B.I
yT // right sub-box B.r

q q’
A = x
£ e |
z B
X xh'-plane
xI"-plane

Figure 3: Splitting box B perpendicular toits x-edges
bounds the line intervals of edges of A.

a.r,b.1l intersect — traverse(a.r,b.l)
a.r,b.r intersect — traverse(a.r,b.r)

For collision detection, the “elementary operation”,
which operates on two leaves of the BoxTree, is the
simple detection algorithm. However, the simulta-
neous traversal of BoxTrees could be used for other
functions, too: the only part that would have to be
re-defined is that “elementary operation”, which pro-
vides the “semantics” of the overall operation (see
[24] for a similar point of view regarding BSP trees).

The construction of BoxTrees will be explained in
Section 4.

In the remainder of this section we will assume
that the reader is familiar with the Liang-Barsky al-
gorithm.

For a given pair (a,b) of boxes, all the information
on their intersection status is given by two sets of
3 x 4 line parameter intervals for the edges of @ and
b, resp. If all intervals of one polyhedron are empty,
then (a, b) do not overlap.

Initialization phase. This phase computes the
initial intervals for the root boxes of two polyhedra A
and B. Conceptually, we have to set up 2 x 3 tables
Each entry in those tables can be calculated using no
more than one multiplication and one addition. Each
column of a table yields the line parameter interval
of one edge.

The calculations of this phase can be done by
the same routines which do the calculations for the
traversal phase.
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Figure 4: Splitting box B perpendicular to its x-edges
yields 2 new y-intervals and 2 new z-intervals. All
other intervals can be re-used.

Traversal phase. The basic step of the traversal
1s the test “a,b.1l intersect” and “a,b.r intersect’.
We will do this by bisecting the box b intoitsleft and
right sub-box, which is equivalent to computing two
new sets of 2 x (3 x 4) line parameter intervals, one
describing (a, b.0), the other describing (a, b.7).

This seems like a lot of computational work; how-
ever, all of the information stored in a set of intervals
for (a,b) can be re-used, one halffor (a, b.1), the other
half for (a, b.r) (see Figures 3 and 4).

Math-

ematical details It is not worthwhile to present
all the tedious mathematical details here. However,
figuring them out can be quite cumbersome and er-
ror prone, so interested readers can obtain them via
anonymous ftp from ftp://ftp.igd.fhg.de/pub/-
doc/techreports/zach/BoxTree-appendix.ps.gz.

Suffice it to say here, that 2 x (3 x 4) line pa-
rameter intervals (as mentioned above) amount to
2x (3 x(24mul.+24add.)) (actually, its 3div.+21mul.).
However, half of those have been computed in a step
earlier, so during the tree traversal we need 72 mul.’s
and 72 add.’s per box split.

4 Constructing the BoxTree

The BoxTrees being constructed here are nspired by
k-d trees and balanced bipartitions from VLSI layout
algorithms.

We do not construct octrees because they are too
inflexible. Infact, octrees are just aspecial case of our
data structure. Here, we want to construct balanced
trees for reasons which willbecome clear in a moment.

Figure 5: This shows all the empty boxes of the Box-
Tree for a torus. During intersection tests, these can
be rejected trivially. The object’s complexity is rather
low (400 polygons), so only 23% of its bounding box
are covered by empty boxes. With larger complexities
40%—60% are covered, typically.

The following discussion will be restricted to the
construction of BoxTrees for a set of polygons. Ev-
erything carries over to edges quite analogously.

The goal 18 to partition recursively the set of poly-
gons in such a way that the intersection test between
two such partitions involves a minimum number of
elementary (ie., edge-polygon) intersection tests. In
the following, we will try to derive some heuristics for
an optimal partitioning.

Whenever the collision detection algorithm steps
down one level, and it discards one of the sub-boxes,
we want as many poly gons as possible to be discarded.
This leads to a space subdivision scheme which tries
to balance both parts (in terms of polygon counts,
not in terms of space!).

In general, there will be always polygons which are
in both sub-boxes, though. During a colhsion check,
we have to deal with those (at least) twice. This leads
to the heuristic that a bisection of a box should cut
as few polygons as possible.

We start with a given set of n polygons. Given a
cut-plane ¢ perpendicular to the x-axis (w.lo.g.), we
denote the number of polygons to the left, the right,
and crossing ¢ by n;, n,, and n., resp. According
to the heuristic proposed above, we define a penalty
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function for ¢ by
p(c) = [t —ns |+ yne

where v is the factor by which a crossing polygon is
worse than an unbalanced one. (Note: in general,
n+ne +ne >n)

The basic step for building a BoxTree 1s to find
the cutplane ¢ for a given set of polygons such that ¢
realizes the global minimum

min{p(ec,) | e, L x-axis,c, € [Tmin, Tmaxl }
min { min{p(cy) | ¢y L y-axis,cy € [Ymin, Ymax] }
min{p(c;) | ¢ L z-axis, c; € [Zmin, Zmax] }

We use the simpler function to be p(¢) = |n; —n,|
which 1s monotonic. Thus we can find the minimum
by interval bisection, and results have been satisfac-
tory.

After we have found a cut-plane, we divide the in-
put array of polygons into two; crossing polygons are
copied into both (for reasons which will be made clear
below). Then we start the process over again for the
two new arrays.

As mentioned above, “empty” boxes are “good”,
too (see Figure 5). By splitting off empty boxes dur-
ing the tree construction, the non-empty boxes will
approximate the boundary more closely. However,
an empty box won’t pay off if it is too small, so we
introduce an empty-box-threshold.

Before trying to find the cutplane ¢ which realizes
kind of a median, we try to find a cutplane e, such
that one of the two sub-boxes is empty, and which
realizes the maximum empty sub-box. If the quotient
of the volume of that empty sub-box and the volume
of its father is greater than the empty-box-threshold,
then we use the cutplane e.

In the case of an empty sub-box the recursion is
trivial: the input array of polygons is passed to the
non-empty sub-box.

The box splitting recursion will stop when one of
the following conditions holds:

— depth > d .«

— # polygons in the box currently considered for
splitting < Mm.

- n; > An or n, > An (it doesn’t make sense to
split the box, if one of the sub-boxes contains
almost as many polygons as the father; typ. A =
0.8).

When the recursion stops, we attach the amray of
polygons to the corresponding leaf of the BoxTree.

2500

2000

1500

time (ms)

1000

500 |- s spheres —o—
g hyperboloids -+~

1 1 1 1
0 5000 10000 15000 20000 25000
#polygons

Figure 6: Experiments seem to indicate that build-
ing BoxTrees is in O(n) average running time. The
graph shows timings for building the boxtree for
spheres and hyperboloids. Timing was done on an

R4400/200MHz.

It should be evident now, why we did not choose
octrees: In the simplest form, octrees start with a
cube, whereas we want to start with a tight-fitting
bounding box. FEven if we start our octree with a
tight-fitting box, and even if we choose the “mid-
point” off-center, the siblings will not be balanced,
in general. Fmally, an implementation of a simulta-
neous traversal of octrees is much more complicated.

Complexity. The complexity of constructing Box-
Trees isin O(nlogn), where nis the number of poly-
gons, under certain assumptions. Quite similarly, the
memory complexity can be shown to be in O(n logn).
Experments indicate an even better average running
time of O(n) (see Figure 6).

We assume that cutting a box takes s =const passes
over all polygons in that box; we assume further that
every cut will split the box’s polygons into 3 sets of
equal size: left, right, and crossing polygons. This
means that a sub-box gets % of the box’s polygons.
Thus, the depth of a BoxTree will be d = log%(n).

Let T(n) be the time needed to build a BoxTree
for n polygons. Then, T(3k) = «(3k) + 27(2k),
and T(3) = ¢ Assume n = 3% then T(3%) <
e352134-1 < ¢d3d e O(nlogn).

Crossing polygons. What should we do with
crossing polygons (polygons which are on both sides
of the cut plane)? The approach we have taken is
to store polygons only at leaves. So, crossing poly-
gons will be put in both sub-boxes. This avoids some
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Figure 7: If crossing polygons are stored at leaves of
the BoxTree, too, they can be discarded during the
simultaneous traversal like “non-crossing” polygons.
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Figure 8: For splitting a set of polygons by a plane,
geometrical robustness can be achieved by giving the
cut-plane a certain “thickness”.

disadvantages if we would store them at iner nodes.
Of course, polygons can be stored multiple times at
leaves, this way. However, this does not cause any
memory problems: tests have shown that a BoxTree
contains by a factor of 1.2 — 1.6 more pointers to
edges/faces than there really are.

Geometrical robustness. Although this seems to
be of minor importance, experiments showed 1ts ne-
cessity very early. This is especially true for ob-
jects which are computer-generated and expose a high
symmetry, like spheres, tori, extruded and revolved
objects, etc. These objects usually have very good
cut-planes, but if the splitting algorthm is not ro-
bust, the BoxTree will be a mess.

Here, the problem is: when do we consider a poly-
gon to be on the left, the right, or crossing the cut-
plane? Because of numerical inconsistencies, many
polygons might be classified “crossing” even though
they only touch the cut-plane (see Figure 8). The
idea is simply to give the cut-plane a certain “thick-
ness’ 26. Then, we’ll still consider a polygon left of a
cut-plane ¢, even if one of its edges 1s right of ¢, but
left of ¢ + 6. All the possible cases are depicted in
Figure 8.

5 Results

For timing tests we chose the following scenario: two
objects move in a cage. Initial positions, initial trans-
lational and rotational velocities are chosen randomly
at start-time. When the two objects collide, they
bounce off each other based on simple heuristics (e.g.,
by exchanging translational and/or rotational veloci-
ties). The size of the cage is chosenso as to “simulate”
a dense environment, i.e., most of the time there are
only “almost-collisions”, which is the “bad” case for
most algorithms. In general, the cage size was chosen
1.5—2 time the radius of the test-objects, so that col-
lisions will happen fairly often (but large enough so
that the two objects will not “get stuck”). The test
objects were regular ones, like spheres, tori, tetra-
flakes, etc., and real-world data (e.g., an alternator).
Rendering was switched off, of course. This scenario
was chosen in order to exclude any side-effects, e.g.,
by doing any bbox checks.

First, we tried to find optimum parameters for a
BoxTree, namely the maximum depth, the minimum
number of poly gons/edges per box, and the threshold
for an “empty-box” split. To this end, we ran several
tests with different objects and different choices of
those parameters. The problem is actually to find a
global optimum in 4-space for each polygon count and
each object type. This would require a lot of tests
taking days or weeks of CPU time! However, sev-
eral timing experiments indicated that one can indeed
search for the optima of all three parameters indepen-
dently. Figure 9 shows the timing tests for finding
the optimal maximum depth (on an R4000/50 MHz
Indigo) when the minimum number of polygons per
box is 1. It turned out that the optimal mmnimum
number of polygons per box yields about the same
maximum depth. We also ran tests with the fixed
“optimal” maximum depth while varying the mini-
mum number of polygons; these tests suggested that
said optimal maximum depth, together with 1 being
the minimumnumber of polygons per box, is actually
the best choice of those two parameters.

Similar tests were done to find the optimal thresh-
old for when to split off an empty box. They yielded
similar results in that there seems to be an optimal
threshold which is independent of the other parame-
ters. Furthermore, the “near-optimal” range seems to
be fairly broad. We also checked experimentally that
empty boxes do actually give some speed-up (see Fig-
ure 10).

It also turned out (fortunately), that optimal box-
tree parameters do not depend much on the type
of the object. The timing tests descnbed above
have been conducted for spheres, tori, cylinders, and
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avg. time (ms)

#polygons/object

Figure 9: Search for the optimal depth of a BoxTree.
This is the graph for two spheres. Testing two tori
or two tetra-flakes yielded very similar results. Each
sample is an average over 10x500 frmaes.

“tetra-flakes” (a tetrahedron which has small tetra-
hedra placed recursively on its sides). They showed
that the optimal maximum tree depth, for example,
varies by about +1 across different object types.

The following table was obtained, which is used for
generating near-optimal BoxTrees:

#p'gons | 100 [ 300 | 700 | 1300 [ 2000 | 3000 |
depth 4 5] 6 7 8 9 |

Next, we compared the BoxTree algorithm (using
optimal parameters for the BoxTree construction) to
the simple algorithm as described in Section 3.1; the
result for two tori is shown in Figure 10. The same
scenario as above was used. Each sample is an aver-
age over 20 x 2000 frames. The tests were run on an
R4400 /200MHz.

As expected, BoxTrees are much faster when object
complexity 1s above a certain threshold, but slower
for small objects. As can be seen from the graph,
a collision check of two fairly close 1000-poly gon-tori
takes about 20 msec on average. The threshold (for
tori) is about 100 polygons, below which a simple
algorithm out-performs the sophisticated one.

Proposal. We would like to make a general remark
here. In the past, most researchers have provided tim-
ing results on their algorithms. However, little has
been done to compare different exisiting algorithms
(some comparisons have been published by [14]). Per-
haps this is, because it is very cumbersome to re-
implement other algorithms in order to compare them

1000

tirmal BoxT:

boxtree-w/o-empty-bo;
2

time (ms)

10

1
100 1000
#polygons/object

Figure 10: Comparison of the BoxTree algorithm
with the simple algorithm. Scenario: two tori bounc-
ing off each other in a fairly tight cage. Other object
types (sphere and tetra-flake) yielded similar results
with slightly different thresholds.

to one’s own. To alleviate the comparison of new al-
gorithms to exisiting ones, we would like to propose
the following method: new algorithms are compared
agamst a certain, commonly agreed upon, “calibra-
tion” algorithm. That calibration algorithm and the
test scenario(s) should be simple and very easy to im-
plement. In our oppinion, the scenario and the simple
algorithm (see 3.1) presented here might be a possi-
ble candidate. Thus, many machine dependent side
effects could be eliminated.

Of course, there should be a sufficiently “rich”
suite of scenarios with different characteristics, e.g.,
fast /slow moving objects, many simple objects vs. few
complex ones, mostly collisions vs. mostly “almost”-
collisions, etc.

6 Future work

The algorithm presented above offers many more pos-
sibilities for further speed-up.

One could try a simultaneous traversal of awis-
aligned boxres. They can be computed on-the-fly from
the ones on the level above together with the informa-
tion stored with each BoxTree node. Still, we would
build the BoxTree as described in this paper.

So far, we have considered only the bounding box
of polygons when constructing the boxtree. This is
ok for “small” polygons (in terms of the diameter of
their bounding sphere). However, it might tend to
insert large polygons in sub-boxes with which they
don’t intersect at all. So it might be worthwhile to
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do a true polygon-box-intersection test when building
the BoxTree, which would add some additional costs
only to the pre-processing phase.

Is there a relationship between the average number
of polygons per leaf box and the collision detection
time? If so, this could be used for an even better
heuristic to build the optimum BoxTree.

The algorithm seems to be particularly well suited
for parallehzation. Each recursion can be processed
in parallel on up to 4 processes (depending on how
many box-pairs have to be checked).

The BoxTree algorithm should be compared to
other algorithms which are capable of checking col-
lisions between arbitrary polyhedra, like [16]’s sphere
tree algorithm.

7 Conclusion

An algorithm has been presented which allows real-
time and exact collision detection for complex ar-
bitrary polyhedra. This is achieved by a recursive
divide-&-conquer approach, which is generic and can
be furnitured with other semantics as well very eas-
ily. The recursion step basically consists of an inter-
section test of non-axis-aligned boxes, which gains its
efficiency by exploiting the special geometry of boxes
and by re-using all results from previous steps.

The associated data structure 1s a hierarchical
space decomposition, which

An algorithm has been developed for the construc-
tion of the these data structures. It has been tested
thouroughly and parameters have been determined
which yield a near-optimal object partitioning. The
construction of that data structure is very simple to
implement and it 1s efficient.

The collision detection algorithm is simple to im-
plement and very efficient. Two 1000-polygon-toriin
close proximity, but not touching, can be checked in
20 msec on average on a R4400/200MHz.

If we do a breadth-first tree traversal, the collision
detection algorithm it can be interrupted at any stage
should the application choose to do so in order to in-
sure a constant frame rate. In that case, collision/no-
collision can be returned based on simple heuristics.
So, this algorithm is a good candidate for adaptive
workload balancing.

The algorithms presented can be combined with
any global space partitioning method or any other
method avoiding the all-pairs weakness on object-
level.
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