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Today: Static Program Analysis 

Analysis of run-time behavior of programs without 
executing them (sometimes called static testing) 

Analysis is done for all possible runs of a program 
(i.e. considering all possible inputs)  

Typical tasks 

 Does the variable x have a constant value ? 

 Is the value of the variable x always positive ? 

 Can the pointer p be null at a given program point ? 

 What are the possible values of the variable y ? 

These tasks can be used for verification (e.g. is there any 
possible dereferencing of the null pointer), or for 
optimisation when compiling. 

  



    

Usage of Program Analysis 

 

Optimising compilers 
Detection of sub-expressions that are evaluated multiple times 

Detection of unused local variables 

Pipeline optimisations 

 

Program verification 
Search for runtime errors in programs 

Null pointer dereference 

Exceptions which are thrown and not caught 

Over/underflow of integers, rounding errors with floating point 
numbers 

Runtime estimation (worst-caste executing time, wcet; AbsInt tool) 

   



    

Program Analysis: The Basic Problem 

Basic Problem:  

 

 

Given a property P and a program p, we say 𝑝 ⊨ 𝑃 if a P 
holds for p. An algorithm (tool) 𝜙 which decides P is a 
computable predicate 𝜙: 𝑝 → 𝐵𝑜𝑜𝑙. We say: 

 𝜙 is sound if whenever 𝜙 𝑝  then 𝑝 ⊨ 𝑃.  

 𝜙 is safe (or complete) if whenever 𝑝 ⊨ 𝑃 then 𝜙 𝑝 . 

From the basic problem it follows that there are no 
sound and safe tools for interesting properties. 

 In other words, all tools must either under- or 
overapproximate.  

  

 

 

All interesting program properties are undecidable. All interesting program properties are undecidable. 



    

Program Analysis: Approximation 

 

 

Correct Errors 

Not 
Computable 

Overapproximation 

Underapproximation 

 

Underapproximation only finds correct 
programs but may miss out some 

 Useful in optimising compilers 

 Optimisation must respect semantics 
of program, but may optimise. 

Overapproximation finds all errors but 
may find non-errors (false positives) 

 Useful in verification. 

 Safety analysis must find all errors, 
but may report some more. 

 Too high rate of false positives may 
hinder acceptance of tool. 



    

Program Analysis Approach 

Provides approximate answers 

 yes / no / don’t know or  

 superset or subset of values 

 Uses an abstraction of program’s behavior 

 Abstract data values (e.g. sign abstraction) 

 Summarization of information from  
execution paths e.g. branches of the if-else statement 

Worst-case assumptions about environment’s behavior 

 e.g. any value of a method parameter is possible 

Sufficient precision with good performance 

  



    

Flow Sensitivity 

Flow-sensitive analysis 

Considers program's flow of control 

Uses control-flow graph as a representation of the 
source 

Example: available expressions analysis 

 

Flow-insensitive analysis 

Program is seen as an unordered collection of 
statements 

Results are valid for any order of statements 
e.g.  S1 ; S2 vs. S2 ; S1 

Example: type analysis (inference) 

  



    

Context Sensitivity 

Context-sensitive analysis 

Stack of procedure invocations and return values of 
method parameters 
then results of analysis of the method M depend on the 
caller of M 

 

Context-insensitive analysis 

Produces the same results for all possible invocations of 
M independent of possible callers and parameter values 

  



    

Intra- vs. Inter-procedural Analysis 

 

Intra-procedural analysis 

Single function is analyzed in isolation 

Maximally pessimistic assumptions about parameter 
values and results of procedure calls 

 

Inter-procedural analysis 

Whole program is analyzed at once 

Procedure calls are considered 

  



    

Data-Flow Analysis 

Focus on questions related to values of variables and their lifetime 
 

Selected analyses: 

Available expressions (forward analysis) 

 Which expressions have been computed already without 
change of the occurring variables (optimization) ? 

Reaching definitions (forward analysis) 

 Which assignments contribute to a state in a program point? 
(verification) 

Very busy expressions (backward analysis) 

 Which expressions are executed in a block regardless which 
path the program takes (verification) ? 

Live variables (backward analysis) 

 Is the value of a variable in a program point used in a later part 
of the program (optimization) ? 

  



    

A Very Simple Programming Language 

In the following, we use a very simple language with  

 Arithmetic operators given by 
𝑎 ∷= 𝑥  𝑛  𝑎1 𝑜𝑝𝑎 𝑎2 

with 𝑥 a variable, 𝑛 a numeral,  𝑜𝑝𝑎arith. op. (e.g. +, -, *)  

 Boolean operators given by 
𝑏 ≔ true  false not 𝑏  𝑏1𝑜𝑝𝑏  𝑏2  𝑎1𝑜𝑝𝑟 𝑎2 

with 𝑜𝑝𝑏 boolean operator (e.g. and, or) and 𝑜𝑝𝑟 a 
relational operator (e.g. =, <) 

 Statements given by 
𝑆 ∷=

𝑥 ≔ 𝑎 𝑙  skip 𝑙  𝑆1; 𝑆2  if 𝑏 𝑙then 𝑆1else 𝑆2  while 𝑏 𝑙do 𝑆  

An Example Program: 

[x := a+b]1; 

[y := a*b]2;  

while [y > a+b]3 do ( [a:=a+1]4; [x:= a+b]5 ) 

[x := a+b]1; 

[y := a*b]2;  

while [y > a+b]3 do ( [a:=a+1]4; [x:= a+b]5 ) 



    

The Control Flow Graph 

We define some functions on the abstract syntax: 

 The initial label (entry point) init: 𝑆 → 𝐿𝑎𝑏  

 The final labels (exit points) final: 𝑆 →  ℙ 𝐿𝑎𝑏  

 The elementary blocks block: 𝑆 → ℙ 𝐵𝑙𝑜𝑐𝑘𝑠  
where an elementary block is  

► an assignment [x:= a],  

► or [skip],  

► or a test [b]  

 The control flow flow: 𝑆 →  ℙ 𝐿𝑎𝑏 × 𝐿𝑎𝑏  and reverse 
control flowR : 𝑆 →  ℙ 𝐿𝑎𝑏 × 𝐿𝑎𝑏 .  

The control flow graph of a program S  is given by  

 elementary blocks block 𝑆  as nodes, and 

 flow(S) as vertices.  



    

Labels, Blocks, Flows: Definitions 

  

init( [x :=a]l ) = l 

init( [skip]l ) = l 

init( S1; S2) = init( S1) 

init(if [b]l then S1 else S2) = l 

init(while [b]l  do S) = l 

final( [x :=a]l ) = { l } 

final( [skip]l ) = { l } 

final( S1; S2) = final( S2) 
final(if [b]l then S1 else S2) = final( S1) [ final( S2) 

final(while [b]l  do S) = { l } 

blocks( [x :=a]l ) = { [x :=a]l  } 

blocks( [skip]l ) = { [skip]l } 
blocks( S1; S2) = blocks( S1) [ blocks( S2) 

blocks(if [b]l then S1 else S2) 
    = { [b]l } [ blocks( S1) [ blocks( S2) 

blocks( while [b]l  do S) = { [b]l } [ blocks( S)  

flow( [x :=a]l ) = ; 

flow( [skip]l ) = ;  

flow( S1; S2) = flow(S1) [ flow(S2) [ {( l, init(S2)) | l 2 final(S1) } 

flow(if [b]l then S1 else S2) = flow(S1) [ flow(S2) [ { ( l, init(S1), ( l, init(S2) } 
flow( while [b]l  do S) = flow(S) [ { ( l, init(S) } [ {( l‘, l) | l‘ 2 final(S) } 

 

flowR(S) = {(l‘, l) | (l, l‘) 2 flow(S)} 

labels(S) = { l | [B]l2 blocks(S)} 

FV(a) = free variables in a 

Aexp(S) = nontrivial   

    subexpressions of S 



    

Another Example 

init(P) = 1 

final(P) = {3} 

blocks(P) = 

     { [x := a+b]1, [y := a*b]2, [y > a+b]3, [a:=a+1]4, [x:= a+b] } 

flow(P) = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 3)} 

flowR(P) = {(2, 1), (3, 2), (4, 3), (5, 4), (3, 5)} 

labels(P) = {1, 2, 3, 4, 5) 

 

FV(a + b) = {a, b} 

  

x := a +b 

y > a + b 

a := a + 1 

x := a + b 

no 

yes 

1 

5 

4 

3 

y := a * b 
2 

P =  [x := a+b]1; [y := a*b]2; while [y > a+b]3 do ( [a:=a+1]4; [x:= a+b]5 ) 



    

Available Expression Analysis 

The avaiable expression analysis will 
determine:    

  

x := a +b 

y > a + b 

a := a + 1 

x := a + b 

no 

yes 

1 

5 

4 

3 

y := a * b 
2 

S : 

For each program point, which 
expressions must have already been 
computed, and not later modified, on 
all paths to this program point.   

For each program point, which 
expressions must have already been 
computed, and not later modified, on 
all paths to this program point.   



    

Available Expression Analysis 

  

kill( [x :=a]l ) = { a‘ 2 Aexp(S) | x 2 FV(a‘) } 

kill( [skip]l ) = ; 
kill( [b]l ) = ;  

gen( [x :=a]l ) = { a‘ 2 Aexp(a) | xFV(a‘) } 

gen( [skip]l ) = ; 
gen( [b]l ) = Aexp(b) 

AEin( l ) =  ;  , if l 2 init(S)  and 

AEin( l ) =   {AEout ( l‘ ) | (l‘, l) 2 flow(S) }   , otherwise 

AEout ( l ) = ( AEin( l ) \ kill(Bl ) ) [ gen(Bl ) where Bl  2 blocks(S) 
 

x := a +b 

y > a + b 

a := a + 1 

x := a + b 

no 

yes 

1 

5 

4 

3 

y := a * b 
2 

l kill(l) gen(l) 

1 

2 

3 

4 

5 

l AEin AEout 

1 

2 

3 

4 

5 

S : 



    

Available Expression Analysis 

  

kill( [x :=a]l ) = { a‘ 2 Aexp(S) | x 2 FV(a‘) } 

kill( [skip]l ) = ; 
kill( [b]l ) = ;  

gen( [x :=a]l ) = { a‘ 2 Aexp(a) | xFV(a‘) } 

gen( [skip]l ) = ; 
gen( [b]l ) = Aexp(b) 

AEin( l ) =  ;  , if l 2 init(S)  and 

AEin( l ) =   {AEout ( l‘ ) | (l‘, l) 2 flow(S) }   , otherwise 

AEout ( l ) = ( AEin( l ) \ kill(Bl ) ) [ gen(Bl ) where Bl  2 blocks(S) 
 

x := a +b 

y > a + b 

a := a + 1 

x := a + b 

no 

yes 

1 

5 

4 

3 

y := a * b 
2 

l kill(l) gen(l) 

1 ; {a+b} 

2 ; {a*b} 

3 ; {a+b} 

4 {a+b, a*b, a+1} ; 

5 ; {a+b} 

l AEin AEout 

1 ; {a+b} 

2 {a+b} {a+b, a*b} 

3 {a+b} {a+b} 

4 {a+b} ; 

5 ; {a+b} 

S : 



    

Reaching Definitions Analysis 

Reaching definitions (assignment) 
analysis determines if: 

  

An assignment of the form [x := a]l 

may reach a certain program point k 
if there is an execution of the 
program where x was last assigned a 
value at l when the program point k 
is reached  

An assignment of the form [x := a]l 

may reach a certain program point k 
if there is an execution of the 
program where x was last assigned a 
value at l when the program point k 
is reached  

x := 5 

x > 1 

y := x * y 

x := x - 1 

no 

yes 

1 

5 

4 

3 

y := 1 
2 

S : 



    

Reaching Definitions Analysis 

  

kill( [skip]l ) = ; 
kill( [b]l ) = ;  

kill( [x :=a]l ) = { (x, ?) } [ { (x, k) | Bk is an assignment to x in S } 
 

gen( [x :=a]l ) = { (x, l) } 
gen( [skip]l ) = ; 
gen( [b]l ) = ;  

RDin( l ) = { (x, ?) | x 2 FV(S)}  , if l 2 init(S)  and 

RDin( l ) =   {RDout ( l‘ ) | (l‘, l) 2 flow(S) }   , otherwise 

RDout ( l ) = ( RDin( l ) \ kill(Bl ) ) [ gen(Bl )  where Bl  2 blocks(S) 

x := 5 

x > 1 

y := x * y 

x := x - 1 

no 

yes 

1 

5 

4 

3 

y := 1 
2 

l kill(Bl) gen(Bl) 

1 {(x,?), (x,1),(x,5)} {(x, 1)} 

2 {(y,?), (y,2),(y,4)} {(y, 2)} 

3 ; ; 

4 {(y,?), (y,2),(y,4)} {(y, 4)} 

5 {(x,?), (x,1),(x,5)} {(x, 5)} 

l RDin RDout 

1 

2 

3 

4 

5 

S : 



    

Reaching Definitions Analysis 

  

kill( [skip]l ) = ; 
kill( [b]l ) = ;  

kill( [x :=a]l ) = { (x, ?) } [ { (x, k) | Bk is an assignment to x in S } 
 

gen( [x :=a]l ) = { (x, l) } 
gen( [skip]l ) = ; 
gen( [b]l ) = ;  

RDin( l ) = { (x, ?) | x 2 FV(S)}  , if l 2 init(S)  and 

RDin( l ) =   {RDout ( l‘ ) | (l‘, l) 2 flow(S) }   , otherwise 

RDout ( l ) = ( RDin( l ) \ kill(Bl ) ) [ gen(Bl )  where Bl  2 blocks(S) 

x := 5 

x > 1 

y := x * y 

x := x - 1 

no 

yes 

1 

5 

4 

3 

y := 1 
2 

l kill(Bl) gen(Bl) 

1 {(x,?), (x,1),(x,5)} {(x, 1)} 

2 {(y,?), (y,2),(y,4)} {(y, 2)} 

3 ; ; 

4 {(y,?), (y,2),(y,4)} {(y, 4)} 

5 {(x,?), (x,1),(x,5)} {(x, 5)} 

l RDin RDout 

1 {(x,?), (y,?)} {(x,1), (y,?)} 

2 {(x,1), (y,?)} {(x,1), (y,2)} 

3 {(x,1), (x,5), (y,2), (y,4)} {(x,1), (x,5), (y,2), (y,4)} 

4 {(x,1), (x,5), (y,2), (y,4)} {(x,1), (x,5),(y,4)} 

5 {(x,1), (x,5),(y,4)} {(x,5),(y,4)} 

 

S : 



    

Live Variables Analysis 

A variable x is live at some program 
point (label l) if there exists if there 
exists a path from l to an exit point that 
does not change the variable. 

Live Variables Analysis determines: 

 

 

 

 

 

Application: dead code elemination. 

  

x := 2 

x := 1 

y > x 

z := y 

no yes 

1 

5 

4 

3 

y := 4 
2 

S : 

z := y*y 
6 

x := z 
7 

For each program point, which 
variables may be live at the exit 
from that point. 

For each program point, which 
variables may be live at the exit 
from that point. 



    

Live Variables Analysis 

  

kill( [x :=a]l ) = {x}  
kill( [skip]l ) = ; 
kill( [b]l ) = ; 

gen( [x :=a]l ) = FV(a) 
gen( [skip]l ) = ; 
gen( [b]l ) = FV(b)  

LVout( l ) =  ;  , if l 2 final(S)  and 

LVout( l ) =   {LVin ( l‘ ) | (l‘, l) 2 flowR(S) }   , otherwise 

LVin ( l ) = ( LVout( l ) \ kill(Bl ) ) [ gen(Bl ) where Bl  2 blocks(S) 
 

x := 2 

x := 1 

y > x 

z := y 

no yes 

1 

5 

4 

3 

y := 4 
2 

l kill(l) gen(l) 

1 

2 

3 

4 

5 

6 

7 

l LVin LVout 

1 

2 

3 

4 

5 

6 

7 

S : 

z := y*y 
6 

x := z 
7 



    

Live Variables Analysis 

  

kill( [x :=a]l ) = {x}  
kill( [skip]l ) = ; 
kill( [b]l ) = ; 

gen( [x :=a]l ) = FV(a) 
gen( [skip]l ) = ; 
gen( [b]l ) = FV(b)  

LVout( l ) =  ;  , if l 2 final(S)  and 

LVout( l ) =   {LVin ( l‘ ) | (l‘, l) 2 flowR(S) }   , otherwise 

LVin ( l ) = ( LVout( l ) \ kill(Bl ) ) [ gen(Bl ) where Bl  2 blocks(S) 
 

x := 2 

x := 1 

y > x 

z := y 

no yes 

1 

5 

4 

3 

y := 4 
2 

l kill(l) gen(l) 

1 {x} ; 

2 {y} ; 

3 {x} ; 

4 ; {x, y} 

5 {z} {y} 

6 {z} {y} 

7 {x} {z} 

l LVin LVout 

1 ; ; 

2 ; {y} 

3 {y} {x, y} 

4 {x, y} {y} 

5 {y} {z} 

6 {y} {z} 

7 {z} ; 

S : 

z := y*y 
6 

x := z 
7 



    

First Generalized Schema 

Analyse ( l ) =  EV  , if l 2 E  and 

Analyse ( l ) =  t { Analyse ( l‘ ) | (l‘, l) 2 Flow(S) }, otherwise 
 

Analyse ( l ) = fl ( Analyse ( l ) ) 

 

With: 

t is either  or  

EV is the initial / final analysis information 

Flow is either flow or flowR 

E is either {init(S)} or final(S) 

fl  is the transfer function associated with Bl 2 blocks(S) 
 

Backward analysis:  F = flowR,  = IN,  = OUT 

Forward analysis:  F = flow,  = OUT,  = IN 

  



    

Partial Order 

L = (M, ⊑ ) is a partial order iff 

 Reflexivity: 8 x 2 M. x ⊑ x 

 Transitivity: 8 x,y,z 2 M.  x ⊑ y ∧ y ⊑ z ⇒ x ⊑ z 

 Anti-symmetry: 8 x,y 2 M. x ⊑ y ∧ y ⊑ x ⇒ x = y 

 

Let L = (M, ⊑ ) be a partial order,  S ⊆ M. 

 y 2 M is upper bound for S (S ⊑ y) iff 8 x 2 S. x ⊑ y 

 y 2 M is lower bound for S (y ⊑ S) iff 8 x 2 S. y ⊑ x 

 Least upper bound ⊔X 2 M of X ⊆ M :  

► X ⊑ ⊔X ∧ 8 y 2 M : X ⊑ y ⇒ ⊔X ⊑ y 

 Greatest lower bound ⊓X 2 M of X ⊆ M: 

► ⊓X ⊑ X ∧ 8 y 2 M : y ⊑ X ⇒ y ⊑ ⊓X 

 
  



    

Lattice 

A lattice (“Verbund”) is a partial order L = (M, ⊑) such that 

 

 ⊔X and ⊓X exist for all X ⊆ M 

 Unique greatest element ⊤ = ⊔M = ⊓∅ 

 Unique least element ⊥ = ⊓M = ⊔∅ 

 

 

  



    

Transfer Functions 

Transfer functions to propagate information along the execution 
path 
(i.e. from input to output, or vice versa) 

 

Let L = (M, ⊑) be a lattice. Set F  of transfer functions of the form   
 fl : L  L with l being a label  

 

Knowledge transfer is monotone 

 8 x,y.  x ⊑ y ⇒ fl (x) ⊑ fl (y) 

 

Space F of transfer functions 

 F  contains all transfer functions fl 

 F  contains the identity function id,  i.e.  8 x 2 M. id(x) = x 

 F  is closed under composition, i.e. 8 f,g 2 F.  (f  g) 2 F 

  



    

The Generalized Analysis 

Analyse ( l ) =  t { Analyse ( l‘ ) | (l‘, l) 2 Flow(S) } t ¶l
E   

     with  ¶l
E = EV  if  l 2 E  and  

             ¶l
E = ⊥    otherwise 

Analyse ( l ) = fl ( Analyse ( l ) ) 

 

With: 
 

L property space representing data flow information with  
(L, t ) being a lattice 

Flow is a finite flow  (i.e. flow or flowR ) 

EV is an extremal value for the extremal labels E (i.e.  {init(S)} or 
final(S)) 

transfer functions fl  of a space of transfer functions F 

  



    

Summary 
 

Static Program Analysis is the analysis of run-time 
behavior of programs without executing them 
(sometimes called static testing). 

Approximations of program behaviours by analyzing the 
program‘s cfg. 

Analysis include 

 available expressions analysis,  

 reaching definitions, 

 live variables analysis. 

These are instances of a more general framework. 

These techniques are used commercially, e.g. 

 AbsInt aiT (WCET) 

 Astrée Static Analyzer (C program safety) 


