

Verifikation von C-Programmen
Universität Bremen, WS 2014/15

Christoph Lüth

Lecture 05 (19.11.2013)

Statische Programmanalyse

Today: Static Program Analysis

Analysis of run-time behavior of programs without
executing them (sometimes called static testing)

Analysis is done for all possible runs of a program
(i.e. considering all possible inputs)

Typical tasks

 Does the variable x have a constant value ?

 Is the value of the variable x always positive ?

 Can the pointer p be null at a given program point ?

 What are the possible values of the variable y ?

These tasks can be used for verification (e.g. is there any
possible dereferencing of the null pointer), or for
optimisation when compiling.

Usage of Program Analysis

Optimising compilers
Detection of sub-expressions that are evaluated multiple times

Detection of unused local variables

Pipeline optimisations

Program verification
Search for runtime errors in programs

Null pointer dereference

Exceptions which are thrown and not caught

Over/underflow of integers, rounding errors with floating point
numbers

Runtime estimation (worst-caste executing time, wcet; AbsInt tool)

Program Analysis: The Basic Problem

Basic Problem:

Given a property P and a program p, we say 𝑝 ⊨ 𝑃 if a P
holds for p. An algorithm (tool) 𝜙 which decides P is a
computable predicate 𝜙: 𝑝 → 𝐵𝑜𝑜𝑙. We say:

 𝜙 is sound if whenever 𝜙 𝑝 then 𝑝 ⊨ 𝑃.

 𝜙 is safe (or complete) if whenever 𝑝 ⊨ 𝑃 then 𝜙 𝑝 .

From the basic problem it follows that there are no
sound and safe tools for interesting properties.

 In other words, all tools must either under- or
overapproximate.

All interesting program properties are undecidable. All interesting program properties are undecidable.

Program Analysis: Approximation

Correct Errors

Not
Computable

Overapproximation

Underapproximation

Underapproximation only finds correct
programs but may miss out some

 Useful in optimising compilers

 Optimisation must respect semantics
of program, but may optimise.

Overapproximation finds all errors but
may find non-errors (false positives)

 Useful in verification.

 Safety analysis must find all errors,
but may report some more.

 Too high rate of false positives may
hinder acceptance of tool.

Program Analysis Approach

Provides approximate answers

 yes / no / don’t know or

 superset or subset of values

 Uses an abstraction of program’s behavior

 Abstract data values (e.g. sign abstraction)

 Summarization of information from
execution paths e.g. branches of the if-else statement

Worst-case assumptions about environment’s behavior

 e.g. any value of a method parameter is possible

Sufficient precision with good performance

Flow Sensitivity

Flow-sensitive analysis

Considers program's flow of control

Uses control-flow graph as a representation of the
source

Example: available expressions analysis

Flow-insensitive analysis

Program is seen as an unordered collection of
statements

Results are valid for any order of statements
e.g. S1 ; S2 vs. S2 ; S1

Example: type analysis (inference)

Context Sensitivity

Context-sensitive analysis

Stack of procedure invocations and return values of
method parameters
then results of analysis of the method M depend on the
caller of M

Context-insensitive analysis

Produces the same results for all possible invocations of
M independent of possible callers and parameter values

Intra- vs. Inter-procedural Analysis

Intra-procedural analysis

Single function is analyzed in isolation

Maximally pessimistic assumptions about parameter
values and results of procedure calls

Inter-procedural analysis

Whole program is analyzed at once

Procedure calls are considered

Data-Flow Analysis

Focus on questions related to values of variables and their lifetime

Selected analyses:

Available expressions (forward analysis)

 Which expressions have been computed already without
change of the occurring variables (optimization) ?

Reaching definitions (forward analysis)

 Which assignments contribute to a state in a program point?
(verification)

Very busy expressions (backward analysis)

 Which expressions are executed in a block regardless which
path the program takes (verification) ?

Live variables (backward analysis)

 Is the value of a variable in a program point used in a later part
of the program (optimization) ?

A Very Simple Programming Language

In the following, we use a very simple language with

 Arithmetic operators given by
𝑎 ∷= 𝑥 𝑛 𝑎1 𝑜𝑝𝑎 𝑎2

with 𝑥 a variable, 𝑛 a numeral, 𝑜𝑝𝑎arith. op. (e.g. +, -, *)

 Boolean operators given by
𝑏 ≔ true false not 𝑏 𝑏1𝑜𝑝𝑏 𝑏2 𝑎1𝑜𝑝𝑟 𝑎2

with 𝑜𝑝𝑏 boolean operator (e.g. and, or) and 𝑜𝑝𝑟 a
relational operator (e.g. =, <)

 Statements given by
𝑆 ∷=

𝑥 ≔ 𝑎 𝑙 skip 𝑙 𝑆1; 𝑆2 if 𝑏 𝑙then 𝑆1else 𝑆2 while 𝑏 𝑙do 𝑆

An Example Program:

[x := a+b]1;

[y := a*b]2;

while [y > a+b]3 do ([a:=a+1]4; [x:= a+b]5)

[x := a+b]1;

[y := a*b]2;

while [y > a+b]3 do ([a:=a+1]4; [x:= a+b]5)

The Control Flow Graph

We define some functions on the abstract syntax:

 The initial label (entry point) init: 𝑆 → 𝐿𝑎𝑏

 The final labels (exit points) final: 𝑆 → ℙ 𝐿𝑎𝑏

 The elementary blocks block: 𝑆 → ℙ 𝐵𝑙𝑜𝑐𝑘𝑠
where an elementary block is

► an assignment [x:= a],

► or [skip],

► or a test [b]

 The control flow flow: 𝑆 → ℙ 𝐿𝑎𝑏 × 𝐿𝑎𝑏 and reverse
control flowR : 𝑆 → ℙ 𝐿𝑎𝑏 × 𝐿𝑎𝑏 .

The control flow graph of a program S is given by

 elementary blocks block 𝑆 as nodes, and

 flow(S) as vertices.

Labels, Blocks, Flows: Definitions

init([x :=a]l) = l

init([skip]l) = l

init(S1; S2) = init(S1)

init(if [b]l then S1 else S2) = l

init(while [b]l do S) = l

final([x :=a]l) = { l }

final([skip]l) = { l }

final(S1; S2) = final(S2)
final(if [b]l then S1 else S2) = final(S1) [final(S2)

final(while [b]l do S) = { l }

blocks([x :=a]l) = { [x :=a]l }

blocks([skip]l) = { [skip]l }
blocks(S1; S2) = blocks(S1) [blocks(S2)

blocks(if [b]l then S1 else S2)
 = { [b]l } [blocks(S1) [blocks(S2)

blocks(while [b]l do S) = { [b]l } [blocks(S)

flow([x :=a]l) = ;

flow([skip]l) = ;

flow(S1; S2) = flow(S1) [flow(S2) [{(l, init(S2)) | l 2 final(S1) }

flow(if [b]l then S1 else S2) = flow(S1) [flow(S2) [{ (l, init(S1), (l, init(S2) }
flow(while [b]l do S) = flow(S) [{ (l, init(S) } [{(l‘, l) | l‘ 2 final(S) }

flowR(S) = {(l‘, l) | (l, l‘) 2 flow(S)}

labels(S) = { l | [B]l2 blocks(S)}

FV(a) = free variables in a

Aexp(S) = nontrivial

 subexpressions of S

Another Example

init(P) = 1

final(P) = {3}

blocks(P) =

 { [x := a+b]1, [y := a*b]2, [y > a+b]3, [a:=a+1]4, [x:= a+b] }

flow(P) = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 3)}

flowR(P) = {(2, 1), (3, 2), (4, 3), (5, 4), (3, 5)}

labels(P) = {1, 2, 3, 4, 5)

FV(a + b) = {a, b}

x := a +b

y > a + b

a := a + 1

x := a + b

no

yes

1

5

4

3

y := a * b
2

P = [x := a+b]1; [y := a*b]2; while [y > a+b]3 do ([a:=a+1]4; [x:= a+b]5)

Available Expression Analysis

The avaiable expression analysis will
determine:

x := a +b

y > a + b

a := a + 1

x := a + b

no

yes

1

5

4

3

y := a * b
2

S :

For each program point, which
expressions must have already been
computed, and not later modified, on
all paths to this program point.

For each program point, which
expressions must have already been
computed, and not later modified, on
all paths to this program point.

Available Expression Analysis

kill([x :=a]l) = { a‘ 2 Aexp(S) | x 2 FV(a‘) }

kill([skip]l) = ;
kill([b]l) = ;

gen([x :=a]l) = { a‘ 2 Aexp(a) | xFV(a‘) }

gen([skip]l) = ;
gen([b]l) = Aexp(b)

AEin(l) = ; , if l 2 init(S) and

AEin(l) =  {AEout (l‘) | (l‘, l) 2 flow(S) } , otherwise

AEout (l) = (AEin(l) \ kill(Bl)) [gen(Bl) where Bl 2 blocks(S)

x := a +b

y > a + b

a := a + 1

x := a + b

no

yes

1

5

4

3

y := a * b
2

l kill(l) gen(l)

1

2

3

4

5

l AEin AEout

1

2

3

4

5

S :

Available Expression Analysis

kill([x :=a]l) = { a‘ 2 Aexp(S) | x 2 FV(a‘) }

kill([skip]l) = ;
kill([b]l) = ;

gen([x :=a]l) = { a‘ 2 Aexp(a) | xFV(a‘) }

gen([skip]l) = ;
gen([b]l) = Aexp(b)

AEin(l) = ; , if l 2 init(S) and

AEin(l) =  {AEout (l‘) | (l‘, l) 2 flow(S) } , otherwise

AEout (l) = (AEin(l) \ kill(Bl)) [gen(Bl) where Bl 2 blocks(S)

x := a +b

y > a + b

a := a + 1

x := a + b

no

yes

1

5

4

3

y := a * b
2

l kill(l) gen(l)

1 ; {a+b}

2 ; {a*b}

3 ; {a+b}

4 {a+b, a*b, a+1} ;

5 ; {a+b}

l AEin AEout

1 ; {a+b}

2 {a+b} {a+b, a*b}

3 {a+b} {a+b}

4 {a+b} ;

5 ; {a+b}

S :

Reaching Definitions Analysis

Reaching definitions (assignment)
analysis determines if:

An assignment of the form [x := a]l

may reach a certain program point k
if there is an execution of the
program where x was last assigned a
value at l when the program point k
is reached

An assignment of the form [x := a]l

may reach a certain program point k
if there is an execution of the
program where x was last assigned a
value at l when the program point k
is reached

x := 5

x > 1

y := x * y

x := x - 1

no

yes

1

5

4

3

y := 1
2

S :

Reaching Definitions Analysis

kill([skip]l) = ;
kill([b]l) = ;

kill([x :=a]l) = { (x, ?) } [{ (x, k) | Bk is an assignment to x in S }

gen([x :=a]l) = { (x, l) }
gen([skip]l) = ;
gen([b]l) = ;

RDin(l) = { (x, ?) | x 2 FV(S)} , if l 2 init(S) and

RDin(l) =  {RDout (l‘) | (l‘, l) 2 flow(S) } , otherwise

RDout (l) = (RDin(l) \ kill(Bl)) [gen(Bl) where Bl 2 blocks(S)

x := 5

x > 1

y := x * y

x := x - 1

no

yes

1

5

4

3

y := 1
2

l kill(Bl) gen(Bl)

1 {(x,?), (x,1),(x,5)} {(x, 1)}

2 {(y,?), (y,2),(y,4)} {(y, 2)}

3 ; ;

4 {(y,?), (y,2),(y,4)} {(y, 4)}

5 {(x,?), (x,1),(x,5)} {(x, 5)}

l RDin RDout

1

2

3

4

5

S :

Reaching Definitions Analysis

kill([skip]l) = ;
kill([b]l) = ;

kill([x :=a]l) = { (x, ?) } [{ (x, k) | Bk is an assignment to x in S }

gen([x :=a]l) = { (x, l) }
gen([skip]l) = ;
gen([b]l) = ;

RDin(l) = { (x, ?) | x 2 FV(S)} , if l 2 init(S) and

RDin(l) =  {RDout (l‘) | (l‘, l) 2 flow(S) } , otherwise

RDout (l) = (RDin(l) \ kill(Bl)) [gen(Bl) where Bl 2 blocks(S)

x := 5

x > 1

y := x * y

x := x - 1

no

yes

1

5

4

3

y := 1
2

l kill(Bl) gen(Bl)

1 {(x,?), (x,1),(x,5)} {(x, 1)}

2 {(y,?), (y,2),(y,4)} {(y, 2)}

3 ; ;

4 {(y,?), (y,2),(y,4)} {(y, 4)}

5 {(x,?), (x,1),(x,5)} {(x, 5)}

l RDin RDout

1 {(x,?), (y,?)} {(x,1), (y,?)}

2 {(x,1), (y,?)} {(x,1), (y,2)}

3 {(x,1), (x,5), (y,2), (y,4)} {(x,1), (x,5), (y,2), (y,4)}

4 {(x,1), (x,5), (y,2), (y,4)} {(x,1), (x,5),(y,4)}

5 {(x,1), (x,5),(y,4)} {(x,5),(y,4)}

S :

Live Variables Analysis

A variable x is live at some program
point (label l) if there exists if there
exists a path from l to an exit point that
does not change the variable.

Live Variables Analysis determines:

Application: dead code elemination.

x := 2

x := 1

y > x

z := y

no yes

1

5

4

3

y := 4
2

S :

z := y*y
6

x := z
7

For each program point, which
variables may be live at the exit
from that point.

For each program point, which
variables may be live at the exit
from that point.

Live Variables Analysis

kill([x :=a]l) = {x}
kill([skip]l) = ;
kill([b]l) = ;

gen([x :=a]l) = FV(a)
gen([skip]l) = ;
gen([b]l) = FV(b)

LVout(l) = ; , if l 2 final(S) and

LVout(l) =  {LVin (l‘) | (l‘, l) 2 flowR(S) } , otherwise

LVin (l) = (LVout(l) \ kill(Bl)) [gen(Bl) where Bl 2 blocks(S)

x := 2

x := 1

y > x

z := y

no yes

1

5

4

3

y := 4
2

l kill(l) gen(l)

1

2

3

4

5

6

7

l LVin LVout

1

2

3

4

5

6

7

S :

z := y*y
6

x := z
7

Live Variables Analysis

kill([x :=a]l) = {x}
kill([skip]l) = ;
kill([b]l) = ;

gen([x :=a]l) = FV(a)
gen([skip]l) = ;
gen([b]l) = FV(b)

LVout(l) = ; , if l 2 final(S) and

LVout(l) =  {LVin (l‘) | (l‘, l) 2 flowR(S) } , otherwise

LVin (l) = (LVout(l) \ kill(Bl)) [gen(Bl) where Bl 2 blocks(S)

x := 2

x := 1

y > x

z := y

no yes

1

5

4

3

y := 4
2

l kill(l) gen(l)

1 {x} ;

2 {y} ;

3 {x} ;

4 ; {x, y}

5 {z} {y}

6 {z} {y}

7 {x} {z}

l LVin LVout

1 ; ;

2 ; {y}

3 {y} {x, y}

4 {x, y} {y}

5 {y} {z}

6 {y} {z}

7 {z} ;

S :

z := y*y
6

x := z
7

First Generalized Schema

Analyse (l) = EV , if l 2 E and

Analyse (l) = t { Analyse (l‘) | (l‘, l) 2 Flow(S) }, otherwise

Analyse (l) = fl (Analyse (l))

With:

t is either  or 

EV is the initial / final analysis information

Flow is either flow or flowR

E is either {init(S)} or final(S)

fl is the transfer function associated with Bl 2 blocks(S)

Backward analysis: F = flowR,  = IN,  = OUT

Forward analysis: F = flow,  = OUT,  = IN

Partial Order

L = (M, ⊑) is a partial order iff

 Reflexivity: 8 x 2 M. x ⊑ x

 Transitivity: 8 x,y,z 2 M. x ⊑ y ∧ y ⊑ z ⇒ x ⊑ z

 Anti-symmetry: 8 x,y 2 M. x ⊑ y ∧ y ⊑ x ⇒ x = y

Let L = (M, ⊑) be a partial order, S ⊆ M.

 y 2 M is upper bound for S (S ⊑ y) iff 8 x 2 S. x ⊑ y

 y 2 M is lower bound for S (y ⊑ S) iff 8 x 2 S. y ⊑ x

 Least upper bound ⊔X 2 M of X ⊆ M :

► X ⊑ ⊔X ∧ 8 y 2 M : X ⊑ y ⇒ ⊔X ⊑ y

 Greatest lower bound ⊓X 2 M of X ⊆ M:

► ⊓X ⊑ X ∧ 8 y 2 M : y ⊑ X ⇒ y ⊑ ⊓X

Lattice

A lattice (“Verbund”) is a partial order L = (M, ⊑) such that

 ⊔X and ⊓X exist for all X ⊆ M

 Unique greatest element ⊤ = ⊔M = ⊓∅

 Unique least element ⊥ = ⊓M = ⊔∅

Transfer Functions

Transfer functions to propagate information along the execution
path
(i.e. from input to output, or vice versa)

Let L = (M, ⊑) be a lattice. Set F of transfer functions of the form
 fl : L  L with l being a label

Knowledge transfer is monotone

 8 x,y. x ⊑ y ⇒ fl (x) ⊑ fl (y)

Space F of transfer functions

 F contains all transfer functions fl

 F contains the identity function id, i.e. 8 x 2 M. id(x) = x

 F is closed under composition, i.e. 8 f,g 2 F. (f  g) 2 F

The Generalized Analysis

Analyse (l) = t { Analyse (l‘) | (l‘, l) 2 Flow(S) } t ¶l
E

 with ¶l
E = EV if l 2 E and

 ¶l
E = ⊥ otherwise

Analyse (l) = fl (Analyse (l))

With:

L property space representing data flow information with
(L, t) being a lattice

Flow is a finite flow (i.e. flow or flowR)

EV is an extremal value for the extremal labels E (i.e. {init(S)} or
final(S))

transfer functions fl of a space of transfer functions F

Summary

Static Program Analysis is the analysis of run-time
behavior of programs without executing them
(sometimes called static testing).

Approximations of program behaviours by analyzing the
program‘s cfg.

Analysis include

 available expressions analysis,

 reaching definitions,

 live variables analysis.

These are instances of a more general framework.

These techniques are used commercially, e.g.

 AbsInt aiT (WCET)

 Astrée Static Analyzer (C program safety)

