Verifikation von C-Programmen

Vorlesung 4 vom 13.11.2014: MISRA-C: 2004
Guidelines for the use of the C language in critical systems

Christoph Liith
Universitat Bremen

Wintersemester 2014 /15

04.12.2014 1 [38]

MISRA-Standard

v

Beispiel fur eine Codierrichtlinie

v

Erste Version 1998, letzte Auflage 2004

v

Kostenpflichtig (£40,-/£10,-)

Kein offener Standard

\4

v

Regeln: 121 verbindlich (required), 20 empfohlen (advisory)

2 [38]

Gliederung

§1 Background: The use of C and issues with it
§2 MISRA-C: The vision

§3 MISRA-C: Scope

§4 Using MISRA-C

§5 Introduction to the rules

§6 Rules

~

3[38]

Anwendung von MISRA-C (§4)

» §4.2: Training, Tool Selection, Style Guide
» §4.3: Adopting the subset

» Produce a compliance matrix which states how each rule is enforced
» Produce a deviation procedure

» Formalise the working practices within the quality management system

4 [38]

MISRA Compliance Matrix

Rule No.

Compiler 1

Compiler 2

C-hecking Tool 1

Checking Tool 2

Manual Review

1.1

warning 347

1.2

error 25

1.3

message 38

14

warning 97

1.5

Proc x.y

Table 1: Example compliance matrix

5 [38]

Die Regeln (§5)

» Classification of rules:

» Required (§5.1.1): “C code which is claimed to conform to this document
shall comply with every required rule”

» Advisory (§5.1.2):"should normally be followed”, but not mandatory.
“Does not mean that these items can be ignored, but that they should be
followed as far as is reasonably practical.”

» Organisation of rules (§5.4)
» Terminology (§5.5) — from C standard

» Scope(§5.6) : most can be checked for single translation unit

6 [38]

Environment

1.1 (req)

1.2 (req)

1.3 (req)

1.4 (req)

1.5 (adv)

All code shall conform to ISO 9899:1990 “Pro-
gramming languages — C”, amended and cor-
rected by ISO/IEC 9899/COR1:1995, ISO/IEC
9899/AMD1:1995, and ISO/IEC 9899/COR2:1996 .
No reliance shall be placed on undefined or unspecified
behaviour .

Multiple compilers and/or languages shall only be
used if there is a common defined interface standard
for object code to which the languages/compilers/as-
semblers conform.

The compiler/linker shall be checked to ensure that
31 character significance and case sensitivity are sup-
ported for external identifiers.

Floating-point implementations should comply with a
defined floating-point standard .

7 [38]

Language extensions

2.1 (req)
2.2 (req)
2.3 (req)

2.4 (adv)

Assembly language shall be encapsulated and isolated.
Source code shall only use /* ... */ style comments.
The character sequence /* shall not be used within a
comment.

Sections of code should not be “commented out”.

8 [38]

Documentation

3.1 (req)
3.2 (req)

3.3 (adv)

3.4 (req)
3.5 (req)

3.6 (req)

All usage of implementation-defined behaviour shall
be documented.

The character set and the corresponding encoding
shall be documented

The implementation of integer division in the chosen
compiler should be determined, documented and ta-
ken into account.

All uses of the #pragma directive shall be documen-
ted and explained.

The implementation-defined behaviour and packing
of bitfields shall be documented if being relied upon.
All libraries used in production code shall be written
to comply with the provisions of this document, and
shall have been subject to appropriate validation .

9 [38]

Character sets

4.1 (req) Only those escape sequences that are defined in the 1
ISO C standard shall be used.
4.2 (req) Trigraphs shall not be used. 1

10 [38]

Identifiers

5.1 (req)
5.2 (req)
5.3 (req)
5.4 (req)

5.5 (adv)

5.6 (adv)

5.7 (adv)

Identifiers (internal and external) shall not rely on the
significance of more than 31 characters.

Identifiers in an inner scope shall not use the same
name as an identifier in an outer scope, and therefore
hide that identifier.

A typedef name shall be a unique identifier.

A tag name shall be a unique identifier.

No object or function identifier with static storage
duration should be reused.

No identifier in one name space should have the same
spelling as an identifier in another name space, with
the exception of structure member and union member
names.

No identifier name should be reused.

11 [38]

Types

6.1 (req)
6.2 (req)
6.3 (adv)
6.4 (req)

6.5 (req)

The plain char type shall be used only for storage and
use of character values.

signed and unsigned char type shall be used only for
the storage and use of numeric values.

typedefs that indicate size and signedness should be
used in place of the basic numerical types.

Bit fields shall only be defined to be of type unsigned
int or signed int.

Bit fields of signed type shall be at least 2 bits long.

12 [38]

Constants

7.1 (req) Octal constants (other than zero) and octal escape 2
sequences shall not be used.

13 [38]

Declarations and definitions (1)

8.1 (req)

8.2 (req)

8.3 (req)

8.4 (req)

8.5 (req)

Functions shall have prototype declarations and the
prototype shall be visible at both the function defini-
tion and call.

Whenever an object or function is declared or defined,
its type shall be explicitly stated.

For each function parameter the type given in the
declaration and definition shall be identical, and the
return types shall also be identical.

If objects or functions are declared more than once
their types shall be compatible.

There shall be no definitions of objects or functions
in a header file.

14 [38]

Declarations and definitions (1)

8.6 (req)
8.7 (req)

8.8 (req)
8.9 (req)

8.10 (req)

8.11 (req)

8.12 (req)

Functions shall be declared at file scope.

Objects shall be defined at block scope if they are
only accessed from within a single function.

An external object or function shall be declared in one
and only one file.

An identifier with external linkage shall have exactly
one external definition.

All declarations and definitions of objects or functions
at file scope shall have internal linkage unless external
linkage is required.

The static storage class specifier shall be used in defi-
nitions and declarations of objects and functions that
have internal linkage.

When an array is declared with external linkage, its
size shall be stated explicitly or defined implicitly by
initialisation.

15 [38]

Initialisation

9.1 (req) All automatic variables shall have been assigned a va-
lue before being used.

9.2 (req) Braces shall be used to indicate and match the struc-
ture in the non-zero initialisation of arrays and struc-
tures.

9.3 (req) In an enumerator list, the "=" construct shall not be
used to explicitly initialise members other than the
first, unless all items are explicitly initialised.

16 [38]

Arithmetic type conversions (I)

10.1 (req) The value of an expression of integer type shall not
be implicitly converted to a different underlying type

if:

a)

it is not a conversion to a wider integer
type of the same signedness, or

the expression is complex, or

the expression is not constant and is a
function argument, or

the expression is not constant and is a
return expression.

17 [38]

Arithmetic type conversions (I1)

10.2 (req) The value of an expression of floating type shall not 1
be implicitly converted to a different type if:

a) it is not a conversion to a wider
floating type, or

b) the expression is complex, or

c) the expression is a function argument,
or

d) the expression is a return expression.

18 [38]

Arithmetic type conversions (I1)

10.3 (req)

10.4 (req)

10.5 (req)

10.6 (req)

The value of a complex expression of integer type shall
only be cast to a type of the same signedness that is
no wider than the underlying type of the expression.
The value of a complex expression of floating type
shall only be cast to a floating type which is narrower
or of the same size.

If the bitwise operators ™ and < < are applied to an
operand of underlying type unsigned char or unsigned
short, the result shall be immediately cast to the un-
derlying type of the operand.

A “U" suffix shall be applied to all constants of unsi-
gned type.

19 [38]

Pointer type conversions

11.1 (req)

11.2 (req)

11.3 (adv)
11.4 (adv)

11.5 (req)

Conversions shall not be performed between a pointer
to a function and any type other than an integral type.
Conversions shall not be performed between a pointer
to object and any type other than an integral type,
another pointer to object type or a pointer to void.
A cast should not be performed between a pointer
type and an integral type.

A cast should not be performed between a pointer to
object type and a different pointer to object type.

A cast shall not be performed that removes any const
or volatile qualification from the type addressed by a
pointer.

20 [38]

Expressions (1)

12.1 (adv)
12.2 (req)
12.3 (req)
12.4 (req)
12.5 (req)

12.6 (adv)

Limited dependence should be placed on C's operator
precedence rules in expressions.

The value of an expression shall be the same under
any order of evaluation that the standard permits.
The sizeof operator shall not be used on expressions
that contain side effects.

The right-hand operand of a logical && or || operator
shall not contain side effects.

The operands of a logical && or || shall be primary-
expressions.

The operands of logical operators (&&, || and !)
should be effectively Boolean. Expressions that are
effectively Boolean should not be used as operands to
operators other than (&&, ||, !, =, ==, |=, and 72).

21 [38]

Expressions (I1)

12.7 (req)

12.8 (req)

12.9 (req)

12.10 (req)
12.11 (adv)

12.12 (req)

12.13 (adv)

Bitwise operators shall not be applied to operands
whose underlying type is signed.

The right-hand operand of a shift operator shall lie
between zero and one less than the width in bits of
the underlying type of the left-hand operand.

The unary minus operator shall not be applied to an
expression whose underlying type is unsigned.

The comma operator shall not be used.

Evaluation of constant unsigned integer expressions
should not lead to wrap-around.

The underlying bit representations of floating-point
values shall not be used.

The increment (++) and decrement (=) operators
should not be mixed with other operators in an ex-
pression.

22 [38]

Control statement expressions

13.1 (req)
13.2 (adv)
13.3 (req)
13.4 (req)
13.5 (req)

13.6 (req)

13.7 (req)

Assignment operators shall not be used in expressions
that yield a Boolean value.

Tests of a value against zero should be made explicit,
unless the operand is effectively Boolean.
Floating-point expressions shall not be tested for
equality or inequality.

The controlling expression of a for statement shall not
contain any objects of floating type.

The three expressions of a for statement shall be con-
cerned only with loop control.

Numeric variables being used within a for loop for
iteration counting shall not be modified in the body
of the loop.

Boolean operations whose results are invariant shall
not be permitted.

23 [38]

Control flow (1)

14.1 (req) There shall be no unreachable code. 3 -

14.2 (req) All non-null statements shall either: 3
a) have at least one side effect however executed, or

b) cause control flow to change.

14.3 (req) Before preprocessing, a null statement shall only oc- 3
cur on a line by itself; it may be followed by a com-
ment provided that the first character following the
null statement is a white-space character.
14.4 (req) The goto statement shall not be used. 1
14.5 (req) The continue statement shall not be used. 1
14.6 (req) For any iteration statement there shall be at most one
break statement used for loop termination.

24 [38]

Control flow (1)

14.7 (req)
14.8 (req)

14.9 (req)

14.10 (req)

A function shall have a single point of exit at the end
of the function.

The statement forming the body of a switch, while, do
... while or for statement be a compound statement.
An if (expression) construct shall be followed by a
compound statement. The else keyword shall be fol-
lowed by either a compound statement, or another if
statement.

All if ... else if constructs shall be terminated with an
else clause.

25 [38]

Switch statements

15.1 (req)

15.2 (req)
15.3 (req)
15.4 (req)

15.5 (req)

A switch label shall only be used when the most
closely-enclosing compound statement is the body of
a switch statement.

An unconditional break statement shall terminate eve-
ry non-empty switch clause.

The final clause of a switch statement shall be the
default clause.

A switch expression shall not represent a value that is
effectively Boolean.

Every switch statement shall have at least one case
clause.

26 [38]

Functions (1)

16.1 (req)
16.2 (req)
16.3 (req)
16.4 (req)
16.5 (req)
16.6 (req)

16.7 (adv)

Functions shall not be defined with variable numbers
of arguments.

Functions shall not call themselves, either directly or
indirectly.

Identifiers shall be given for all of the parameters in a
function prototype declaration.

The identifiers used in the declaration and definition
of a function shall be identical.

Functions with no parameters shall be declared and
defined with the parameter list void.

The number of arguments passed to a function shall
match the number of parameters.

A pointer parameter in a function prototype should
be declared as pointer to const if the pointer is not
used to modify the addressed object.

27 [38]

Functions (1)

16.8 (req)

16.9 (req)

16.10 (req)

All exit paths from a function with non-void return
type shall have an explicit return statement with an
expression.

A function identifier shall only be used with either a
preceding &, or with a parenthesised parameter list,
which may be empty.

If a function returns error information, then that error
information shall be tested.

28 [38]

Pointers and arrays

17.1 (req)
17.2 (req)
17.3 (req)
17.4 (req)
17.5 (adv)

17.6 (req)

Pointer arithmetic shall only be applied to pointers
that address an array or array element.

Pointer subtraction shall only be applied to pointers
that address elements of the same array.

>, >=, <, <= shall not be applied to pointer types
except where they point to the same array.

Array indexing shall be the only allowed form of poin-
ter arithmetic.

The declaration of objects should contain no more
than 2 levels of pointer indirection.

The address of an object with automatic storage shall
not be assigned to another object that may persist
after the first object has ceased to exist.

29 [38]

Structures and unions

18.1 (req)
18.2 (req)
18.3 (req)

18.4 (req)

All structure or union types shall be complete at the
end of a translation unit.

An object shall not be assigned to an overlapping ob-
ject.

An area of memory shall not be reused for unrelated
purposes.

Unions shall not be used.

30 [3]

Preprocessing directives (1)

19.1 (adv)
19.2 (adv)
19.3 (req)

19.4 (req)

19.5 (req)

19.6 (req)
19.7 (adv)

19.8 (req)

#include statements in a file should only be preceded
by other preprocessor directives or comments.
Non-standard characters should not occur in header
file names in #include directives.

The #include directive shall be followed by either a
<filename> or "filename" sequence.

C macros shall only expand to a braced initialiser, a
constant, a string literal, a parenthesised expression, a
type qualifier, a storage class specifier, or a do-while-
zero construct.

Macros shall not be #define'd or #undef'd within a
block.

#undef shall not be used.

A function should be used in preference to a function-
like macro.

A function-like macro shall not be invoked without all
of its arguments.

31 [3]

Preprocessing directives (I1)

19.9 (req)

19.10 (req)

19.11 (req)

19.12 (req)

19.13 (adv)

Arguments to a function-like macro shall not contain
tokens that look like preprocessing directives.

In the definition of a function-like macro each instance
of a parameter shall be enclosed in parentheses unless
it is used as the operand of # or ##.

All macro identifiers in preprocessor directives shall
be defined before use, except in #ifdef and #ifndef
preprocessor directives and the defined() operator.
There shall be at most one occurrence of the # or ##
preprocessor operators in a single macro definition.
The # and #+# preprocessor operators should not be
used.

32 [39]

Preprocessing directives (l11)

19.14 (req)
19.15 (req)
19.16 (req)

19.17 (req)

The defined preprocessor operator shall only be used
in one of the two standard forms.

Precautions shall be taken in order to prevent the
contents of a header file being included twice.
Preprocessing directives shall be syntactically mea-
ningful even when excluded by the preprocessor.

All #else, #elif and #endif preprocessor directives
shall reside in the same file as the #if or #ifdef
directive to which they are related.

33 [39]

Standard libraries (1)

20.1 (req)

20.2 (req)
20.3 (req)
20.4 (req)
20.5 (req)
20.6 (req)

20.7 (req)

Reserved identifiers, macros and functions in the stan-
dard library, shall not be defined, redefined or undefi-
ned.

The names of standard library macros, objects and
functions shall not be reused.

The validity of values passed to library functions shall
be checked.

Dynamic heap memory allocation shall not be used.
The error indicator errno shall not be used.

The macro offsetof, in library <stddef.h>, shall not
be used.

The setjmp macro and the longjmp function shall not
be used.

34 [38]

Standard libraries (l1)

20.8 (req)
20.9 (req)
20.10 (req)
20.11 (req)

20.12 (req)

The signal handling facilities of <signal.h> shall not
be used.

The input/output library <stdio.h> shall not be used
in production code.

The library functions atof, atoi and atol from library
<stdlib.h> shall not be used.

The library functions abort, exit, getenv and system
from library <stdlib.h> shall not be used.

The time handling functions of library <time.h> shall
not be used.

35 [38]

Run-time failures

21.1 (req) Minimisation of run-time failures shall be ensured by 3
the use of at least one of:

a) static analysis tools/techniques;
b) dynamic analysis tools/techniques;

c) explicit coding of checks to handle run-time faults.

36 [39]

MISRA-C in der Praxis

> Meiste Werkzeuge kommerziell

v

Entwicklung eines MISRA-Priifwerkzeugs im Rahmen des
SAMS-Projektes

» Diplomarbeit Hennes Maertins (Juni 2010)

» Herausforderungen:

» Parser und erweiterte Typpriifung fir C
» Re-Implementierung des Praprozessors
> Einige Regeln sind unentscheidbar

» Dateilibergreifende Regeln

v

Implementierung:

» 20 KLoc Haskell, im Rahmen des SAMS-Werkzeugs (SVT)

37 [39]

