

Verifikation von C-Programmen
Universität Bremen, WS 2014/15

Christoph Lüth

Lecture 03 (06.11.2014)

Was ist eigentlich Verifikation?

Synopsis

If you want to write safety-criticial software,

then you need to adhere to state-of-the-art practise

as encoded by the relevant norms & standards.

Today:

 What is safety and security?

 Why do we need it? Legal background.

 How is it ensured? Norms and standards

► IEC 61508 – Functional safety

► IEC 15408 – Common criteria (security)

The Relevant Question

If something goes wrong:

 Whose fault is it?

 Who pays for it?

That is why most (if not all) of these standards put a lot
of emphasis on process and traceability. Who decided to
do what, why, and how?

The bad news:

 As a qualified professional, you may become personally
liable if you deliberately and intentionally (grob
vorsätzlich) disregard the state of the art.

The good news:

 Pay attention here and you will be sorted.

Safety: norms & standards

What is Safety?

Absolute definition:

 „Safety is freedom from accidents or losses.“

► Nancy Leveson, „Safeware: System safety and computers“

But is there such a thing as absolute safety?

Technical definition:

 „Sicherheit: Freiheit von unvertretbaren Risiken“

► IEC 61508-4:2001, §3.1.8

Next week: a safety-critical development process

Some Terminology

Fail-safe vs. Fail operational

Safety-critical, safety-relevant (sicherheitskritisch)

 General term -- failure may lead to risk

 Safety function (Sicherheitsfunktion)

 Techncal term, that functionality which ensures safety

Safety-related (sicherheitsgerichtet, sicherheitsbezogen)

 Technical term, directly related to the safety function

Legal Grounds

The machinery directive:

The Directive 2006/42/EC of the European Parliament and of the
Council of 17 May 2006 on machinery, and amending Directive
95/16/EC (recast)

Scope:

 Machineries (with a drive system and movable parts).

Structure:

 Sequence of whereas clauses (explanatory)

 followed by 29 articles (main body)

 and 12 subsequent annexes (detailed information about
particular fields, e.g. health & safety)

Some application areas have their own regulations:

 Cars and motorcycles, railways, planes, nuclear plants …

What does that mean?

Relevant for all machinery (from tin-opener to AGV)

Annex IV lists machinery where safety is a concern

Standards encode current best practice.

 Harmonised standard available?

External certification or self-certification

 Certification ensures and documents conformity to
standard.

Result:

Note that the scope of the directive is market
harmonisation, not safety – that is more or less a
byproduct.

The Norms and Standards Landscape

• First-tier standards (A-Normen):

• General, widely applicable, no specific area of application

• Example: IEC 61508

• Second-tier standards (B-Normen):

• Restriction to a particular area of application

• Example: ISO 26262 (IEC 61508 for automotive)

• Third-tier standards (C-Normen):

• Specific pieces of equipment

• Example: IEC 61496-3 (“Berührungslos wirkende
Schutzeinrichtungen”)

• Always use most specific norm.

Norms for the Working Programmer

IEC 61508:

 “Functional Safety of Electrical/Electronic/Programmable Electronic Safety-
related Systems (E/E/PE, or E/E/PES)”

 Widely applicable, general, considered hard to understand

ISO 26262

 Specialisation of 61508 to cars (automotive industry)

DIN EN 50128

 Specialisation of 61508 to software for railway industry

RTCA DO 178-B:

 “Software Considerations in Airborne Systems and Equipment Certification“

 Airplanes, NASA/ESA

ISO 15408:

 “Common Criteria for Information Technology Security Evaluation”

 Security, evolved from TCSEC (US), ITSEC (EU), CTCPEC (Canada)

Software Development Models

Software Development Models

Structure

Fl
e

x
ib

ili
ty

from S. Paulus: Sichere Software

Spiral model

Prototype-based
developments

Agile

Methods

Waterfall

model

V-model

Model-driven

developement

Waterfall Model (Royce 1970)

Classical top-down sequential workflow with strictly
separated phases.

Unpractical as actual workflow (no feedback between
phases), but even early papers did not really suggest
this.

Requirement

Implementation

Design

Maintenance

Verification

Spiral Model (Böhm, 1986)

Incremental development guided by risk factors

Four phases:

 Determine objectives

 Analyse risks

 Development and test

 Review, plan next iteration

See e.g.

 Rational Unified Process (RUP)

Drawbacks:

 Risk identification is the key, and can be quite difficult

Agile Methods

Prototype-driven development

 E.g. Rapid Application Development

 Development as a sequence of prototypes

 Ever-changing safety and security requirements

Agile programming

 E.g. Scrum, extreme programming

 Development guided by functional requirements

 Less support for non-functional requirements

Test-driven development

 Tests as executable specifications: write tests first

 Often used together with the other two

Model-Driven Development (MDD, MDE)

Describe problems on abstract level using a modelling
language (often a domain-specific language), and derive
implementation by model transformation or run-time
interpretation.

Often used with UML (or its DSLs, eg. SysML)

Variety of tools:

 Rational tool chain, Enterprise Architect

 EMF (Eclipse Modelling Framework)

Strictly sequential development

Drawbacks: high initial investment, limited flexibility

Development Models for Critical Systems

Ensuring safety/security needs structure.

 …but too much structure makes developments
bureaucratic, which is in itself a safety risk.

 Cautionary tale: Ariane-5

Standards put emphasis on process.

 Everything needs to be planned and documented.

Best suited development models are variations of the V-
model or spiral model.

Development Model in IEC 61508

IEC 61508 prescribes certain activities for each phase of
the life cycle.

Development is one part of the life cycle.

IEC recommends V-model.

Verification
&

Validation

V & V

Verification

 Making sure the system satisfies safety requirements

 „Is the system built right (i.e. correctly)?“

Validation

 Making sure the requirements are correct and adequate.

 „Do we build the right (i.e. adequate) system?“

21

Development Model in DO-178B

DO-178B defines different processes in the SW life cycle:

 Planning process

 Development process, structured in turn into

► Requirements process

► Design process

► Coding process

► Integration process

 Integral process

There is no conspicuous diagram, but these are the
phases found in the V-model as well.

 Implicit recommendation.

Artefacts in the Development Process

Planning:
• Document plan
• V&V plan
• QM plan
• Test plan
• Project manual

Specifications:

• Safety requirement spec.
• System specification
• Detail specification
• User document (safety

reference manual)

Implementation:

• Code

Verification & validation:

• Code review protocols
• Tests and test scripts
• Proofs

Possible formats:
• Word documents
• Excel sheets
• Wiki text
• Database (Doors)

• UML diagrams

• Formal languages:

• Z, HOL, etc.
• Statecharts or

similar diagrams
• Source code

Documents must be identified and
reconstructable.
• Revision control and configuration

management obligatory.

Introducing IEC 61508

Introducing IEC 61508

Part 1: Functional safety management, competence,
 establishing SIL targets

Part 2: Organising and managing the life cycle

Part 3: Software requirements

Part 4: Definitions and abbreviations

Part 5: Examples of methods for the determination of
safety-integrity levels

Part 6: Guidelines for the application

Part 7: Overview of techniques and measures

How does this work?

1. Risk analysis determines the safety integrity level (SIL)

2. A hazard analysis leads to safety requirement
specification.

3. Safety requirements must be satisfied

 Need to verify this is achieved.

 SIL determines amount of testing/proving etc.

4. Life-cycle needs to be managed and organised

 Planning: verification & validation plan

 Note: personnel needs to be qualified.

5. All of this needs to be independently assessed.

 SIL determines independence of assessment body.

Safety Integrity Levels

SIL High Demand
(more than once a year)

Low Demand
(once a year or less)

4 10-9 < P/hr < 10-8 10-5 < P/yr < 10-4

3 10-8 < P/hr < 10-7 10-4 < P/yr < 10-3

2 10-7 < P/hr < 10-6 10-3 < P/yr < 10-2

1 10-6 < P/hr < 10-5 10-2 < P/yr < 10-1

• P: Probabilty of dangerous failure (per hour/year)

• Examples:

 High demand: car brakes

 Low demand: airbag control

• Which SIL to choose?  Risk analysis

• Note: SIL only meaningful for specific safety functions.

Establishing target SIL I

IEC 61508 does not describe standard procedure to
establish a SIL target, it allows for alternatives:

Quantitative approach

 Start with target risk level

 Factor in fatality and
frequency

Example:

 Safety system for a chemical plant

 Max. tolerable risk exposure A=10-6

 B= 10-2 hazardous events lead to fatality

 Unprotected process fails C= 1/5 years

 Then Failure on Demand E = A/(B*C) = 5*10-3, so SIL 2

Maximum tolerable

risk of fatality

Individual risk

(per annum)

Employee 10-4

Public 10-5

Broadly acceptable

(„Neglibile“)

10-6

Establishing target SIL II

Risk graph approach

Example: safety braking system for an AGV

What does the SIL mean for the
development process?

In general:

 „Competent“ personnel

 Independent assessment („four eyes“)

SIL 1:

 Basic quality assurance (e.g ISO 9001)

SIL 2:

 Safety-directed quality assurance, more tests

SIL 3:

 Exhaustive testing, possibly formal methods

 Assessment by separate department

SIL 4:

 State-of-the-art practices, formal methods

 Assessment by separate organisation

Increasing SIL by redudancy

One can achieve a higher SIL by combining
independent systems with lower SIL
(„Mehrkanalsysteme“).

 Given two systems A, B with failure probabilities 𝑃𝐴, 𝑃𝐵,
the chance for failure of both is (with 𝑃𝐶𝐶 probablity of
common-cause failures):

𝑃𝐴𝐵 = 𝑃𝐶𝐶 + 𝑃𝐴𝑃𝐵

Hence, combining two SIL 3 systems may give you a SIL 4
system.

However, be aware of systematic errors (and note that
IEC 61508 considers all software errors to be
systematic).

Note also that for fail-operational systems you need
three (not two) systems.

The Safety Life Cycle (IEC 61508)

Planning

Realisation

Operation

The Software Development Process

61508 „recommends“ V-model development process

Appx A, B give normative guidance on measures to apply:

 Error detection needs to be taken into account (e.g runtime
assertions, error detection codes, dynamic supervision of
data/control flow)

 Use of strongly typed programming languages (see table)

 Discouraged use of certain features: recursion(!), dynamic
memory, unrestricted pointers, unconditional jumps

 Certified tools and compilers must be used.

► Or `proven in use´

Proven in Use

 As an alternative to systematic development, statistics

about usage may be employed. This is particularly
relevant

 for development tools (compilers, verification tools etc),

 and for re-used software (in particular, modules).

 Note that the previous use needs to be to the same
specification as intended use (eg. compiler: same target
platform).

SIL Zero Failure One Failure

1 12 ops 12 yrs 24 ops 24 yrs

2 120 ops 120 yrs 240 ops 240 yrs

3 1200 ops 1200 yrs 2400 ops 2400 yrs

4 12000 ops 12000 yrs 24000 ops 24000 yrs

Table A.2, Software Architecture

Table A.4- Software Design &
Development

Table A.9 – Software Verification

Table B.1 – Coding Guidelines

Table C.1,
programming
languages, mentions:

 ADA, Modula-2,
Pascal, FORTRAN
77, C, PL/M,
Assembler, …

Example for a
guideline:

 MISRA-C: 2004,
Guidelines for the
use of the C
language in critical
systems.

Table B.5 - Modelling

Certification

Certiciation is the process of showing conformance to a standard.

Conformance to IEC 61508 can be shown in two ways:

 Either that an organisation (company) has in principle the ability to
produce a product conforming to the standard,

 Or that a specific product (or system design) conforms to the standard.

Certification can be done by the developing company (self-
certification), but is typically done by an accredited body.

 In Germany, e.g. the TÜVs or the Berufsgenossenschaften (BGs)

Also sometimes (eg. DO-178B) called ̀ qualification‘.

Basic Notions of Formal
Software Development

Formal Software Development

In formal development, properties are stated in a rigorous way with
a precise mathematical semantics.

These formal specifications can be proven.

Advantages:

 Errors can be found early in the development process, saving
time and effort and hence costs.

 There is a higher degree of trust in the system.

 Hence, standards recommend use of formal methods for high
SILs/EALs.

Drawback:

 Requires qualified personnel (that would be you).

There are tools which can help us by

 finding (simple) proofs for us, or

 checking our (more complicated proofs).

Summary

Norms and standards enforce the application of the
state-of-the-art when developing software which is

 safety-critical or security-critical.

Safety standards such as IEC 61508, DO-178B suggest
development according to V-model:

 Verification and validation link specification and
implementation.

 Variety of artefacts produced at each stage, which have to
be subjected to external review.

