

Systems of High Safety and Security

Lecture 6 from 19.11.2025:

Temporal Logic with LTL and CTL

Winter term 2025/26

Christoph Lüth

Roadmap

- ► Introduction
- ► Legal Requirements Norms and Standards
- ► The Development Process
- Hazard Analysis
- ► The Big Picture: Hybrid Systems
- ► Temporal Logic with LTL and CTL
- Operational Semantics
- Axiomatic Semantics Specifying Correctness
- ► Floyd-Hoare Logic
- ► A Simple Compiler and its Correctness
- ► Hardware Verification
- ► A Simple TinyRV32 Core
- Conclusions

Introduction

- ▶ We have seen that **state machines** are a general system model.
- Now the question is: how do we state and **prove** properties of systems modelled as finite state machines?
- ► There are many answers, depending on the level of **abstraction**. On the most abstract level, we can use **temporal logic**.
- lackbox On this abstract level, the question is how to prove a propert ϕ of a system modelled as a FSM \mathcal{M} .

The Basic Question

$$\mathcal{M} \models \phi$$

- \blacktriangleright What is \mathcal{M} ?
- \blacktriangleright What is ϕ ?
- ► How to prove it?

The Basic Question

$$\mathcal{M} \models \phi$$

- ▶ What is \mathcal{M} ? Finite state machines
- \blacktriangleright What is ϕ ?
- ► How to prove it?

The Basic Question

$$\mathcal{M} \models \phi$$

- ▶ What is \mathcal{M} ? Finite state machines
- ▶ What is ϕ ? **Temporal logic**
- ► How to prove it?

The Basic Question

SSQ

$$\mathcal{M} \models \phi$$

- What is M? Finite state machines
- \blacktriangleright What is ϕ ? **Temporal logic**
- ► How to prove it? Enumerating states model checking

The Basic Question

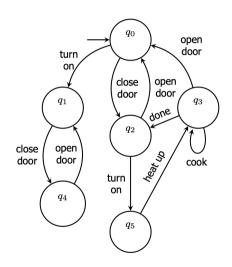
SSQ

$$\mathcal{M} \models \phi$$

- What is M? Finite state machines
- \blacktriangleright What is ϕ ? **Temporal logic**
- ► How to prove it? Enumerating states model checking
 - The basic problem: state explosion

- ► The oven has states and operations:
 - open and close door,
 - turn oven on and off,
 - warm up and cook.
- ► How do they interact?

- ► The oven has states and operations:
 - open and close door,
 - turn oven on and off,
 - warm up and cook.
- ► How do they interact?



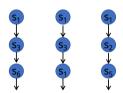
Questions to Ask

- ▶ We want to answer questions about the system behaviour like
 - ► Can the cooker heat up with the door open?
 - When the start button is pushed, will the cooker eventually heat up?
 - When the cooker is correctly started, will the cooker eventually heat up?
 - ▶ When an error occurs, will it be still possible to cook?
- ► We are interested in questions on the evolution of the system over time, i.e. possible traces of the system given by a succession of states.
- The tool to formalize and answer these questions is temporal logic.

Basic Concepts of Time

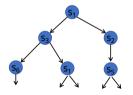
Linear Time

- ► Every moment has a unique successor
- Infinite sequences of moments
- ► Linear Temporal Logic (LTL)



Branching Time

- Every moment has several successors
- Infinite tree of moments
- ► Computational Tree Logic (CTL)



Atomic Propositions and States

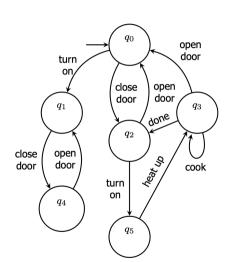
- ► The basis of temporal logics are FSMs and **state predicates**.
- ▶ At each state of an FSM, a set of state predicates hold.
- ► This is called a Kripke structure.

Definition: Kripke Structure

For a set Prop of atomic propositions, a **Kripke structure** $\mathcal{K} = \langle \mathcal{M}, V \rangle$ is given by a FSM $\mathcal{M} = \langle Q, Q_0, \rightarrow \rangle$ and a function $V: Q \rightarrow 2^{Prop}$ mapping each state to the set of atomic propositions holding in that state.

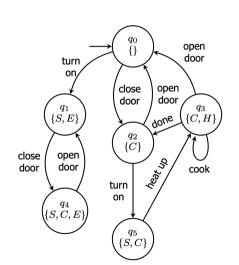
For $q \in Q$, $p \in Prop$, we write $q \models p$ if $p \in V(q)$ (p holds in q).

- ► Atomic propositions:
 - C: door closed.
 - S: oven started
 - ► H: oven hot
 - F: error occured
- Label states appropriately



9 [22]

- Atomic propositions:
 - C: door closed.
 - ► S: oven started
 - ► H: oven hot
 - E: error occured
- ► Label states appropriately



Linear Temporal Logic (LTL)

$$\begin{array}{lll} \phi &::= & \top \mid \bot \mid a & \qquad \qquad & - \quad \text{True, false, atomic} \\ & \mid & \neg \phi \mid \phi_1 \land \phi_2 \mid \phi_1 \lor \phi_2 \mid \phi_1 \longrightarrow \phi_2 & \qquad & - \quad \text{Propositional formulae} \\ & \mid & X \phi & \qquad & - \quad \text{Next state} \\ & \mid & \Diamond \phi & \qquad & - \quad \text{Some Future State} \\ & \mid & \Box \phi & \qquad & - \quad \text{All future states (Globally)} \\ & \mid & \phi_1 \ U \ \phi_2 & \qquad & - \quad \text{Until} \end{array}$$

- ▶ Operator precedence: Unary operators; then U; then \land , \lor ; then \longrightarrow .
- ▶ An atomic formula *p* above denotes a **state predicate**.
- From these, we can define other operators, such as ϕ R ψ (release) or ϕ W ψ (weak until).

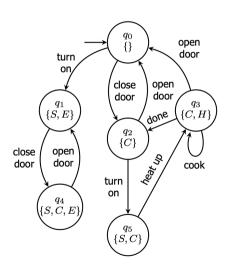
Satifsaction and Models of LTL

Given a path (infinite trace) p and an LTL formula ϕ , the satisfaction relation $p \models \phi$ is defined inductively as follows:

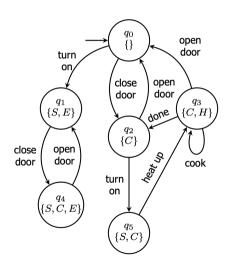
Models of LTL formulae

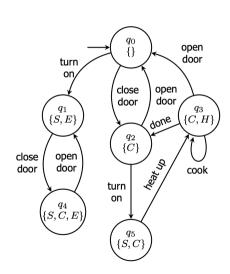
A Kripke structure $\mathcal{K} = \langle M, V \rangle$ satisfies an LTL formula ϕ , $\mathcal{K} \models \phi$, iff for every path $p \in \text{Tr}(\mathcal{M}), p \models \phi$.

▶ If the cooker heats, then is the door closed?



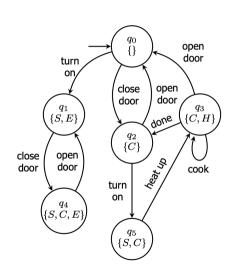
▶ If the cooker heats, then is the door closed?





▶ If the cooker heats, then is the door closed?

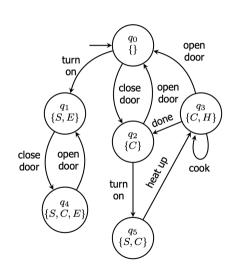
$$\Box H \longrightarrow C$$



▶ If the cooker heats, then is the door closed?

$$\Box H \longrightarrow C$$

$$\Box(E\longrightarrow\Diamond(\neg E))$$

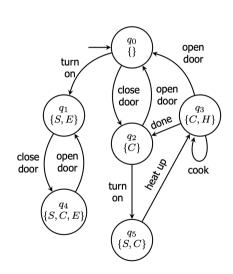


▶ If the cooker heats, then is the door closed?

$$\Box H \longrightarrow C$$

$$\Box(E \longrightarrow \Diamond(\neg E)) \times$$

- Need to add a reset transition.
- ls it always possible to heat up, then cook?



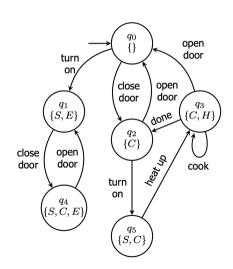
If the cooker heats, then is the door closed?

$$\Box H \longrightarrow C$$

$$\Box(E \longrightarrow \Diamond(\neg E)) \times$$

- Need to add a reset transition.
- ls it always possible to heat up, then cook?

$$\Diamond(S \longrightarrow X H)$$



▶ If the cooker heats, then is the door closed?

$$\Box H \longrightarrow C$$

$$\Box(E \longrightarrow \Diamond(\neg E)) \times$$

- ▶ Need to add a reset transition.
- Is it always possible to heat up, then cook?

$$\Diamond(S \longrightarrow X H) \times$$

- Always possible to avoid cooking.
- Cannot express 'there are paths in which we can always cook'.

Computational Tree Logic (CTL)

- LTL does not allow us the quantify over paths, e.g. assert the existance of a path satisfying a particular property.
- ▶ To a limited degree, we can solve this problem by negation: instead of asserting a property ϕ , we check wether $\neg \phi$ is satisfied: if that is not the case, ϕ holds. But this does not work for mixtures of universal and existential quantifiers.
- Computational Tree Logic (CTL) is an extension of LTL which allows this by adding universal and existential quantifiers to the modal operators.
- The name comes from considering paths in the computational tree obtained by unwinding the FSM.

CTL Formulae

$$\begin{array}{lll} \phi &::= & \top \mid \bot \mid p & & ---- & \text{True, false, atomic} \\ & \mid & \neg \phi \mid \phi_1 \land \phi_2 \mid \phi_1 \lor \phi_2 \mid \phi_1 \longrightarrow \phi_2 & ---- & \text{Propositional formulae} \\ & \mid & \mathsf{AX} \phi \mid \mathsf{EX} \phi & & ---- & \mathsf{All} \text{ or some next state} \\ & \mid & \mathsf{AF} \phi \mid \mathsf{EF} \phi & & ---- & \mathsf{All} \text{ or some future state} \\ & \mid & \mathsf{AG} \phi \mid \mathsf{EG} \phi & & ---- & \mathsf{All} \text{ or some global futu} \\ & \mid & \mathsf{A}[\phi_1 \ U \ \phi_2] \mid \mathsf{E}[\phi_1 \ U \ \phi_2] & & ---- & \mathsf{Until all} \text{ or some} \end{array}$$

— True, false, atomic

— All or some next state

All or some future states

All or some global future

— Until all or some

Satifsfaction

- ▶ Note that CTL formulae can be considered to be a LTL formulae with a 'modality' (A or E) added on top of each temporal operator.
- Generally speaking, the A modality says the temporal operator holds for all paths, and the E modality says the temporal operator only holds for all least one path.
 - Of course, that strictly speaking is not true, because the arguments of the temporal operators are in turn CTL forumulae, so we need recursion.
- \triangleright This all explains why we do not define a satisfaction for a single path p, but satisfaction with respect to a specific state in an FSM.

Satisfaction for CTL

Given a Kripke-structure $\mathcal{K} = \langle \mathcal{M}, V \rangle$, $s \in \Sigma$ and a CTL formula ϕ , then $\mathcal{K}, s \models \phi$ is defined inductively as follows:

⊕ ∪

Given a Kripke-structure $\mathcal{K} = \langle \mathcal{M}, V \rangle$, $s \in \Sigma$ and a CTL formula ϕ , then $\mathcal{K}, s \models \phi$ is defined inductively as follows:

$$\mathcal{K}, s \models \mathsf{AX} \ \phi \ \mathsf{iff} \ \mathsf{for} \ \mathsf{all} \ s_1 \ \mathsf{with} \ s \to s_1, \ \mathsf{we} \ \mathsf{have} \ \mathcal{K}, s_1 \models \phi \ \mathcal{K}, s \models \mathsf{EX} \ \phi \ \mathsf{iff} \ \mathsf{for} \ \mathsf{some} \ s_1 \ \mathsf{with} \ s \to s_1, \ \mathsf{we} \ \mathsf{have} \ \mathcal{K}, s_1 \models \phi$$

Given a Kripke-structure $\mathcal{K} = \langle \mathcal{M}, V \rangle$, $s \in \Sigma$ and a CTL formula ϕ , then $\mathcal{K}, s \models \phi$ is defined inductively as follows:

$$\mathcal{K}, s \models \mathsf{AX}\,\phi \text{ iff for all } s_1 \text{ with } s \to s_1, \text{ we have } \mathcal{K}, s_1 \models \phi$$
 $\mathcal{K}, s \models \mathsf{EX}\,\phi \text{ iff for some } s_1 \text{ with } s \to s_1, \text{ we have } \mathcal{K}, s_1 \models \phi$
 $\mathcal{K}, s \models \mathsf{AG}\,\phi \text{ iff for all paths } p \text{ with } p[0] = s, \text{ we have } \mathcal{K}, p[i] \models \phi \text{ for all } i \geq 1$
 $\mathcal{K}, s \models \mathsf{EG}\,\phi \text{ iff there is a path } p \text{ with } p[0] = s \text{ and } \mathcal{K}, p[i] \models \phi \text{ for all } i \geq 1$

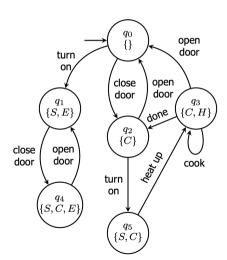
Given a Kripke-structure $\mathcal{K} = \langle \mathcal{M}, V \rangle$, $s \in \Sigma$ and a CTL formula ϕ , then $\mathcal{K}, s \models \phi$ is defined inductively as follows:

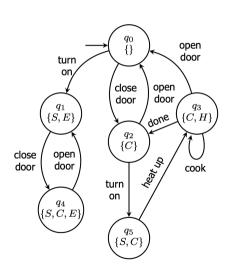
$$\mathcal{K},s \models \mathsf{AX}\,\phi \text{ iff for all } s_1 \text{ with } s \to s_1, \text{ we have } \mathcal{K},s_1 \models \phi$$
 $\mathcal{K},s \models \mathsf{EX}\,\phi \text{ iff for some } s_1 \text{ with } s \to s_1, \text{ we have } \mathcal{K},s_1 \models \phi$ $\mathcal{K},s \models \mathsf{AG}\,\phi \text{ iff for all paths } p \text{ with } p[0] = s, \text{ we have } \mathcal{K},p[i] \models \phi \text{ for all } i \geq 1$ $\mathcal{K},s \models \mathsf{EG}\,\phi \text{ iff there is a path } p \text{ with } p[0] = s \text{ and } \mathcal{K},p[i] \models \phi \text{ for some } i$ $\mathcal{K},s \models \mathsf{AF}\,\phi \text{ iff for all paths } p \text{ with } p[0] = s \text{ and } \mathcal{K},p[i] \models \phi \text{ for some } i$ $\mathcal{K},s \models \mathsf{EF}\,\phi \text{ iff there is a path } p \text{ with } p[0] = s \text{ and } \mathcal{K},p[i] \models \phi \text{ for some } i$

Given a Kripke-structure $\mathcal{K}=\langle \mathcal{M}, V \rangle$, $s \in \Sigma$ and a CTL formula ϕ , then $\mathcal{K}, s \models \phi$ is defined inductively as follows:

$$\mathcal{K}, s \models \mathsf{AX} \phi$$
 iff for all s_1 with $s \to s_1$, we have $\mathcal{K}, s_1 \models \phi$
 $\mathcal{K}, s \models \mathsf{EX} \phi$ iff for some s_1 with $s \to s_1$, we have $\mathcal{K}, s_1 \models \phi$
 $\mathcal{K}, s \models \mathsf{AG} \phi$ iff for all paths p with $p[0] = s$, we have $\mathcal{K}, p[i] \models \phi$ for all $i \ge 1$
 $\mathcal{K}, s \models \mathsf{EG} \phi$ iff there is a path p with $p[0] = s$ and $\mathcal{K}, p[i] \models \phi$ for all $i \ge 1$
 $\mathcal{K}, s \models \mathsf{AF} \phi$ iff for all paths p with $p[0] = s$, we have $\mathcal{K}, p[i] \models \phi$ for some i
 $\mathcal{K}, s \models \mathsf{EF} \phi$ iff there is a path p with $p[0] = s$ and $\mathcal{K}, p[i] \models \phi$ for some i
 $\mathcal{K}, s \models \mathsf{A}[\phi U \psi]$ iff for all paths p with $p[0]$, there is i
with $\mathcal{K}, p[i] \models \psi$ and for all $j < i$, $\mathcal{K}, p[j] \models \phi$
 $\mathcal{K}, s \models \mathsf{E}[\phi U \psi]$ iff there is a path p with $p[0]$ and there is $p[0]$ iff there is a path $p[0]$ and for all $p[0]$ iff there is $p[0]$ iff there is a path $p[0]$ and for all $p[0]$ iff $p[0]$ iff there is $p[0]$ iff there is a path $p[0]$ and for all $p[0]$ iff $p[0]$ iff there is a path $p[0]$ and for all $p[0]$ iff $p[0]$ iff there is $p[0]$ iff there is a path $p[0]$ and for all $p[0]$ iff $p[0]$ iff there is a path $p[0]$ and for all $p[0]$ iff $p[0]$ iff $p[0]$ iff there is a path $p[0]$ and for all $p[0]$ iff $p[0]$ iff $p[0]$ iff there is a path $p[0]$ iff $p[0]$ iff $p[0]$ iff $p[0]$ iff there is a path $p[0]$ iff $p[0]$ iff $p[0]$ iff $p[0]$ iff there is a path $p[0]$ iff $p[0]$

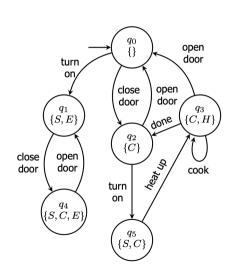
▶ Whenever the oven is hot, the door is closed.





▶ Whenever the oven is hot, the door is closed.

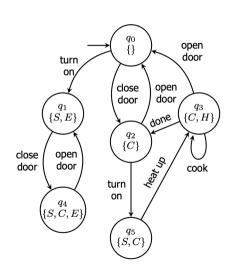
$$AGH \longrightarrow C$$



▶ Whenever the oven is hot, the door is closed.

$$AGH \longrightarrow C$$

After cooking, we will get access to the food:

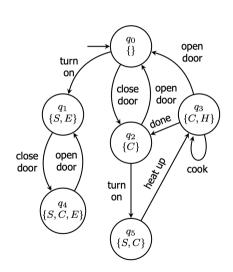


Whenever the oven is hot, the door is closed.

$$AGH \longrightarrow C$$

▶ After cooking, we will get access to the food:

$$AF(H \longrightarrow AF \neg C)$$



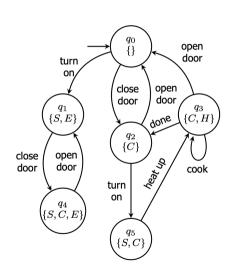
Whenever the oven is hot, the door is closed.

$$AGH \longrightarrow C$$

After cooking, we will get access to the food:

$$AF(H \longrightarrow AF \neg C) \times$$

After cooking, we may get access to the food:



Whenever the oven is hot, the door is closed.

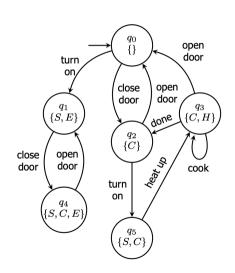
$$AGH \longrightarrow C$$

▶ After cooking, we will get access to the food:

$$AF(H \longrightarrow AF \neg C) \times$$

▶ After cooking, we may get access to the food:

$$AF(H \longrightarrow EF \neg C)$$



Whenever the oven is hot, the door is closed.

$$AGH \longrightarrow C$$

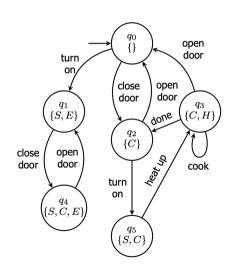
▶ After cooking, we will get access to the food:

$$AF(H \longrightarrow AF \neg C) \times$$

▶ After cooking, we may get access to the food:

$$AF(H \longrightarrow EF \neg C) \times$$

► The oven will always eventually heat up



Whenever the oven is hot, the door is closed.

$$AGH \longrightarrow C$$

▶ After cooking, we will get access to the food:

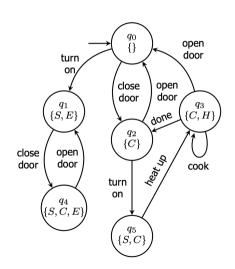
$$AF(H \longrightarrow AF \neg C) \times$$

▶ After cooking, we may get access to the food:

$$AF(H \longrightarrow EF \neg C) \times$$

► The oven will always eventually heat up

$$AG(EF(\neg H \wedge EX H))$$



Whenever the oven is hot, the door is closed.

$$AGH \longrightarrow C$$

After cooking, we will get access to the food:

$$AF(H \longrightarrow AF \neg C) \times$$

▶ After cooking, we may get access to the food:

$$AF(H \longrightarrow EF \neg C) \times$$

The oven will always eventually heat up

$$AG(EF(\neg H \land EX H)) \times$$

Only with reset transition.

Patterns of Specification

- ▶ Something bad (p) cannot happen: AG $\neg p$
- \triangleright p occurs infinitly often: AG(AF p)
- p occurs eventually: AF p
- ▶ In the future, p will hold eventually forever: AF AG p
- lacktriangle Whenever p will hold in the future, q will hold eventually: $AG(p \longrightarrow AFq)$
- In all states, p is always possible: AG(EF p)

LTL and CTL

- ▶ We have seen that CTL is more expressive than LTL, but (surprisingly), there are properties which we can formalise in LTL but not in CTL!
- Example: all paths which have a p along them also have a q along them.
- ▶ LTL: $\Diamond p \longrightarrow \Diamond q$
- ► CTL: Not AF $p \longrightarrow$ AF q (would mean: if all paths have p, then all paths have q), neither AG($p \longrightarrow$ AF q) (which means: if there is a p, it will be followed by a q).
- ▶ The logic *CTL** combines both LTL and CTL (but we will not consider it further here).

State Explosion and Complexity

- ▶ The basic problem of model checking is **state explosion**.
- State grows exponentially: n states have a state space of 2^n . Add one integer variable with $n = 2^{32}$ states, and this gets intractable.
- ► Theoretically, there is not much hope. The basic problem of deciding wether a particular formula holds is known as the satisfiability problem, and for the temporal logics we have seen, its complexity is as follows:
 - ▶ LTL without *U* is *NP*-complete.
 - ► LTL is *PSPACE*-complete.
 - CTL is EXPTIME-complete.
- ► The good news is that at least it is **decidable**. Practically, **state abstraction** is the key technique. E.g. instead of considering all possible integer values, consider only wether *i* is zero or larger than zero.

Summary

SSQ

- Model-checking allows us to show to show properties of systems by enumerating the system's states, by modelling systems as finite state machines, and expressing properties in temporal logic.
- ▶ We considered Linear Temporal Logic (LTL) and Computational Tree Logic (CTL). LTL allows us to express properties of single paths, CTL allows quantifications over all possible paths of an FSM.
- ► The basic problem: the system state can quickly get huge, and the basic complexity of the problem is horrendous. Use of abstraction and state compression techniques make model-checking bearable.
- ▶ Next: what has software to do with all of this? Operational Semantics.