
Systeme hoher Sicherheit und Qualität, WS 19/20 - 1 -

Systeme hoher Sicherheit und Qualität

WS 2019/2020

Christoph Lüth, Dieter Hutter, Jan Peleska

Lecture 11:

Foundations of Model Checking

Systeme hoher Sicherheit und Qualität, WS 19/20 - 2 -

Where are we?

 01: Concepts of Quality

 02: Legal Requirements: Norms and Standards

 03: The Software Development Process

 04: Hazard Analysis

 05: High-Level Design with SysML

 06: Formal Modelling with OCL

 07: Testing

 08: Static Program Analysis

 09: Software Verification with Floyd-Hoare Logic

 10: Verification Condition Generation

 11: Foundations of Model Checking

 12: Tools for Model Checking

 13: Conclusions

Systeme hoher Sicherheit und Qualität, WS 19/20 - 3 -

Introduction

 In the last lectures, we were verifying program properties with the
Floyd-Hoare calculus (or verification condition generation). Program
verification translates the question of program correctness into a proof
in program logic (the Floyd-Hoare logic), turning it into a deductive
problem.

Model-checking takes a different approach: instead of directly working
with the (source code) of the program, we work with an abstraction
of the system (the system model). Because we build an abstraction,
this approach is also applicable at higher verification levels. (It is also
complimentary to deductive verification.)

 The key questions are: how do these models look like? What
properties do we want to express, and how do we express and prove
them?

Systeme hoher Sicherheit und Qualität, WS 19/20 - 4 -

Model Checking in the Development Cycle

Systeme hoher Sicherheit und Qualität, WS 19/20 - 5 -

Introduction

Model checking operates on (abstract) state machines

 Does an abstract system satisfy some behavioral property
e.g. liveness (deadlock) or safety properties

 consider traffic lights in Requirement Engineering

 Example: “green must always follow red”

 Automatic analysis if state machine is finite

 Push-button technology

 User does not need to know logic (at least not for the proof)

 Basis is satisfiability of boolean formula in a finite domain (SAT).
However, finiteness does not imply efficiency – all interesting problems
are at least NP-complete, and SAT is no exception (Cook’s theorem).

Systeme hoher Sicherheit und Qualität, WS 19/20 - 6 -

The Model-Checking Problem

 What is ℳ?

 A finite-state machine or Kripke structure.

 What is 𝜙?

 Temporal logic

 How to prove it?

 By enumerating the states and thus construct a model

(hence the term model checking)

 The basic problem: state explosion

The Basic Question:

Given a model ℳ and property 𝜙, we want to know if

ℳ ⊨ 𝜙

Systeme hoher Sicherheit und Qualität, WS 19/20 - 7 -

Finite State Machine (FSM)

 Variations of this definition exists, e.g. no initial states.

 Note there is no final state, and no input or output (this is the key difference
to automata).

 If → is a function, the FSM is deterministic, otherwise it is non-deterministic.

Definition: Finite State Machine (FSM)

A FSM is given by ℳ = Σ, 𝐼,→ where
• Σ is a finite set of states,
• 𝐼 ⊆ Σ is a set of initial states, and
• →⊆ Σ × Σ is a transition relation, s.t. → is left-total:

∀𝑠 ∈ Σ. ∃𝑠′ ∈ Σ. 𝑠 → 𝑠′

Systeme hoher Sicherheit und Qualität, WS 19/20 - 8 -

First Example: A Simple Drink Dispenser

1) Insert a coin.

2) Press button: tea or coffee

3) Tea or coffee dispensed

4) Back to 1)

FSM:
Σ = 𝑠0, 𝑠1, 𝑠2, 𝑠3

𝐼 = 𝑠0

→=
{ 𝑠0, 𝑠1 , 𝑠1, 𝑠2 , 𝑠2, 𝑠3 ,

𝑠1, 𝑠3 , 𝑠2, 𝑠0 , 𝑠3, 𝑠0 }

Note operation names are for decoration
purposes only.

Button #2 Button #1

s1

s3
s2

s0

Coin

D
is

p
e

n
se

 T
e

a

D
is

p
e

n
se

 C
o

ff
e

e

Systeme hoher Sicherheit und Qualität, WS 19/20 - 9 -

Example: A Simple Oven

 The oven has more states and operations:
open and close door,

 turn oven on and off,

 warm up and cook.

 How do they interact?

 FSM:

cook

start
oven

open
door

open
door

close
door

start
oven

close
door

open
door

warmup

done

s1

s6s5

s4s3
s2

Systeme hoher Sicherheit und Qualität, WS 19/20 - 10 -

Questions to ask

We want to answer questions about the system behaviour like

 Can the cooker heat with the door open?

 When the start button is pushed, will the cooker eventually heat up?

 When the cooker is correctly started, will the cooker eventually heat up?

 When an error occurs, will it be still possible to cook?

We are interested in questions on the development of the system over time, i.e.
possible traces of the system given by a succession of states.

The tool to formalize and answer these questions is temporal logic.

Systeme hoher Sicherheit und Qualität, WS 19/20 - 11 -

Temporal Logic

Expresses properties of possible succession of states

Linear Time

▪ Every moment in time has a
unique successor

▪ Infinite sequences of moments
▪ Linear Temporal Logic LTL

Branching Time

▪ Every moment in time has several
successors

▪ Infinite tree
▪ Computational Tree Logic CTL

s1

s3 s2

s1

s1s6

s3

s1

s5

s1

s3 s2

s6 s1 s5

Systeme hoher Sicherheit und Qualität, WS 19/20 - 12 -

Kripke Structures

 In order to talk about propositions, we label the states of a FSM with
propositions which hold there. This is called a Kripke structure.

 Equivalent formulation: for each state, set of propositions which hold in
this state, i.e. 𝑉′: Σ → 2𝑃𝑟𝑜𝑝

Definition: Kripke structure
Given a set 𝑃𝑟𝑜𝑝 of propositions, then a Kripke structure is given by
K = 〈Σ, 𝐼,→, 𝑉〉 where
• Σ is a finite set of states,
• 𝐼 ⊆ Σ is a set of initial states,
• →⊆ Σ × Σ is a left-total transition relation, and
• 𝑉: 𝑃𝑟𝑜𝑝 → 2Σ is a valuation function mapping propositions to the set

of states in which they hold

Systeme hoher Sicherheit und Qualität, WS 19/20 - 13 -

Kripke Structure: Example

 Example: Cooker

 Propositions:

 Cooker is starting: S

 Door is closed: C

 Cooker is hot: H

 Error occurred: E

 Kripke structure:
 Σ = {𝑠1, … , 𝑠6}

 𝐼 = 𝑠1
 →= { 𝑠1, 𝑠2 , 𝑠2, 𝑠5 , 𝑠5, 𝑠2 , (𝑠1, 𝑠3)

𝑠3, 𝑠1 , 𝑠3, 𝑠6 , 𝑠6, 𝑠4 , 𝑠4, 𝑠4 ,
𝑠4, 𝑠3 , (𝑠4, 𝑠1)}

 V S = {𝑠2, 𝑠5, 𝑠6},
V C = {𝑠3, 𝑠4, 𝑠5, 𝑠6},
V H = {𝑠4}, V E = {𝑠2, 𝑠5}

cook

start
oven

open
door

open
door

close
door

start
oven

close
door

open
door

warmup

done

:S, : C,
: H, : E

S, C,
: H, : E

:S, C,
: H, : E

S, C,
: H, E

S, : C,
: H, E

:S, C,
H, : E

s1

s6s5

s4s3
s2

Systeme hoher Sicherheit und Qualität, WS 19/20 - 14 -

Semantics of Kripke Structures (Prop)

 We now want to define a logic in which we can formalize temporal statements,
i.e. statements about the behaviour of the system and its changes over time.

 The basis is open propositional logic (PL): negation, conjunction,
disjunction, implication*.

 With that, we define how a PL-formula 𝜙 holds in a Kripke structure 𝐾 at state
𝑠 , written as 𝐾, 𝑠 ⊨ 𝜙.

 Let 𝐾 = 〈Σ, 𝐼,→, 𝑉〉 be a Kripke structure, 𝑠 ∈ Σ, and
𝜙 a formula of propositional logic, then

 𝐾, 𝑠 ⊨ 𝑝 if 𝑝 ∈ 𝑃𝑟𝑜𝑝 and 𝑠 ∈ 𝑉(𝑝)

 𝐾, 𝑠 ⊨ ¬𝜙 if not 𝐾, 𝑠 ⊨ 𝜙

 𝐾, 𝑠 ⊨ 𝜙1 ∧ 𝜙2 if 𝐾, 𝑠 ⊨ 𝜙1 and 𝐾, 𝑠 ⊨ 𝜙2

 𝐾, 𝑠 ⊨ 𝜙1 ∨ 𝜙2 if 𝐾, 𝑠 ⊨ 𝜙1 or 𝐾, 𝑠 ⊨ 𝜙2

* Note implication is derived: 𝜙1 → 𝜙2= ¬𝜙1 ∨ 𝜙2

Systeme hoher Sicherheit und Qualität, WS 19/20 - 15 -

Linear Temporal Logic

 The formulae of LTL are given as

𝜙 ∷= 𝑝 ¬ 𝜙 𝜙1 ∧ 𝜙2 | 𝜙1 ∨ 𝜙2 Propositional formulae

𝑋 𝜙 𝐺 𝜙 𝐹 𝜙 𝜙1 𝑈 𝜙2 Temporal operators

 X p: in the next moment p holds

G p: p holds in all moments

 F p: there is a moment in the future when p will hold

 p U q: p holds in all moments until q holds

p

p

p p p p p p

ppp q

Systeme hoher Sicherheit und Qualität, WS 19/20 - 16 -

Examples of LTL formulae

 If the cooker heats, then is the door
closed?

𝐺(𝐻 → 𝐶)

 Is it always possible to recover from
an error?

𝐺 𝐸 → 𝐹 ¬ 𝐸

 Need to add a transition.

 Is it always possible to cook (heat
up, then cook)?

𝐹 (𝑆 → 𝑋 𝐶)

 Always possible to “avoid”
cooking.

 Cannot express “there are
paths in which we can always
cook”.

cook

start
oven

open
door

open
door

close
door

start
oven

close
door

open
door

warmup

done

:S, : C,
: H, : E

S, C,
: H, : E

:S, C,
: H, : E

S, C,
: H, E

S, : C,
: H, E

:S, C,
H, : E

s1

s6s5

s4s3
s2

reset

Systeme hoher Sicherheit und Qualität, WS 19/20 - 17 -

Paths in an FSM/Kripke Structure

 A path in an FSM (or Kripke structure) is a sequence of states starting in one
of the initial states and connected by the transition relation (essentially, a run
of the system).

 Formally: for an FSM 𝑀 = Σ, 𝐼,→ or a Kripke structure 𝐾 = Σ, 𝐼, →,𝑉 , a path
is given by a sequence 𝑠1𝑠2𝑠3… ∈ Σ∗ such that 𝑠1 ∈ 𝐼 and 𝑠𝑖 → 𝑠𝑖+1.

 For a path p = 𝑠1𝑠2𝑠3…, we write

 𝑝𝑖 for selecting the 𝑖-th element 𝑠𝑖 and

 𝑝𝑖 for the suffix starting at position i, 𝑠𝑖𝑠𝑖+1𝑠𝑖+2…

Systeme hoher Sicherheit und Qualität, WS 19/20 - 18 -

Semantics of LTL in Kripke Structures

Let 𝐾 = 〈Σ, 𝐼,→, 𝑉〉 be a Kripke Structure and 𝜙 an LTL formula, then we say 𝐾 ⊨
𝜙 (𝝓 holds in 𝑲), if 𝐾, 𝑠 ⊨ 𝜙 for all paths 𝑠 = 𝑠1𝑠2𝑠3… in 𝐾, where:

 𝐾, 𝑠 ⊨ 𝑝 if 𝑝 ∈ 𝑃𝑟𝑜𝑝, 𝑠1∈ 𝑉(𝑝)

 𝐾, 𝑠 ⊨ ¬𝜙 if not 𝐾, 𝑠 ⊨ 𝜙

 𝐾, 𝑠 ⊨ 𝜙1 ∧ 𝜙2 if 𝐾, 𝑠 ⊨ 𝜙1 and 𝐾, 𝑠 ⊨ 𝜙2

 𝐾, 𝑠 ⊨ 𝜙1 ∨ 𝜙2 if 𝐾, 𝑠 ⊨ 𝜙1 or 𝐾, 𝑠 ⊨ 𝜙2

 𝐾, 𝑠 ⊨ 𝑋 𝜙 if 𝐾, 𝑠2 ⊨ 𝜙

 𝐾, 𝑠 ⊨ 𝐺 𝜙 if 𝐾, 𝑠𝑛 ⊨ 𝜙 for all 𝑛 > 0

 𝐾, 𝑠 ⊨ 𝐹 𝜙 if 𝐾, 𝑠𝑛 ⊨ 𝜙 for some 𝑛 > 0

 𝐾, 𝑠 ⊨ 𝜙 𝑈 𝜓 if 𝐾, 𝑠𝑛 ⊨ 𝜓 for some 𝑛 > 0,

and for all 𝑖, 0 < 𝑖 < 𝑛, we have 𝐾, 𝑠𝑖 ⊨ 𝜙

Systeme hoher Sicherheit und Qualität, WS 19/20 - 19 -

More examples for the cooker

 Question: does the cooker work?

 Specifically, cooking means that first the door is open, then the oven heats up,
cooks, then the door is open again, and all without an error.

 𝑐 = ¬𝐶 ∧ 𝑋 𝑆 ∧ 𝑋(𝐻 ∧ 𝐹¬𝐶) ∧ 𝐺 ¬𝐸 – not quite.

 𝑐 = ¬𝐶 ∧ ¬𝐸 ∧ 𝑋 𝑆 ∧ ¬𝐸 ∧ 𝑋(𝐻 ∧ ¬𝐸 ∧ 𝐹(¬𝐶 ∧ ¬𝐸)) – better

 So, does the cooker work?

 There is at least one path s.t. 𝑐 holds eventually.

 This is not G 𝐹 𝑐, which says that all paths must eventually cook (which
might be too strong).

 We cannot express this in LTL; this is a principal limitation.

Systeme hoher Sicherheit und Qualität, WS 19/20 - 20 -

Computational Tree Logic (CTL)

 LTL does not allow us the quantify over paths, e.g. assert the existence of a
path satisfying a particular property.

 To a limited degree, we can solve this problem by negation: instead of
asserting a property 𝜙, we check whether ¬𝜙 is satisfied; if that is not the
case, 𝜙 holds. But this does not work for mixtures of universal and existential
quantifiers.

 Computational Tree Logic (CTL) is another temporal logic which allows this
by adding universal and existential quantifiers to the modal operators.

 The name comes from considering paths in the computational tree
obtained by unwinding the transition relation of the Kripke structure.

Systeme hoher Sicherheit und Qualität, WS 19/20 - 21 -

Computational Tree Logic (CTL)

 The formulae of CTL are given as

𝜙 ∷= 𝑝 ¬ 𝜙 𝜙1 ∧ 𝜙2 | 𝜙1 ∨ 𝜙2 Propositional formulae

𝐴𝑋 𝜙 𝐸𝑋 𝜙 𝐴𝐺 𝜙 𝐸𝐺 𝜙 Temporal operators
𝐴𝐹 𝜙 𝐸𝐹 𝜙 𝜙1 𝐴𝑈 𝜙2 𝜙1𝐸𝑈 𝜙2

 Note that CTL formulae can be considered to be a LTL formulae with a
modality (A or E) added to each temporal operator.

 Generally speaking, the A modality says the temporal operator holds for
all paths, and the E modality says it only holds for all least one path.

 Hence, we do not define a satisfaction for a single path p, but with respect
to a specific state in an FSM.

Systeme hoher Sicherheit und Qualität, WS 19/20 - 22 -

Computational Tree Logic (CTL)

 Specifying possible paths by combination

 Branching behavior
All paths: A, exists path: E

 Succession of states in a path
Temporal operators X, G, F, U

 For example:

 AX p : in all paths the next state satisfies p

 EX p : there is an path in which the next state satisfies p

 p AU q : in all paths p holds as long as q does not hold

 EF p : there is an path in which eventually p holds

Systeme hoher Sicherheit und Qualität, WS 19/20 - 23 -

Semantics of CTL in Kripke Structures
For a Kripke structure 𝐾 = Σ, 𝐼,→, 𝑉 and a CTL-formula 𝜙, we say 𝐾 ⊨ 𝜙 (𝝓
holds in 𝑲) if 𝐾, 𝑠 ⊨ 𝜙 for all 𝑠 ∈ 𝐼, where 𝐾, 𝑠 ⊨ 𝜙 is defined inductively as
follows (omitting the clauses for propositional operators 𝑝,¬, ∧, ∨):

 𝐾, 𝑠 ⊨ 𝐴𝑋 𝜙 iff for all 𝑠′ with 𝑠 → 𝑠′, we have 𝐾, 𝑠′ ⊨ 𝜙

 𝐾, 𝑠 ⊨ 𝐸𝑋 𝜙 iff for some 𝑠′ with 𝑠 → 𝑠′, we have 𝐾, 𝑠′ ⊨ 𝜙

 𝐾, 𝑠 ⊨ 𝐴𝐺 𝜙 iff for all paths 𝑝 with 𝑝1 = 𝑠,
we have 𝐾, 𝑝𝑖 ⊨ 𝜙 for all 𝑖 ≥ 2.

 𝐾, 𝑠 ⊨ 𝐸𝐺 𝜙 iff for some path 𝑝 with 𝑝1 = 𝑠,
we have 𝐾, 𝑝𝑖 ⊨ 𝜙 for all 𝑖 ≥ 2.

 𝐾, 𝑠 ⊨ 𝐴𝐹 𝜙 iff for all paths 𝑝 with 𝑝1 = 𝑠,
we have 𝐾, 𝑝𝑖 ⊨ 𝜙 for some 𝑖

 𝐾, 𝑠 ⊨ 𝐸𝐹 𝜙 iff for some path 𝑝 with 𝑝1 = 𝑠,
we have 𝐾, 𝑝𝑖 ⊨ 𝜙 for some 𝑖

 𝐾, 𝑠 ⊨ 𝜙 𝐴𝑈 𝜓 iff for all paths 𝑝 with 𝑝1 = 𝑠,
there is i with 𝐾, 𝑝𝑖 ⊨ 𝜓 and for all 𝑗 < 𝑖, 𝐾, 𝑝𝑗 ⊨ 𝜙

 𝐾, 𝑠 ⊨ 𝜙 𝐸𝑈 𝜓 iff for some path 𝑝 with 𝑝1 = 𝑠,
there is i with 𝐾, 𝑝𝑖 ⊨ 𝜓 and for all 𝑗 < 𝑖, 𝐾, 𝑝𝑗 ⊨ 𝜙

Systeme hoher Sicherheit und Qualität, WS 19/20 - 24 -

Examples of CTL propositions

 If the cooker is hot, then is the door closed

𝐴𝐺 (𝐻 → 𝐶)

 It is always possible to eventually cook (heat is on), and
then eventually get the food (i.e. the door is open
afterwards):

A𝐹 (𝐻 → 𝐴𝐹 ¬ 𝐶)

 It is always possible that the
cooker will eventually warmup.

𝐴𝐺 𝐸𝐹 ¬𝐻 ∧ 𝐸𝑋 𝐻

cook

start
oven

open
door

open
door

close
door

start
oven

close
door

open
door

warmup

done

:S, : C,
: H, : E

S, C,
: H, : E

:S, C,
: H, : E

S, C,
: H, E

S, : C,
: H, E

:S, C,
H, : E

s1

s6s5

s4s3
s2

Systeme hoher Sicherheit und Qualität, WS 19/20 - 25 -

LTL, CTL and CTL*

 CTL is more expressive than LTL, but (surprisingly) there are also properties we
can express in LTL but not in CTL:

 The formula 𝐹𝜙 → 𝐹𝜓 cannot be expressed in CTL

 “When 𝜙 occurs somewhere, then 𝜓 also occurs somewhere.”

 Not: (𝐴𝐹𝜙) → 𝐴𝐹𝜓, nor 𝐴𝐺(𝜙 → 𝐴𝐹 𝜓)

 The formula 𝐴𝐺 𝐸𝐹𝜙 cannot be expressed in LTL

 “For all paths, it is always the case that there is some path on which
𝜙 is eventually true.”

 CTL* - Allow for the use of temporal operators (X, G, F, U) without a directly
preceding path quantifier (A, E)

 e.g. AGF φ is allowed

 CTL* subsumes both LTL and CTL.

Systeme hoher Sicherheit und Qualität, WS 19/20 - 26 -

Complexity and State Explosion

 Even our small oven example has 6 states with 4 labels each. If we add one
integer variable with 32 bits (e.g. for the heat), we get 232 additional states.

 Theoretically, there is not much hope. The basic problem of deciding whether
a formula holds (satisfiability problem) for the temporal logics we have
seen has the following complexity:

 LTL without 𝑈 is NP-complete;

 LTL is PSPACE-complete;

 CTL (and CTL*) are EXPTIME-complete.

 This is known as state explosion.

 But at least it is decidable. Practically, state abstraction is the key technique,
so e.g. for an integer variable 𝑖 we identify all states with 𝑖 ≤ 0, and those with
0 < 𝑖.

Systeme hoher Sicherheit und Qualität, WS 19/20 - 27 -

Safety and Liveness Properties

 Safety: nothing bad ever happens

 E.g. “x is always not equal 0”

 Safety properties are falsified by a bad (reachable) state

 Safety properties can falsified by a finite prefix of an execution
trace

 Liveness: something good will eventually happen

 E.g. “system is always terminating”

 Need to keep looking for the good thing forever

 Liveness properties can be falsified by an infinite-suffix of an
execution trace: e.g. finite list of states beginning with the initial
state followed by a cycle showing you a loop that can cause you to
get stuck and never reach the “good thing”

Systeme hoher Sicherheit und Qualität, WS 19/20 - 28 -

Summary

 Model-checking allows us to show to show properties of systems by
enumerating the system’s states, by modelling systems as finite state
machines, and expressing properties in temporal logic.

 Note difference to deductive verification (Floyd-Hoare logic): that uses the
source code as the basis, here we need to construct a model of the system.

 The model can be wrong – on the other hand we can construct the model
and check properties before even building the system.

 Model checking is complementary to deductive verification.

 We considered Linear Temporal Logic (LTL) and Computational Tree Logic
(CTL). LTL allows us to express properties of single paths, CTL allows
quantifications over all possible paths of an FSM.

 The basic problem: the system state can quickly get huge, and the basic
complexity of the problem is horrendous, leading to so-called state
explosion. But the use of abstraction and state compression techniques make
model-checking bearable.

 Next week: tools for model checking.

