@ Universitat Bremen

Systeme hoher Sicherheit und Qualitat

WS 2019/2020

Lecture 10:

Verification Condition Generation

Christoph Luth, Dieter Hutter, Jan Peleska

Systeme hoher Sicherheit und Qualitat, WS 19/20 -1-

Frohes Neues Jahr!

Systeme hoher Sicherheit und Qualitat, WS 19/20 -2-

Where are we?

>

>

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:

Concepts of Quality

Legal Requirements: Norms and Standards
The Software Development Process

Hazard Analysis

High-Level Design with SysML

Formal Modelling with OCL

Testing

Static Program Analysis

Software Verification with Floyd-Hoare Logic

Verification Condition Generation

11-12: Model Checking

13:

Conclusions

Systeme hoher Sicherheit und Qualitat, WS 19/20 -3-

Y

VCG in the Development Cycle

CIEPES sles L[S Y | aidatio vaigaton | g Validted
testin
specification spenificatiun g software
Integration testing
E/E/PES Software
[architecture ‘- an:hﬂa-::tura -------------------------------- ‘““’L‘Eﬁ'}'f,ﬂ':;:;’,ﬁ:ﬂf“"
electronics)

Integration
testing
(module)

Software system/-e--------------no--
design
Module
design ---r-

CODING

= p—

Module
testing

Systeme hoher Sicherheit und Qualitit, WS 19/20 -4- . F:l @

Introduction

» In the last lecture, we introduced Hoare triples. They allow us to state and
prove correctness assertions about programs, written as {P} p {Q}

» We introduced two notions, namely:
» Syntactic derivability, - {P} p {Q} (the actual Floyd-Hoare calculus)
» Semantic satisfaction, = {P} p {Q}

» Question: how are the two related?

» The answer to that question also offers help with a practical problem: proofs
with the Floyd-Hoare calculus are exceedingly long and tedious. Can we
automate them, and how?

Systeme hoher Sicherheit und Qualitat, WS 19/20 -5- ' - ;I @

Correctness and Completeness

» In general, given a syntactic calculus with a semantic meaning, correctness
means the syntactic calculus implies the semantic meaning, and
completeness means all semantic statements can be derived syntactically.

» Cf. also Static Program Analysis
» Correctness should be a basic property of verification calculi.

» Completeness is elusive due to Godel's first incompleteness theorem:

» Any logics which is strong enough to encode the natural numbers and
primitive recursion* is incomplete.**

* Or any other notion of computation.
** Or inconsistent, which is even worse.

Systeme hoher Sicherheit und Qualitat, WS 19/20 -6- ' - :I @

Correctness of the Floyd-Hoare calculus

Theorem (Correctness of the Floyd-Hoare calculus)

If - {P} p {Q}, then = {P} p {Q}.

» Proof: by induction on the derivation of - {P} p {Q}.
» More precisely, for each rule we show that:

» If the conclusion is + {P} p {Q}, we can show & {P} » {Q}
» For the premisses, this can be assumed.
» Example: for the assignment rule, we show that

Systeme hoher Sicherheit und Qualitat, WS 19/20 -7- ' - ;I @

Completeness of the Floyd-Hoare calculus

» Predicate calculus is incomplete, so we cannot hope F/H is complete. But we
get the following:

Theorem (Relative completeness)

If ={P}p{Q}, then {P} p {Q} exceptfor the proofs occuring in
the weakenings.

» To show this, we construct the weakest precondition.

Weakest precondition
Given a program c and an assertion P, the weakest precondition
wp(c, P) is an assertion W such that
1. W is a valid precondition = {W} c {P}
2. And it is the weakest such:
for any other Q such that = {Q} c {P}, we have W - Q.

Systeme hoher Sicherheit und Qualitat, WS 19/20 -8- ' - :I @

Constructing the weakest precondition

» Consider a simple program and its verification:

{x=XANy=Y}

>
{y=YAx=X}
Z =Yy
{z=YANx=X}
y 1= X;
{z=YAy =X}
X 1= Z;

» Note how proof is constructed backwards systematically.
» The idea is to construct the weakest precondition inductively.
» This also gives us a methodology to automate proofs in the calculus.

Systeme hoher Sicherheit und Qualitat, WS 19/20 -9-

Constructing the weakest precondition

» There are four straightforward cases:
(1) wp(skip,P) =P
(2) wp(X:=e,P)=Ple/X]
(3) wp(co; ¢4, P) = wp(co, wp(cy, P))
(4) wp(if b{co} else {c1},P) = (b Awp(co, P)) V (= b Awp(cy, P))

» The complicated one is iteration (unsurprisingly, since it is the source of the

computational power and Turing-completeness of the language). It can be given
recursively:

(5) wp(while b {c},P) =(=bAP)V Wp(c, wp (while b {c}, P))

» A closed formula can be given, but it can be infinite and is not practical. It shows
the relative completeness, but does not give us an effective way to automate
proofs.

» Hence, wp(c, P) is not effective for proof automation, but it shows the right way:
we just need something for iterations.

Systeme hoher Sicherheit und Qualitat, WS 19/20 -10 - ' - ;I @

Verification Conditions: Annotations

» The idea is that we have to give the invariants manually by annotating them.

» We need a language for this:
» Arithmetic expressions and boolean expressions stays as they are.
» Statements are augmented to annotated statements:
Su=x:=a|skip|S1;S2|if (b) S1elseS2
| assert P | while (b) invP S
» Each while loop needs to its invariant annotated.

This is for partial correctness, total correctness also needs a variant: an
expression which is strictly decreasing in a well-founded order such as (<
,N) after the loop body.

» The assert statement allows us to force a weakening.

Systeme hoher Sicherheit und Qualitat, WS 19/20 -11- ' - :I @

Preconditions and Verification Conditions

» We are given an annotated statement ¢, a precondition P and a postcondition
Q.

» We want to know: when does = {P} c {Q} hold?

» For this, we calculate a precondition pre(c, Q) and a set of verification
conditions vc(c, Q).

» The idea is that if all the verification conditions hold, then the
precondition holds:

/\ R = e {pre(c,Q)}c {Q}

Revc(c, Q)
» For the precondition P, we get the additional weaking P = pre(c, Q).

Systeme hoher Sicherheit und Qualitat, WS 19/20 -12 - ' 3 :I @

Calculation Verification Conditions

» Intuitively, we calculate the verification conditions by stepping through the
program backwards, starting with the postcondition Q.

» For each of the four simple cases (assignment, sequencing, case distinction
and skip), we calculate new current postcondition Q

» At each iteration, we calculate the precondition R of the loop body working
backwards from the invariant I, and get two verification conditions:

» The invariant I and negated loop condition implies Q.
» The invariant I and loop condition implies R.
» Asserting R generates the verification condition R = Q.

» Let's try this.

Systeme hoher Sicherheit und Qualitat, WS 19/20 -13- ' - ;I @

Example: deriving VCs for the factorial.

II/\

n}
(1) && (1-1) <=n}

' (1-1)1 8& (1- 1) <= n }

nf«-c HHHH
II
II oo

1
{ p = (c-1)!' && (c-1) <=n}
while (c <=n)
inv (p == (c-1)! && c-1 <=n){
{ p*c == ((c+1)-1)! &&
((c+1)- 1) <=n}

VCs (unedited):
1. p== (cl)'&&(c 1) <=n&& ! (c
<=n) ==>p=nl!

(c I && c-1 <=n&& c<=n
p* c= ((c+1)-1)! && ((c+1)-1)

A Il ©
i1 g

s Vo

3. 0<=n==>1=(1-1)!&& 1-1 <=n

p:=p*c
{p== ((c+1) I && ((c+1)-1) <=n}
C:=c+1;
{p==(c-1)&& (c-1)<=n}
¥
{p=n!}

Systeme hoher Sicherheit und Qualitat, WS 19/20

VCs (simplified):

1. p==(c-1)! &&c-1==n
==> p= n!

2. p==(c-1)!&& c-1 <=n&&c<=n
==> p* c= ¢!

3. p==(c-1)!&& c-1 <=n&&c<=n
==>Cc<=n

4, 0 <=n==> 1= 0!

5. 0<=n==>0<=n

-14 -

|7

Formal Definition

» Calculating the precondition:
pre(sKip,Q) = Q
pre(X =e,Q) =0Q e/ X]
pre(co; ¢1, Q = pre(co, pre(cy, Q))
pre(if (b) c, else ¢, Q) = (b A pre(cy, Q)) Y, (—| b A pre(cy, Q))
pre(assertR,Q) =R
pre (while (b)inv/Ic, Q) =1
» Calculating the verification conditions:
ve(skip,Q) =@
ve(X=e0Q0)=0
ve(cp; ¢1,Q) = VC(CO»PTQ(CL Q)) U ve(eq, Q)
vc(if (b) ¢, else ¢y, Q) = vc(cy, Q) U ve(cy, Q)
vc(while (b)inv I c,Q) = vc(c,]) U{I Ab = pre(c,1),I A=b = Q}
vc(assertR, Q) ={R = 0Q}

» The main definition:
veg({P} c {Q}) = {P = pre(c, @)} U vc(c, Q)

Systeme hoher Sicherheit und Qualitat, WS 19/20 -15- ' - ;I @

Another example: integer division

{0<=a&&0<=b}

{1}

r:=a;

{2}

q:=0;

{3}

while (b <=7r)
inv(a==b*q+r&&x0<=r){
{4}

r:=r-b;

{5}

q:=qt+l;

~
{a==D0b*gq+r&&0<=r&&r<b}

Systeme hoher Sicherheit und Qualitat, WS 19/20 -16 -

Correctness of VC

» The correctness calculus is correct: if we can prove all the verifcation
conditons, the program is correct w.r.t to given pre- and postconditions.

» Formally:

Theorem (Correctness of the VCG calculus)
Given assertions P and Q (with P the precondition and Q the
postcondition), and an annotated program, then

/\ R = & (P} c {0}

Revcg(c, Q)

» Proof: by induction on c.

Systeme hoher Sicherheit und Qualitat, WS 19/20 -17 - ' - ;I @

Using VCG in Real Life

We have just a toy language, but VCG can be used in real life. What features are
missing?

» Modularity: the language must have modularity concepts, e.g. functions (as
in C), or classes (as in Java), and we must be able to verify them separately.

» Framing: in our simple calculus, we need to specify which variables stay the
same (e.g. when entering a loop). This becomes tedious when there are a lot
of variables involved; it is more practical to specify which variables may
change.

» References: languages such as C and Java use references, which allow
aliasing. This has to be modelled semantically; specifically, the assignment rule
has to be adapted.

» Machine arithmetic: programs work with machine words and floating point
representations, not integers and real numbers. This can be the cause of
insidious errors.

Systeme hoher Sicherheit und Qualitat, WS 19/20 -18 - ' - :I @

VCG Tools

» Often use an intermediate language for VCG and front-ends for concrete
programming languages.

» The Why3 toolset (http://why3.1ri.fr)
» A verification condition generator

» Front-ends for different languages:
C (Frama-C), Java (defunct?)

» Boogie (Microsoft Research)
» Frontends for programming languages such C, C#, Java.
» VCC — a verifying C compiler built on top of Boogie

» Interactive demo:
https://www.risedfun.com/Vcc/

Systeme hoher Sicherheit und Qualitat, WS 19/20 -19- ' - :I @

http://why3.lri.fr/
https://www.rise4fun.com/Vcc/

VCC Example: Binary Search

» A correct (?) binary search implementation:

#include <limits.h>

unsigned int bin search (unsigned int a [], unsigned int a len, unsigned int key)

{
unsigned int lo= 0;
unsigned int hi= a len;
unsigned int mid;

while (lo <= hi)
{
mid= (lo+ hi)/2;
if (a[mid] < key) lo= mid+1;
else hi= mid;

if (! (lo < a len && al[lo] == key)) lo= UINT MAX;

return 1lo;

LY

Systeme hoher Sicherheit und Qualitat, WS 19/20 -20-

VCC: Correctness Conditions?

» We need to annotate the program.

» Precondition:
» aisanarray of length a_len;

» The array a is sorted.
» Postcondition:
» Let r be the result, then:
» if r iS UINT MAX, all elements of a are unequal to key;
» if risnot UINT MAX,thena[r] == key.
» Loop invariants:
» hiisless-equalto a len;
» everything ,left" of 1o is less then key;
» everything ,right" of hi is larger-equal to key.

Systeme hoher Sicherheit und Qualitat, WS 19/20 -21-

LY

VCC Example: Binary Search

» Source code as annotated for VCC:

#include <limits.h>
#include <vcc.h>

unsigned int bin search(unsigned int a [], unsigned int a len, unsigned int key)
_(requires \thread local array(a, a len))
_(requires \forall unsigned int i, j; i < j && j < a len ==> ali] <= a[j])
_(ensures \result != UINT MAX ==> a[\result] == key)
_(ensures \result == UINT MAX ==> \forall unsigned int i; i < a len ==> ali] != key)

{
unsigned int lo= 0;
unsigned int hi= a len;
unsigned int mid;

while (lo <= hi)
_(invariant hi <= a len)
_(invariant \forall unsigned int i; i < lo ==> al[i] < key)
_(invariant \forall unsigned int i; hi <= i && i < a len ==>a[i] >= key)
{
mid= (lo+ hi)/2;
if (a[mid] < key) lo= mid+1;
else hi= mid;
}
if (! (lo < a len && a[lo] == key)) lo= UINT MAX;
return lo;

Systeme hoher Sicherheit und Qualitat, WS 19/20 -22-

Binary Search: the Corrected Program

» Corrected source code:

#include <limits.h>
#include <vcc.h>

unsigned int bin search(unsigned int a [], unsigned int a len, unsigned int key)
_(requires \thread local array(a, a len))
_(requires \forall unsigned int i, j; i < j && j < a len ==> ali] <= a[j])
_(ensures \result != UINT MAX ==> a[\result] == key)
_(ensures \result == UINT MAX ==> \forall unsigned int i; i < a len ==> ali] != key)

{
unsigned int lo= 0;
unsigned int hi= a len;
unsigned int mid;

while (lo < hi)
_(invariant hi <= a len)
_(invariant \forall unsigned int i; i < lo ==> al[i] < key)
_(invariant \forall unsigned int i; hi <= i && i < a len ==>a[i] >= key)
{
mid= (hi-1lo)/2+ lo;
if (a[mid] < key) lo= mid+1;
else hi= mid;
}
if (! (lo < a len && a[lo] == key)) lo= UINT MAX;
return lo;

Systeme hoher Sicherheit und Qualitat, WS 19/20 -23-

Summary

» Starting from the relative completeness of the Floyd-Hoare calculus, we
devised a verification condition generation (vcg) calculus which makes
program verification viable.

» Verification condition generation reduces the question whether the given
pre/postconditions hold for a program to the validity of a set of logical
properties.

» We do need to annotate the while loops with invariants.

» Most of these logical properties can be discharged with automated
theorem provers.

» To scale to real-world programs, we need to deal with framing, modularity

(each function/method needs to be verified independently), and machine
arithmetic (integer word arithmetic and floating-points).

Systeme hoher Sicherheit und Qualitat, WS 19/20 -24 - ' - ;I @

