
Systeme hoher Sicherheit und Qualität, WS 19/20 - 1 -

Systeme hoher Sicherheit und Qualität

WS 2019/2020

Christoph Lüth, Dieter Hutter, Jan Peleska

Lecture 09:
Software Verification
with Floyd-Hoare Logic

Systeme hoher Sicherheit und Qualität, WS 19/20 - 2 -

Where are we?

 01: Concepts of Quality

 02: Legal Requirements: Norms and Standards

 03: The Software Development Process

 04: Hazard Analysis

 05: High-Level Design with SysML

 06: Formal Modelling with OCL

 07: Testing

 08: Static Program Analysis

 09: Software Verification with Floyd-Hoare Logic

 10: Verification Condition Generation

 11-12: Model Checking

 13: Conclusions

Systeme hoher Sicherheit und Qualität, WS 19/20 - 3 -

Software Verification in the Development Cycle

Systeme hoher Sicherheit und Qualität, WS 19/20 - 4 -

Static Program Analysis

Transfer functions to propagate information along the execution path (i.e.
from input to output, or vice versa)

 Information is encoded as a lattice 𝐿 = 𝑀, ⊑ .

 Transfer functions mapping information

 fl : M → M with l being a label

 Knowledge transfer is monotone ∀ 𝑥, 𝑦. 𝑥 ⊑ 𝑦 ⟹ 𝑓𝑙 𝑥 ⊑ 𝑓𝑙 𝑦

 Restricted to a specific type of knowledge
(Reachable Definitions, Available Expressions,…)

What about a more general approach

 Maintaining arbitrary knowledge ?

 Knowledge representation ?

Transfer function fl

Pout

Pin

Systeme hoher Sicherheit und Qualität, WS 19/20 - 5 -

General Transfer Relations

 Transfer relations:

 Knowledge P, Q is represented in logic (first-order)

 {P} c {Q} denotes

If P is known before executing c (and c terminates)

then Q is known (P “precondition”, Q “postcondition”)

 {P} c {Q} are called Floyd-Hoare triples

Q

P

Program c

Charles Antony Richard Hoare: An axiomatic basis for computer programming (1969)
Robert W Floyd: Assigning Meanings to Programs (1967)

Logic

Logic

Systeme hoher Sicherheit und Qualität, WS 19/20 - 6 -

Software Verification

 Software Verification proves properties of programs. That is, given the basic
problem of program 𝑃 satisyfing a property 𝑝 we want to show that for all
possible inputs and runs of 𝑃 , the property 𝑝 holds.

 Software verification is far more powerful than static analysis. For the same
reasons, it cannot be fully automatic and thus requires user interaction. Hence,
it is complex to use.

 Software verification does not have false negatives, only failed proof attempts.
If we can prove a property, it holds.

 Software verification is used in highly critical systems.

Systeme hoher Sicherheit und Qualität, WS 19/20 - 7 -

The Basic Idea

 What does this program compute?

 The index of the maximal element of the array
𝑎 if it is non-empty.

 How to prove it?

(1) We need a language in which to formalise
such assertions.

(2) We need a notion of meaning (semantics)
for the program.

(3) We need to way to deduce valid
assertions.

 Floyd-Hoare logic provides us with (1) and (3).

i: = 0;
x: = 0;
while (i < n) {
if a i ≥ a x {
x ≔ i;
}
i ≔ i + 1;
}

Formalizing correctness:

array a, n ∧ n > 0 ⟹
a x = max a, n

∀i. 0 ≤ i < n ⟹
a[i] ≤ max(a, n)

∃j. 0 ≤ j < n ⟹
a[j] = max(a, n)

Systeme hoher Sicherheit und Qualität, WS 19/20 - 8 -

Recall our simple programming language

 Arithmetic expressions:

𝑎 ∷= 𝑥 𝑛 𝑎1 𝑎2 | 𝑎1 𝑜𝑝𝑎 𝑎2

 Arithmetic operators: 𝑜𝑝𝑎 ∈ {+,−,∗,/}

 Boolean expressions:

𝑏 ≔ true false not 𝑏 𝑏1𝑜𝑝𝑏 𝑏2 𝑎1𝑜𝑝𝑟 𝑎2

 Boolean operators: 𝑜𝑝𝑏 ∈ 𝑎𝑛𝑑, 𝑜𝑟

 Relational operators: 𝑜𝑝𝑟 ∈ =,<,≤,>, ≥,≠

 Statements:

S ::= x := a | skip | S1; S2 | if (b) S1 else S2 | while (b) S

 Labels from basic blocks omitted, only used in static analysis to derive cfg.

 Note this abstract syntax, operator precedence and grouping statements
is not covered.

Systeme hoher Sicherheit und Qualität, WS 19/20 - 9 -

Semantics of our simple language

 The semantics of an imperative language is state transition: the program has
an ambient state, which is changed by assigning values to certain locations.

 Example:

 Semantics in a nutshell:

x ?

y 12

z ?

x 5

y 12

z ?

x 5

y 12

z 17

x 6

y 12

z 17

z := x + yx := 5 x := x + 1

𝜎 𝜎1 = 𝜎[x/5] 𝜎2 = 𝜎1[z/17]

= 𝜎[x/5, z/17]

𝜎3 = 𝜎2[x/6]

= 𝜎[x/6, z/17]

Expressions evaluate to values 𝑉𝑎𝑙 (for our language integers).
Locations 𝐿𝑜𝑐 are variable names.
A program state maps locations to values: Σ = 𝐿𝑜𝑐 ⇀ 𝑉𝑎𝑙
A program maps an initial state to a final state, if it terminates.
Assertions are predicates over program states.

Systeme hoher Sicherheit und Qualität, WS 19/20 - 10 -

Semantics in a nutshell

 There are three major ways to denote semantics.

(1) As a relation between program states, described by an abstract machine
(operational semantics).

(2) As a function between program states, defined for each statement of the
programming langauge (denotational semantics).

(3) As the set of all assertions which hold for a program (axiomatic
semantics).

 Floyd-Hoare logic covers the third aspect, but it is important that all three
semantics agree.

 We will not cover semantics in detail here, but will concentrate on how to
use Floyd-Hoare logic to prove correctness.

Systeme hoher Sicherheit und Qualität, WS 19/20 - 11 -

Extending our simple language

 We introduce a set 𝑉𝑎𝑟 of logical variables.

 Assertions are boolean expressions, which may not be executable, and
arithmetic expressions containing logical variables.

 Arithmetic assertions
𝑎𝑒 ∷= 𝑥 𝑋 𝑛 𝑎𝑒1 𝑎𝑒2 | 𝑎𝑒1 𝑜𝑝𝑎 𝑎𝑒2 𝑓(𝑎𝑒1, … , 𝑎𝑒𝑛)

 where 𝑥 ∈ 𝐿𝑜𝑐, 𝑋 ∈ 𝑉𝑎𝑟, 𝑜𝑝𝑎 ∈ {+,−,∗,/}

 Boolean assertions:
𝑏𝑒 ≔ true false not 𝑏𝑒 𝑏𝑒1𝑜𝑝𝑏 𝑏𝑒2 𝑎𝑒1𝑜𝑝𝑟 𝑎𝑒2

𝑝 𝑎𝑒1, … , 𝑎𝑒𝑛 | ∀𝑋. 𝑏𝑒 ∃𝑋. 𝑏𝑒

 Boolean operators: 𝑜𝑝𝑏 ∈ ∧,∨,⟹

 Relational operators: 𝑜𝑝𝑟 ∈ =,<,≤,>, ≥,≠

Systeme hoher Sicherheit und Qualität, WS 19/20 - 12 -

Floyd-Hoare Triples

The basic build blocks of Floyd-Hoare logic are
Hoare triples of the form 𝑃 𝑐 𝑄 .

 P, Q are assertions using variables in 𝐿𝑜𝑐 and 𝑉𝑎𝑟

 e.g. x < 5 + y, Odd(x), …

 A state 𝜎 satisfies P (written 𝜎 ⊨ 𝑃) iff 𝑃[Τ𝜎 𝑥
𝑥] is true for all 𝑥 ∈ 𝐿𝑜𝑐 and all

possible values for X ∈ 𝑉𝑎𝑟:

 e.g. let

 A formula P describes a set of states, i.e. all states that satisfy the formula P.

x 5

y 12

z 17

𝜎 = then 𝜎 satisfies x < 5 + y, Odd(x)

Systeme hoher Sicherheit und Qualität, WS 19/20 - 13 -

Partial and Total Correctness

 Partial correctness: ⊨ 𝑃 𝑐{𝑄}
 𝑐 is partial correct with precondition 𝑃 and postcondition 𝑄 iff, for all

states 𝜎 which satisfy P and for which the execution of 𝑐 terminates in
some state 𝜎′ then it holds that 𝜎′ satisfies 𝑄:

∀𝜎. 𝜎 ⊨ 𝑃 ∧ ∃𝜎′. 𝜎, 𝑐 → 𝜎′ ⟹ 𝜎′ ⊨ 𝑄

 Total correctness: ⊨ 𝑃 𝑐[𝑄]

 𝑐 is total correct with precondition 𝑃 and postcondition 𝑄 iff, for all states
𝜎 which satisfy 𝑃 the execution of c terminates in some state 𝜎′ which
satisfies 𝑄:

∀𝜎. 𝜎 ⊨ 𝑃 ⟹ ∃𝜎′. 𝜎, 𝑐 → 𝜎′ ∧ 𝜎′ ⊨ 𝑄

 Examples: ⊨ 𝑡𝑟𝑢𝑒 𝑤ℎ𝑖𝑙𝑒 𝑡𝑟𝑢𝑒 𝑠𝑘𝑖𝑝 𝑡𝑟𝑢𝑒 ,
⊭ 𝑡𝑟𝑢𝑒 𝑤ℎ𝑖𝑙𝑒 𝑡𝑟𝑢𝑒 𝑠𝑘𝑖𝑝 [𝑡𝑟𝑢𝑒]

Systeme hoher Sicherheit und Qualität, WS 19/20 - 14 -

Reasoning with Floyd-Hoare Triples

 How do we know that ⊨ 𝑃 𝑐 𝑄 in practice ?

 Calculus to derive triples, written as ⊢ 𝑃 𝑐{𝑄}

 Rules operate along the constructs of the programming language (cf.
operational semantics)

 Only one rule is applicable for each construct (!)

 Rules are of the form

⊢ 𝑃1 𝑐1 𝑄1 , … , ⊢ 𝑃𝑛 𝑐𝑛{𝑄𝑛}

⊢ 𝑃 𝑐 {𝑄}

meaning we can derive ⊢ 𝑃 𝑐 𝑄 if all ⊢ 𝑃𝑖 𝑐𝑖 𝑄𝑖 are derivable.

Systeme hoher Sicherheit und Qualität, WS 19/20 - 15 -

Floyd-Hoare Rules: Assignment

 Assignment rule:

⊢ {𝑃[Τ𝑒 𝑥]} 𝑥 ∶= 𝑒 {𝑃}

 𝑃[Τ𝑒 𝑥] replaces all occurrences of the program variable 𝑥 by the arithmetic
expression 𝑒.

 Examples:

 ⊢ {0 < 10} 𝑥 ∶= 0 {𝑥 < 10}

 ⊢ 𝑥 – 1 < 10 𝑥 ∶= 𝑥 − 1 𝑥 < 10

 ⊢ {𝑥 + 1 + 𝑥 + 1 < 10} 𝑥 ∶= 𝑥 + 1 {𝑥 + 𝑥 < 10}
𝑥 < 11

𝑥 + 𝑥 < 8

Systeme hoher Sicherheit und Qualität, WS 19/20 - 16 -

Rules: Sequencing and Conditional

 Sequence:
⊢ 𝑃 𝑐1 𝑄 ⊢ 𝑄 𝑐2 {𝑅}

⊢ 𝑃 𝑐1; 𝑐2 {𝑅}

 Needs an intermediate state predicate 𝑄.

 Conditional:
⊢ 𝑃 ∧ 𝑏 𝑐1 𝑄 ⊢ 𝑃 ∧ ¬𝑏 𝑐2 {𝑄}

⊢ 𝑃 if b 𝑐1else 𝑐2 {𝑄}

 Two preconditions capture both cases of 𝑏 and ¬ 𝑏.

 Both branches end in the same postcondition Q.

Systeme hoher Sicherheit und Qualität, WS 19/20 - 17 -

Rules: Iteration and Skip

⊢ 𝑃 ∧ 𝑏 𝑐 {𝑃}

⊢ 𝑃 while (𝑏) 𝑐 {𝑃 ∧ ¬ 𝑏}

 𝑃 is called the loop invariant. It has to hold both before and after the loop
(but not necessarily in the whole body).

 Before the loop, we can assume the loop condition 𝑏 holds.

 After the loop, we know the loop condition 𝑏 does not hold.

 In practice, the loop invariant has to be given– this is the creative and difficult
part of working with the Floyd-Hoare calculus.

⊢ 𝑃 𝐬𝐤𝐢𝐩 {𝑃}

 skip has no effect: pre- and postcondition are the same.

Systeme hoher Sicherheit und Qualität, WS 19/20 - 18 -

𝑃1

Final Rule: Weakening

 Weakening is crucial, because it allows us to change pre- or postconditions by
applying rules of logic.

𝑃2 ⟹ 𝑃1 ⊢ 𝑃1 𝑐 𝑄1 𝑄1 ⟹𝑄2

⊢ 𝑃2 𝑐 𝑄2

 We can weaken the precondition and strengthen the postcondition:

 𝑃 ⟹ 𝑄 means that all states in which 𝑃 holds, Q also holds.

 ⊨ 𝑃 𝑐 𝑄 means whenever 𝑐 starts in a state in which 𝑃 holds, it ends in
a state in which 𝑄 holds.

 So, we can reduce the starting set, and enlarge the target set.

𝑄2𝑃2 𝑄1
c

Systeme hoher Sicherheit und Qualität, WS 19/20 - 19 -

How to derive and denote proofs

 The example shows ⊢ 𝑃 𝑐 𝑄

 We annotate the program with valid
assertions: the precondition in the
preceding line, the postcondition in the
following line.

 The sequencing rule is applied implicitly.

 Consecutive assertions imply weaking,
which has to be proven separately.

 In the example:
𝑃 ⟹ 𝑃1,
𝑃2 ⟹ 𝑃3,
𝑃3 ∧ 𝑥 < 𝑛 ⟹ 𝑃4,
𝑃3 ∧ ¬ 𝑥 < 𝑛 ⟹ 𝑄

// {P}

// {𝑃1}

x:= e;

// {𝑃2}

// {𝑃3}

while (x< n) {

// {𝑃3 ∧ 𝑥 < 𝑛}

// {𝑃4}

z := a

// {𝑃3}

}

// {𝑃3 ∧ ¬(𝑥 < 𝑛)}

// {𝑄}

Systeme hoher Sicherheit und Qualität, WS 19/20 - 20 -

More Examples

P ==
p ≔ 1;
c ≔ 1;
while c ≤ n {
p ≔ p ∗ c;
c ≔ c + 1
}

R ==
r ≔ a;
q ≔ 0;
while b ≤ r {
r ≔ r − b;
q ≔ q + 1
}

Specification:
⊢ 1 ≤ n

P
{ p = n! }

Specification:
⊢ a ≥ 0 ∧ b ≥ 0

R
{ a = b ∗ q + r ∧
0 ≤ r ∧ r < b}

Q ==
p ≔ 1;
while 0 < n {
p ≔ p ∗ n;
n ≔ n − 1
}

Specification:
⊢ 1 ≤ n ∧ 𝑛 = 𝑁
Q
{ p = N! }

Invariant:
p = c − 1 !

Invariant:

p = ෑ

i=n+1

N

i

Invariant:
a = b ∗ q + r ∧ 0 ≤ r

Systeme hoher Sicherheit und Qualität, WS 19/20 - 21 -

How to find an Invariant

 Going backwards: try to split/weaken postcondition 𝑄 into negated loop-
condition and „something else“ which becomes the invariant.

 Many while-loops are in fact for-loops, i.e. they count uniformly:

i ≔ 0;
𝐰𝐡𝐢𝐥𝐞 𝑖 < 𝑛 {
… ;
𝑖 ≔ 𝑖 + 1
}

 In this case:

 If post-condition is 𝑃(𝑛), invariant is 𝑃 𝑖 ∧ 𝑖 ≤ 𝑛.

 If post-condition is ∀𝑗. 0 ≤ 𝑗 < 𝑛. 𝑃(𝑗) (uses indexing, typically with arrays),
invariant is ∀𝑗. 𝑗 ≤ 0 < 𝑖. 𝑖 ≤ 𝑛 ∧ 𝑃 𝑗 .

Systeme hoher Sicherheit und Qualität, WS 19/20 - 22 -

Summary

 Floyd-Hoare-Logic allows us to prove properties of programs.

 The proofs cover all possible inputs, all possible runs.

 There is partial and total correctness:

 Total correctness = partial correctness + termination.

 There is one rule for each construct of the programming language.

 Proofs can in part be constructed automatically, but iteration needs an
invariant (which cannot be derived mechanically).

 Next lecture: correctness and completeness of the rules.

Frohes Fest
und guten Rutsch.

