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Organisatorisches 

 

 

 

 Die Übung am Donnerstag, 31.10.2019, fällt aus (Reformationstag). 

 

 

 Nächste Übung am Dienstag, 05.11.2019. 
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Where are we? 

 01: Concepts of Quality 

 02: Legal Requirements: Norms and Standards 

 03: The Software Development Process 

 04: Hazard Analysis 

 05: High-Level Design with SysML 

 06: Formal Modelling with OCL 

 07: Testing 

 08: Static Program Analysis 

 09-10: Software Verification  

 11-12: Model Checking 

 13: Conclusions 
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Software Development Models 
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Software Development Process 

 A software development process is the structure imposed on the development 
of a software product. 

 

 We classify processes according to models which specify 

  the artefacts of the development, such as  

 the software product itself, specifications, test documents, reports, 
reviews, proofs, plans etc; 

 the different stages of the development; 

 and the artefacts associated to each stage. 

 

 Different models have a different focus: 

 Correctness, development time, flexibility. 

 

 What does quality mean in this context? 

 What is the output? Just the software product, or more? (specifications, 
test runs, documents, proofs…) 
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Artefacts in the Development Process 

Planning: 
• Document plan 
• V&V plan 
• QM plan 
• Test plan 
• Project manual 

Specifications: 

• Requirements 
• System specification 
• Module specification 
• User documents 

Implementation: 

• Source code 
• Models 
• Documentation 

 
 

Possible formats: 
• Documents: 

• Word documents 
• Excel sheets 
• Wiki text 
• Database (Doors) 

• Models: 
• UML/SysML diagrams 
• Formal languages: Z, 

HOL, etc. 
• Matlab/Simulink or 

similar diagrams 
• Source code 

Verification & validation: 

• Code review protocols 
• Test cases, procedures, and 

test results 
• Proofs 
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Waterfall Model (Royce 1970) 

 Classical top-down sequential workflow with strictly separated phases. 

 

 

 

 

 

 

 

 

 

 

 Unpractical as an actual workflow (no feedback between phases), but even the 
original paper did not really suggest this.  

 

 

 

 

 

 

Requirement 

Implementation 

Design 

Maintenance 

Verification 
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Spiral Model (Böhm 1986) 

 Incremental development guided by risk factors 

 

 Four phases: 

 Determine objectives 

 Analyse risks 

 Development and test 

 Review, plan next iteration 

 

 See e.g.  

 Rational Unified Process (RUP) 

 

 

 Drawbacks: 

 Risk identification is the key, and can be quite difficult 
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Model-Driven Development (MDD, MDE) 

 Describe problems on abstract level using a modeling language (often a 
domain-specific language), and derive implementation by model transformation 
or run-time interpretation.  

 Often used with UML (or its DSLs, eg. SysML) 

 

 

 

 Variety of tools: 

 Rational tool chain, Enterprise Architect, Rhapsody, Papyrus, Artisan 
Studio, MetaEdit+, Matlab/Simulink/Stateflow* 

 EMF (Eclipse Modelling Framework) 

 

 Strictly sequential development 

 

 Drawbacks: high initial investment, limited, reverse engineering and change 
management (code changes to model changes) is complex 

 * Proprietary DSL – not related to UML 

Platform-
specific model 

Platform-
independent 

model 
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Agile Methods 

 Prototype-driven development  

 E.g. Rapid Application Development 

 Development as a sequence of prototypes 

 Ever-changing safety and security requirements 

 

 Agile programming 

 E.g. Scrum, extreme programming 

 Development guided by functional requirements  

 Process structured by rules of conduct for developers 

 Rules capture best practice 

 Less support for non-functional requirements 

 

 Test-driven development 

 Tests as executable specifications: write tests first 

 Often used together with the other two 
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V-Model 

 Evolution of the waterfall model: 

 Each phase supported by corresponding verification & validation phase 

 Feedback between next and previous phase 

 Standard model for public projects in Germany 

 … but also a general term  for models of this „shape“ 

 Current: V-Modell XT („extreme tailoring“) 

 Shape gives depencies, not development sequence 

 
Validated w.r.t. 
completeness, 
verified w.r.t. 
consistency 
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Software Development Models 

Structure 

F
le

x
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ty

 

from S. Paulus: Sichere Software 

Spiral model 

Prototype-based 
developments 

Agile 

Methods 

Waterfall 

model 

V-model 

Model-driven 

developement 
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Development Models for Safety-Critical Systems 
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Development Models for Critical Systems 

 Ensuring safety/security needs structure. 

 …but too much structure makes developments bureaucratic, which is in 
itself a safety risk. 

 Cautionary tale: Ariane-5 

 

 Standards put emphasis on process. 

 Everything needs to be planned and documented. 

 Key issues: auditability, accountability, traceability. 

 

 Best suited development models are variations of the V-model or spiral model. 

 

 A new trend? V-Model XT allows variations of original V-model, e.g.: 

 V-Model for initial developments of a new product 

 Agile models (e.g. Scrum) for maintenance and product extensions 



    Systeme hoher Sicherheit und Qualität, WS 19/20 - 15 -  
    

Auditability and Accountability 

 Version control and configuration management is mandatory in safety-critical 
development (auditability). 

 

 Keeping track of all artifacts contributing to a particular instance (build) of the 
system (configuration), and their versions. 

 

 Repository keeps all artifacts in all versions. 

 Centralised: one repository vs. distributed (every developer keeps own 
repository) 

 General model: check out – modify – commit 

 Concurrency: enforced lock, or merge after commit. 

 

 Well-known systems: 

 Commercial: ClearCase, Perforce, Bitkeeper… 

 Open Source: Subversion (centralised); Git, Mercurial (distributed) 
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Traceability 

 The idea of being able to follow requirements (in particular, safety 
requirements) from requirement spec to the code (and possibly back). 
 

 On the simplest level, an Excel sheet with (manual) links to the program. 
 

 More sophisticated tools include DOORS: 

 Decompose requirements, hierarchical requirements 

 Two-way traceability: from code, test cases, test procedures, and test 
results back to requirements 

 E.g. DO-178B requires all code derives from requirements 

 

 The SysML modelling language has traceability support: 

 Each model element can be traced to a requirement. 

 Special associations to express traceability relations. 
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Development Model in IEC 61508 

 IEC 61508 in principle allows any development model, but:  

 It requires safety-directed activities in each phase of the life cycle  
(safety life cycle, cf. last lecture). 

 Development is one part of the life cycle.  

 The only development model mentioned is a V-model: 



    Systeme hoher Sicherheit und Qualität, WS 19/20 - 19 -  
    

Development Model in DO-178B/C 
 
DO-178B/C defines different processes in the SW life cycle: 

 Planning process 

 Development process, structured in turn into 

 Requirements process 

 Design process 

 Coding process 

 Integration process 

 Verification process 

 Quality assurance process 

 Configuration management process 

 Certification liaison process 

 

 There is no conspicuous diagram, but the Development Process has 
sub-processes suggesting the phases found in the V-model as well. 

 Implicit recommendation of the V-model. 
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Development Model for Hardware 

Specification 

System Model 

RTL Model 

Gate Level 

Layout 

Transistor Level 

Silicone 

always @(posedge clk) 
   if (rst) out <= 0; 
   else 
     if (! ctrl)   out <= s0 | in;  
     else        out <= s0 & in; 

Register-Transfer-Ebene: Verilog 

Gate Level 

SC_MODULE(example) { 
sc_in_clk clk; 
sc_in<bool> rst, in, ctrl; sc_out<bool> out;  
int o, s0; 
 
void tick() { 
  if (rst.read) o= 0; 
  else if (!ctrl.read) o= s0 | in.read; 
          else o= s0 & in.read; 
  out.write(o); s0= o; 
} 
…  
}    System-Model:  SystemC 
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Development Model for Hardware 

Equivalence Check 

Test 

Property Check 
Specification 

System Model 

RTL Model 

Gate Level 

Layout 

Transistor Level 

Silicone 

Simulation 

Emulation 
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Basic Notions of Formal Software Development 
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Formal Software Development 

 In a formal development, properties are stated in a rigorous way with a 
precise mathematical semantics. 

 Formal specification requirements can be proven.  

Advantages: 

 Errors can be found early in the development process. 

 High degree of confidence into the system. 

 Recommend use of formal methods for high SILs/EALs. 

Drawbacks:  

 Requires a lot of effort and is thus expensive. 

 Requires qualified personnel (that would be you). 

 There are tools which can help us by 

 finding (simple) proofs for us (model checkers), or 

 checking our (more complicated) proofs (theorem provers). 
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Formal Semantics 

 States and transitions between them: 

 

 

 

 

 

 Operational semantics describes relation between states and transitions: 

 

 

 

 

 Formal proofs;  e.g. proving 

 x = y + 4; z = y – 2;   

                                             yields the same final state as  
 z = y - 2;  x = y + 4; 

x 5 

y 3 

z 8 

x 7 

y 3 

z 8 

x = y + 4; z = y – 2; 
x 7 

y 3 

z 1 

s0 s1 s2 

s ` e  n 

s ` x = e    s[x / n] 

s0 ` y + 4  7 

s0 ` x = y + 4   s1 
hence: 

System run 
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Semantics of Programs and Requirements 

 Set of all possible system runs 

 

 

 

 

 

 

 

 

 Requirements related to safety and security: 

 Requirements on single states ? 

 Requirements on system runs ? 

 Requirements on sets of system runs ? 

 

x 5 

y 3 

z 8 

x 7 

y 3 

z 8 

x = y + 4; z = y – 2; 
x 7 

y 3 

z 1 

s0 s1 s2 

… 

Alpern & Schneider (1985, 1987) 
Clarkson & Schneider (2008) 
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Some Notions 

 Let 𝑏, 𝑡 be two traces then 

       𝑏 ≤ 𝑡  iff. ∃𝑡′. 𝑡 = 𝑏 ⋅ 𝑡′   i.e.  𝑏 is a finite prefix of 𝑡 

 

 A property is a set of infinite execution traces  (like a program) 

 Trace t satisfies property P, written 𝑡 ⊨ 𝑃, iff 𝑡 ∈ 𝑃  

 

 A hyperproperty is a set of sets of infinite execution traces (like a set of 

programs) 

 A system (set of traces) S satisfies H iff S  H 

 An observation 𝑂𝑏𝑠 is a finite set of finite traces 

 𝑂𝑏𝑠 ≤ 𝑆 (𝑂𝑏𝑠 is a prefix of 𝑆) iff   

      𝑂𝑏𝑠 is an observation and  ∀𝑚 ∈ 𝑂𝑏𝑠. ∃𝑡 ∈ 𝑆. 𝑚 ≤ 𝑡 
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Requirements on States: Safety Properties 

 Safety property S:   „Nothing bad happens“ 

 i.e. the system will never enter a bad state 

 E.g. “Lights of crossing streets do not go 
green at the same time”  

 

 A bad state: 

 can be immediately recognized; 

 cannot be sanitized by following states. 

 

 S is a safety property iff 

∀𝑡.  𝑡 ∉ 𝑆 ⟹ ∃𝑡1.  𝑡1 ≤ 𝑡 ⟹ ∀𝑡2.   𝑡1 ≤ 𝑡2 ⟹  𝑡2 ∉ 𝑆 ,   𝑡1 finite 

 

𝑡1 

𝑡2 
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Proving Safety Properties 

 In the previous specification, 𝑡1  is finite. As a consequence, 

 a property is a safety property if and only if its violation can be detected 
on a finite trace. 

 

 Safety properties are typically proven by induction 

 Base case:  initial states are good (= not bad) 

 Step case: each transition transforms a good state again in a good state 

 

 Safety properties can be enforced by run-time monitors 

 Monitor checks following state in advance 
and allows execution only if it is a good state 
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Requirements on Runs: Liveness Properties 

 Liveness property L:   

 „Good things will happen eventually“ 

 E.g. “my traffic light will go green 
eventually * ” 

 

 A good thing is always possible and possibly infinite. 
 

 L is a liveness property iff 

 ∀ 𝑡.  finite(𝑡)  → ∃ 𝑡1.   𝑡 ⋅ 𝑡1 ∈ 𝐿 
 

 i.e. all finite traces t can be extended to a trace in L. 

 

* Achtung:   “eventually” bedeutet  “irgendwann” oder “schlussendlich” 
         aber nicht “eventuell” ! 
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Satisfying Liveness Properties 

 Liveness properties cannot (!) be enforced by run-time monitors. 

 

 Liveness properties are typically proven by the help of well-founded orderings 

 Measure function m on states s 

 Each transition decreases m  
 t 2 L  if we reach a state with minimal m 

 

 E.g. measure denotes the number of transitions for the light to go green 
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Requirements on Sets of Runs:  
Safety Hyperproperties 

 Safety hyperproperty:   „System never behaves bad“ 

 No bad thing happens in a finite set of finite traces 

 (the prefixes of) different system runs do not exclude each other 

 E.g. “the traffic light cycle is always the same” 

 

 A bad system can be recognized by a bad observation (set of finite runs) 

 A bad observation cannot be sanitized regards less how we continue 
it or add additional system runs 

 E.g. two system runs having different traffic light cycles 

 

 S is a safety hyperproperty iff  (see safety property): 

 

  ∀𝑇. 𝑇 ∉ 𝑆 ⟹ (∃𝑂𝑏𝑠.  𝑂𝑏𝑠 ≤ 𝑇 ⟹  ∀𝑇′. 𝑂𝑏𝑠 ≤ 𝑇′ ⟹ 𝑇′ ∉ 𝑆)  
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Requirements on Sets of Runs: 
Liveness Hyperproperties 

 Liveness hyperproperty S:   
„The system will eventually develop to a good system“ 

 Considering any finite part of a system behavior, the system 
eventually develops into a “good” system (by continuing 
appropriately the system runs or adding new system runs) 

 E.g. “Green light for pedestrians can always be omitted” 

 L is liveness hyperproperty  iff   
∀𝑇. ∃𝐺. 𝑇 ≤ 𝐺 ∧ 𝐺 ∈ 𝐿 

 T is a finite set of finite traces (observation) 

 Each observation can be explained by a system G satisfying L 

 

 Examples:  

 Average response time 

 Closure operations in information flow control 

 Fair scheduling 
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Landscape of (Hyper)Properties 

 Each (hyper-) property can be represented as a combination of  
safety and liveness (hyper-) properties. 

 

Safety  
Hyperproperties 

Liveness  
Hyperproperties 

Safety  
Properties 

Liveness 
Properties 

Invariants 
Guaranteed  

Service 

Average  
Response 

Non- 
Interference 

Closure 
 Predicates Observational 

determinism 
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Structuring the Formal Development 
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The Global Picture 

Informal Specification 

Safety/Security 
Requirements 

Composite Specification 

Abstract Specification 

Refined Specification 

Decomposition 

Refinement / 
Decomposition 

Safety/Security 
Requirements 

Satisfies 

Satisfies 

Satisfies 

Satisfies 

• Test 
• Program analysis 
• Model checking 
• Formal proof 
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Structuring the Development 

Horizontal structuring: 

 Modularization into components 

 Composition and Decomposition 

 Aggregation 
 

 Vertical structuring: 

 Abstraction and refinement 
from design specification to implementation 

 Declarative vs. imparative specification 

 Inheritance of properties  
 

 Views: 

 Addresses multiple aspects of a system 

 Behavioral model, performance model, structural model, analysis 
model(e.g. UML, SysML) 
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Horizontal Structuring (informal) 

 Composition of components  

 Dependent on the individual layer of abstraction 

 E.g. modules, procedures, functions,… 

 Example: 
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Modular Structuring of Requirements 

System 
Requirements 

Component 1 
Requirement 

Component n 
Requirement 

Component 1 
Guarantees 

Component n 
Guarantees 

System Guarantees 

… 

… 

Decomposition of requirements 

Composition of guarantees 

Verification of requirements 
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Mutual Dependencies: Assume/Guarantee 

 Safety requirement:  Queue does not loose any items. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Components depend on each other! 

 Initialization ? 

Loop:  
  if (s1 == a1) {  
   send(x, in);  s1 = not s1 } 

Loop:  
  if (s1 != a1 && |q| < max)  { 
       enq(q, in);  
       a1 = not a1; 
       } 
  if (s2 == a2 && |q| > 0)  { 
       deq(q, out);   
       s2 != not s2  
       } 
 

Loop:  
  if (s2 != a2) then { 
     read(y, out); 
     a2 = not a2; 
     consume(y)  
     } 

in out 

s1 s2 

a2 a1 

q 

Producer Queue Consumer 

Fixed capacity 
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Composition of Security Guarantees 

Only complete bicycles are allowed to pass the gate.   

Secure ! Secure ! 
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Composition of Security Guarantees 

Insecure ! 

Only complete bicycles are allowed to pass the gate.   Security properties are 
non-compositional ! 



    Systeme hoher Sicherheit und Qualität, WS 19/20 - 43 -  
    

Concurrent shared variable programs are non-
compositional 

Thread1() { 

       x = 1; 

} 

// @post: x == 1 

Thread2() { 

       x = (1 << 64); 

} 

// @post: x == (1 << 64) 

long long x; 

Global variable 

Post conditions hold in 
absence of concurrent 

threads 

 

(Thread1() || Thread2()); 

// @post: x == 1 or x == (1<<64) Does composition hold? 
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Concurrent shared variable programs are non-
compositional 

 This post-condition cannot be derived from any logical composition of the 
original post-conditions of Thread1() and Thread2() 
 

 For writing a 128bit integer to memory, two writes on the memory  bus are 
required. As a consequence, the final value of x may also be (1<<64) + 1 

 

 

 

long long x; 

 

(Thread1() || Thread2()); 

 

// @post: x == 1 or x == (1<<64) or x == (1<<64) + 1 
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Vertical Structuring - Refinement 

 Idea:   start at an abstract description and add        details 
step by step 

 

     From abstract specification to an implementation 

 

 What do we want to refine? 

 Algorithm: algebraic refinement 

 Data:  data refinement 

 Process:  process refinement 

 Events:  action refinement 



    Systeme hoher Sicherheit und Qualität, WS 19/20 - 46 -  
    

empty: stack;  
pop(stack):stack; 
push(int, stack):stack 

 

Stack 

Algebraic Refinement 

[]     :: [a]   
head :: [a]-> a 
(:)    :: a-> [a]-> [a] 
tailSafe :: [a]-> [a] 
 
tailSafe xs = if null xs then [] else tail xs 

List 

empty ↦  [] 
push   ↦ (:) 
pop     ↦ safetail 

Implementing  
stacks by lists 

safetail([])    == [] 
safetail(y:xs) == y 

To prove: 

Refinement preserves  
properties of stack by 
transitivity of the logic ! 

Refinement Satisfies 

pop(empty) = empty    

pop(push(x, y)) = y 
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Even More Refinements 

 Data refinement 

 Abstract datatype is „implemented“ in terms of the more concrete 
datatype 

 Simple example: define stack with lists 

 

 Process refinement 

 Process is refined by excluding certain runs 

 Refinement as a reduction of underspecification by eliminating possible 
behaviours 

 

 Action refinement 

 Action is refined by a sequence of actions 

 E.g.  a stub for a procedure is refined to an executable procedure 
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Conclusion & Summary 

Software development models: structure vs. flexibility 

Safety standards such as IEC 61508, DO-178B suggest 
development according to V-model. 

 Specification and implementation linked by verification and 
validation. 

 Variety of artefacts produced at each stage, which have to 
be subjected to external review. 

Safety / Security Requirements 

 Properties:  sets of traces 

 Hyperproperties:  sets of properties 

Structuring of the development: 

 Horizontal – e.g. composition 

 Vertical – refinement (e.g. algebraic, data, process…) 


