
 Systeme hoher Sicherheit und Qualität, WS 19/20 - 1 -

Systeme hoher Sicherheit und Qualität

WS 2019/2020

Christoph Lüth, Dieter Hutter, Jan Peleska

Lecture 3:
The Software Development Process

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 2 -

Organisatorisches

 Die Übung am Donnerstag, 31.10.2019, fällt aus (Reformationstag).

 Nächste Übung am Dienstag, 05.11.2019.

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 3 -

Where are we?

 01: Concepts of Quality

 02: Legal Requirements: Norms and Standards

 03: The Software Development Process

 04: Hazard Analysis

 05: High-Level Design with SysML

 06: Formal Modelling with OCL

 07: Testing

 08: Static Program Analysis

 09-10: Software Verification

 11-12: Model Checking

 13: Conclusions

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 4 -

Software Development Models

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 5 -

Software Development Process

 A software development process is the structure imposed on the development
of a software product.

 We classify processes according to models which specify

 the artefacts of the development, such as

 the software product itself, specifications, test documents, reports,
reviews, proofs, plans etc;

 the different stages of the development;

 and the artefacts associated to each stage.

 Different models have a different focus:

 Correctness, development time, flexibility.

 What does quality mean in this context?

 What is the output? Just the software product, or more? (specifications,
test runs, documents, proofs…)

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 6 -

Artefacts in the Development Process

Planning:
• Document plan
• V&V plan
• QM plan
• Test plan
• Project manual

Specifications:

• Requirements
• System specification
• Module specification
• User documents

Implementation:

• Source code
• Models
• Documentation

Possible formats:
• Documents:

• Word documents
• Excel sheets
• Wiki text
• Database (Doors)

• Models:
• UML/SysML diagrams
• Formal languages: Z,

HOL, etc.
• Matlab/Simulink or

similar diagrams
• Source code

Verification & validation:

• Code review protocols
• Test cases, procedures, and

test results
• Proofs

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 7 -

Waterfall Model (Royce 1970)

 Classical top-down sequential workflow with strictly separated phases.

 Unpractical as an actual workflow (no feedback between phases), but even the
original paper did not really suggest this.

Requirement

Implementation

Design

Maintenance

Verification

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 8 -

Spiral Model (Böhm 1986)

 Incremental development guided by risk factors

 Four phases:

 Determine objectives

 Analyse risks

 Development and test

 Review, plan next iteration

 See e.g.

 Rational Unified Process (RUP)

 Drawbacks:

 Risk identification is the key, and can be quite difficult

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 9 -

Model-Driven Development (MDD, MDE)

 Describe problems on abstract level using a modeling language (often a
domain-specific language), and derive implementation by model transformation
or run-time interpretation.

 Often used with UML (or its DSLs, eg. SysML)

 Variety of tools:

 Rational tool chain, Enterprise Architect, Rhapsody, Papyrus, Artisan
Studio, MetaEdit+, Matlab/Simulink/Stateflow*

 EMF (Eclipse Modelling Framework)

 Strictly sequential development

 Drawbacks: high initial investment, limited, reverse engineering and change
management (code changes to model changes) is complex

 * Proprietary DSL – not related to UML

Platform-
specific model

Platform-
independent

model

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 10 -

Agile Methods

 Prototype-driven development

 E.g. Rapid Application Development

 Development as a sequence of prototypes

 Ever-changing safety and security requirements

 Agile programming

 E.g. Scrum, extreme programming

 Development guided by functional requirements

 Process structured by rules of conduct for developers

 Rules capture best practice

 Less support for non-functional requirements

 Test-driven development

 Tests as executable specifications: write tests first

 Often used together with the other two

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 11 -

V-Model

 Evolution of the waterfall model:

 Each phase supported by corresponding verification & validation phase

 Feedback between next and previous phase

 Standard model for public projects in Germany

 … but also a general term for models of this „shape“

 Current: V-Modell XT („extreme tailoring“)

 Shape gives depencies, not development sequence

Validated w.r.t.
completeness,
verified w.r.t.
consistency

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 12 -

Software Development Models

Structure

F
le

x
ib

ili
ty

from S. Paulus: Sichere Software

Spiral model

Prototype-based
developments

Agile

Methods

Waterfall

model

V-model

Model-driven

developement

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 13 -

Development Models for Safety-Critical Systems

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 14 -

Development Models for Critical Systems

 Ensuring safety/security needs structure.

 …but too much structure makes developments bureaucratic, which is in
itself a safety risk.

 Cautionary tale: Ariane-5

 Standards put emphasis on process.

 Everything needs to be planned and documented.

 Key issues: auditability, accountability, traceability.

 Best suited development models are variations of the V-model or spiral model.

 A new trend? V-Model XT allows variations of original V-model, e.g.:

 V-Model for initial developments of a new product

 Agile models (e.g. Scrum) for maintenance and product extensions

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 15 -

Auditability and Accountability

 Version control and configuration management is mandatory in safety-critical
development (auditability).

 Keeping track of all artifacts contributing to a particular instance (build) of the
system (configuration), and their versions.

 Repository keeps all artifacts in all versions.

 Centralised: one repository vs. distributed (every developer keeps own
repository)

 General model: check out – modify – commit

 Concurrency: enforced lock, or merge after commit.

 Well-known systems:

 Commercial: ClearCase, Perforce, Bitkeeper…

 Open Source: Subversion (centralised); Git, Mercurial (distributed)

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 16 -

Traceability

 The idea of being able to follow requirements (in particular, safety
requirements) from requirement spec to the code (and possibly back).

 On the simplest level, an Excel sheet with (manual) links to the program.

 More sophisticated tools include DOORS:

 Decompose requirements, hierarchical requirements

 Two-way traceability: from code, test cases, test procedures, and test
results back to requirements

 E.g. DO-178B requires all code derives from requirements

 The SysML modelling language has traceability support:

 Each model element can be traced to a requirement.

 Special associations to express traceability relations.

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 17 -

Development Model in IEC 61508

 IEC 61508 in principle allows any development model, but:

 It requires safety-directed activities in each phase of the life cycle
(safety life cycle, cf. last lecture).

 Development is one part of the life cycle.

 The only development model mentioned is a V-model:

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 19 -

Development Model in DO-178B/C

DO-178B/C defines different processes in the SW life cycle:

 Planning process

 Development process, structured in turn into

 Requirements process

 Design process

 Coding process

 Integration process

 Verification process

 Quality assurance process

 Configuration management process

 Certification liaison process

 There is no conspicuous diagram, but the Development Process has
sub-processes suggesting the phases found in the V-model as well.

 Implicit recommendation of the V-model.

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 20 -

Development Model for Hardware

Specification

System Model

RTL Model

Gate Level

Layout

Transistor Level

Silicone

always @(posedge clk)
 if (rst) out <= 0;
 else
 if (! ctrl) out <= s0 | in;
 else out <= s0 & in;

Register-Transfer-Ebene: Verilog

Gate Level

SC_MODULE(example) {
sc_in_clk clk;
sc_in<bool> rst, in, ctrl; sc_out<bool> out;
int o, s0;

void tick() {
 if (rst.read) o= 0;
 else if (!ctrl.read) o= s0 | in.read;
 else o= s0 & in.read;
 out.write(o); s0= o;
}
…
} System-Model: SystemC

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 21 -

Development Model for Hardware

Equivalence Check

Test

Property Check
Specification

System Model

RTL Model

Gate Level

Layout

Transistor Level

Silicone

Simulation

Emulation

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 22 -

Basic Notions of Formal Software Development

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 23 -

Formal Software Development

 In a formal development, properties are stated in a rigorous way with a
precise mathematical semantics.

 Formal specification requirements can be proven.

Advantages:

 Errors can be found early in the development process.

 High degree of confidence into the system.

 Recommend use of formal methods for high SILs/EALs.

Drawbacks:

 Requires a lot of effort and is thus expensive.

 Requires qualified personnel (that would be you).

 There are tools which can help us by

 finding (simple) proofs for us (model checkers), or

 checking our (more complicated) proofs (theorem provers).

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 24 -

Formal Semantics

 States and transitions between them:

 Operational semantics describes relation between states and transitions:

 Formal proofs; e.g. proving

 x = y + 4; z = y – 2;

 yields the same final state as
 z = y - 2; x = y + 4;

x 5

y 3

z 8

x 7

y 3

z 8

x = y + 4; z = y – 2;
x 7

y 3

z 1

s0 s1 s2

s ` e  n

s ` x = e  s[x / n]

s0 ` y + 4  7

s0 ` x = y + 4  s1
hence:

System run

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 25 -

Semantics of Programs and Requirements

 Set of all possible system runs

 Requirements related to safety and security:

 Requirements on single states ?

 Requirements on system runs ?

 Requirements on sets of system runs ?

x 5

y 3

z 8

x 7

y 3

z 8

x = y + 4; z = y – 2;
x 7

y 3

z 1

s0 s1 s2

…

Alpern & Schneider (1985, 1987)
Clarkson & Schneider (2008)

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 26 -

Some Notions

 Let 𝑏, 𝑡 be two traces then

 𝑏 ≤ 𝑡 iff. ∃𝑡′. 𝑡 = 𝑏 ⋅ 𝑡′ i.e. 𝑏 is a finite prefix of 𝑡

 A property is a set of infinite execution traces (like a program)

 Trace t satisfies property P, written 𝑡 ⊨ 𝑃, iff 𝑡 ∈ 𝑃

 A hyperproperty is a set of sets of infinite execution traces (like a set of

programs)

 A system (set of traces) S satisfies H iff S  H

 An observation 𝑂𝑏𝑠 is a finite set of finite traces

 𝑂𝑏𝑠 ≤ 𝑆 (𝑂𝑏𝑠 is a prefix of 𝑆) iff

 𝑂𝑏𝑠 is an observation and ∀𝑚 ∈ 𝑂𝑏𝑠. ∃𝑡 ∈ 𝑆. 𝑚 ≤ 𝑡

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 27 -

Requirements on States: Safety Properties

 Safety property S: „Nothing bad happens“

 i.e. the system will never enter a bad state

 E.g. “Lights of crossing streets do not go
green at the same time”

 A bad state:

 can be immediately recognized;

 cannot be sanitized by following states.

 S is a safety property iff

∀𝑡. 𝑡 ∉ 𝑆 ⟹ ∃𝑡1. 𝑡1 ≤ 𝑡 ⟹ ∀𝑡2. 𝑡1 ≤ 𝑡2 ⟹ 𝑡2 ∉ 𝑆 , 𝑡1 finite

𝑡1

𝑡2

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 28 -

Proving Safety Properties

 In the previous specification, 𝑡1 is finite. As a consequence,

 a property is a safety property if and only if its violation can be detected
on a finite trace.

 Safety properties are typically proven by induction

 Base case: initial states are good (= not bad)

 Step case: each transition transforms a good state again in a good state

 Safety properties can be enforced by run-time monitors

 Monitor checks following state in advance
and allows execution only if it is a good state

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 30 -

Requirements on Runs: Liveness Properties

 Liveness property L:

 „Good things will happen eventually“

 E.g. “my traffic light will go green
eventually * ”

 A good thing is always possible and possibly infinite.

 L is a liveness property iff

 ∀ 𝑡. finite(𝑡) → ∃ 𝑡1. 𝑡 ⋅ 𝑡1 ∈ 𝐿

 i.e. all finite traces t can be extended to a trace in L.

* Achtung: “eventually” bedeutet “irgendwann” oder “schlussendlich”
 aber nicht “eventuell” !

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 31 -

Satisfying Liveness Properties

 Liveness properties cannot (!) be enforced by run-time monitors.

 Liveness properties are typically proven by the help of well-founded orderings

 Measure function m on states s

 Each transition decreases m
 t 2 L if we reach a state with minimal m

 E.g. measure denotes the number of transitions for the light to go green

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 32 -

Requirements on Sets of Runs:
Safety Hyperproperties

 Safety hyperproperty: „System never behaves bad“

 No bad thing happens in a finite set of finite traces

 (the prefixes of) different system runs do not exclude each other

 E.g. “the traffic light cycle is always the same”

 A bad system can be recognized by a bad observation (set of finite runs)

 A bad observation cannot be sanitized regards less how we continue
it or add additional system runs

 E.g. two system runs having different traffic light cycles

 S is a safety hyperproperty iff (see safety property):

 ∀𝑇. 𝑇 ∉ 𝑆 ⟹ (∃𝑂𝑏𝑠. 𝑂𝑏𝑠 ≤ 𝑇 ⟹ ∀𝑇′. 𝑂𝑏𝑠 ≤ 𝑇′ ⟹ 𝑇′ ∉ 𝑆)

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 33 -

Requirements on Sets of Runs:
Liveness Hyperproperties

 Liveness hyperproperty S:
„The system will eventually develop to a good system“

 Considering any finite part of a system behavior, the system
eventually develops into a “good” system (by continuing
appropriately the system runs or adding new system runs)

 E.g. “Green light for pedestrians can always be omitted”

 L is liveness hyperproperty iff
∀𝑇. ∃𝐺. 𝑇 ≤ 𝐺 ∧ 𝐺 ∈ 𝐿

 T is a finite set of finite traces (observation)

 Each observation can be explained by a system G satisfying L

 Examples:

 Average response time

 Closure operations in information flow control

 Fair scheduling

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 34 -

Landscape of (Hyper)Properties

 Each (hyper-) property can be represented as a combination of
safety and liveness (hyper-) properties.

Safety
Hyperproperties

Liveness
Hyperproperties

Safety
Properties

Liveness
Properties

Invariants
Guaranteed

Service

Average
Response

Non-
Interference

Closure
 Predicates Observational

determinism

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 35 -

Structuring the Formal Development

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 36 -

The Global Picture

Informal Specification

Safety/Security
Requirements

Composite Specification

Abstract Specification

Refined Specification

Decomposition

Refinement /
Decomposition

Safety/Security
Requirements

Satisfies

Satisfies

Satisfies

Satisfies

• Test
• Program analysis
• Model checking
• Formal proof

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 37 -

Structuring the Development

Horizontal structuring:

 Modularization into components

 Composition and Decomposition

 Aggregation

 Vertical structuring:

 Abstraction and refinement
from design specification to implementation

 Declarative vs. imparative specification

 Inheritance of properties

 Views:

 Addresses multiple aspects of a system

 Behavioral model, performance model, structural model, analysis
model(e.g. UML, SysML)

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 38 -

Horizontal Structuring (informal)

 Composition of components

 Dependent on the individual layer of abstraction

 E.g. modules, procedures, functions,…

 Example:

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 39 -

Modular Structuring of Requirements

System
Requirements

Component 1
Requirement

Component n
Requirement

Component 1
Guarantees

Component n
Guarantees

System Guarantees

…

…

Decomposition of requirements

Composition of guarantees

Verification of requirements

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 40 -

Mutual Dependencies: Assume/Guarantee

 Safety requirement: Queue does not loose any items.

 Components depend on each other!

 Initialization ?

Loop:
 if (s1 == a1) {
 send(x, in); s1 = not s1 }

Loop:
 if (s1 != a1 && |q| < max) {
 enq(q, in);
 a1 = not a1;
 }
 if (s2 == a2 && |q| > 0) {
 deq(q, out);
 s2 != not s2
 }

Loop:
 if (s2 != a2) then {
 read(y, out);
 a2 = not a2;
 consume(y)
 }

in out

s1 s2

a2 a1

q

Producer Queue Consumer

Fixed capacity

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 41 -

Composition of Security Guarantees

Only complete bicycles are allowed to pass the gate.

Secure ! Secure !

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 42 -

Composition of Security Guarantees

Insecure !

Only complete bicycles are allowed to pass the gate. Security properties are
non-compositional !

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 43 -

Concurrent shared variable programs are non-
compositional

Thread1() {

 x = 1;

}

// @post: x == 1

Thread2() {

 x = (1 << 64);

}

// @post: x == (1 << 64)

long long x;

Global variable

Post conditions hold in
absence of concurrent

threads

(Thread1() || Thread2());

// @post: x == 1 or x == (1<<64) Does composition hold?

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 44 -

Concurrent shared variable programs are non-
compositional

 This post-condition cannot be derived from any logical composition of the
original post-conditions of Thread1() and Thread2()

 For writing a 128bit integer to memory, two writes on the memory bus are
required. As a consequence, the final value of x may also be (1<<64) + 1

long long x;

(Thread1() || Thread2());

// @post: x == 1 or x == (1<<64) or x == (1<<64) + 1

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 45 -

Vertical Structuring - Refinement

 Idea: start at an abstract description and add details
step by step

 From abstract specification to an implementation

 What do we want to refine?

 Algorithm: algebraic refinement

 Data: data refinement

 Process: process refinement

 Events: action refinement

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 46 -

empty: stack;
pop(stack):stack;
push(int, stack):stack

Stack

Algebraic Refinement

[] :: [a]
head :: [a]-> a
(:) :: a-> [a]-> [a]
tailSafe :: [a]-> [a]

tailSafe xs = if null xs then [] else tail xs

List

empty ↦ []
push ↦ (:)
pop ↦ safetail

Implementing
stacks by lists

safetail([]) == []
safetail(y:xs) == y

To prove:

Refinement preserves
properties of stack by
transitivity of the logic !

Refinement Satisfies

pop(empty) = empty

pop(push(x, y)) = y

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 47 -

Even More Refinements

 Data refinement

 Abstract datatype is „implemented“ in terms of the more concrete
datatype

 Simple example: define stack with lists

 Process refinement

 Process is refined by excluding certain runs

 Refinement as a reduction of underspecification by eliminating possible
behaviours

 Action refinement

 Action is refined by a sequence of actions

 E.g. a stub for a procedure is refined to an executable procedure

 Systeme hoher Sicherheit und Qualität, WS 19/20 - 48 -

Conclusion & Summary

Software development models: structure vs. flexibility

Safety standards such as IEC 61508, DO-178B suggest
development according to V-model.

 Specification and implementation linked by verification and
validation.

 Variety of artefacts produced at each stage, which have to
be subjected to external review.

Safety / Security Requirements

 Properties: sets of traces

 Hyperproperties: sets of properties

Structuring of the development:

 Horizontal – e.g. composition

 Vertical – refinement (e.g. algebraic, data, process…)

