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Organisatorisches 
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Generelles 

 Einführungsvorlesung zum Masterprofil S & Q 

 

 6 ETCS-Punkte 

 

 Vorlesung: 

 Dienstag    12 – 14 Uhr (MZH 1110) 

 Übung:  

 Donnerstag  16 – 18 Uhr (MZH 4140) 

 

 Veranstalter: 

 Christoph Lüth <clueth@uni-bremen.de>, MZH 4186, Tel. 59830 

 Helmar Hutschenreuter <hutschen@uni-bremen.de> 

 

 Material (Folien, Artikel, Übungsblätter) auf der Homepage: 
  http://www.informatik.uni-bremen.de/~clueth/lehre/ssq.ws19 
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Vorlesung 
 

 Foliensätze als Kernmaterial 

 Sind auf Englisch (Notationen!) 

 Nach der Vorlesung auf der Homepage verfügbar 

 

 Ausgewählte Fachartikel als Zusatzmaterial 

 Auf der Homepage verlinkt (ggf. in  StudIP) 

 

 Bücher nur für einzelne Teile der Vorlesung verfügbar: 

 Nancy Leveson: Engineering a Safer World 

 Ericson: Hazard Analysis Techniques for System Safety 

 Nilson, Nilson: Principles of Program Analysis 

 Winskel: The Formal Semantics of Programming Languages 

 Zum weiteren Stöbern: 

 Wird im Verlauf der Vorlesung bekannt gegeben 
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Übungen 

 Übungsblätter: 

 „Leichtgewichte“ Übungsblätter, die in der Übung bearbeitet und schnell 
korrigiert werden können. 

 Übungsblätter vertiefen Vorlesungsstoff. 

 Bewertung gibt schnell Feedback. 

 

 Übungsbetrieb: 

 Gruppen bis zu 3 StudentInnen 

 Ausgabe der Übungsblätter Dienstag in der Übung 

 Zeitgleich auf der Homepage 

 Erstes Übungsblatt: diese Woche (17.10.2019) 

 Bearbeitung: während der Übung 

 Abgabe: bis  Donnerstag abend 
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Prüfungsform 

 Bewertung der Übungen: 

 A (sehr gut (1.0) – nichts zu meckern, nur wenige Fehler) 

 B (gut (2.0) – kleine Fehler, im großen und ganzen gut) 

 C (befriedigend (3.0) – größere Fehler oder Mängel) 

 Nicht bearbeitet (oder zu viele Fehler) 

 

 Prüfungsleistung: 

 Teilnahme am Übungsbetrieb (20%) 

 Übungen keine Voraussetzung 

 Mündliche Prüfung am Ende des Semesters (80%) 

 Einzelprüfung, ca. 20- 30 Minuten 
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Ziel der Vorlesung 

 Methoden und Techniken zur Entwicklung sicherheitskritischer Systeme  
 

 Überblick über verschiedene Mechanismen  
d.h. auch Überblick über vertiefende Veranstaltungen 
 Theorie reaktiver Systeme 

 Grundlagen der Sicherheitsanalyse und des Designs 

 Formale Methoden der Softwaretechnik 

 Einführung in die Kryptographie 

 Qualitätsorientierter Systementwurf 

 Test von Schaltungen und Systemen 

 Informationssicherheit -- Prozesse und Systeme 
 

 Verschiedene Dimensionen 

 Hardware vs. Software 

 Security vs. Safety 

 Qualität der Garantien 
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Overview 
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Objectives 
 
 This is an introductory lecture for the topics 

 
                           Quality     –      Safety    –    Security                               
     

 Bird’s eye view of everything relevant related to the development of systems of 
high quality, high safety or high security. 

 

 The lecture reflects the fundamentals of the research focus quality, safety & 
security at the department of Mathematics and Computer Science (FB3) at the 
University of Bremen.  This is one of the three focal points of computer science 
at FB3, the other two being Digital Media and Artificial Intelligence, Robotics & 
Cognition. 

 

 This lecture is read jointly (and in turns) by Dieter Hutter, Christoph Lüth, and 
Jan Peleska. 

 

 The choice of material in each semester reflects personal preferences. 
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Ariane 5 

Stuxnet 

Chip & PIN 

Flight  AF 447 

Our car 

Friday October 7,2011  
By Daily Express Reporter  

 
AN accounting error yesterday forced outsourcing  
specialist Mouchel into a major profits warning and  
sparked the resignation of its chief executive.  

 

Why bother with  Quality, Safety, and Security ? 
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Ariane 5 

Ariane 5 exploded on its virgin flight (Ariane Flight 501) on 4.6.1996. 

 

 

 

 

 

 

 

 

 

 

 

 

 

How could that happen? 
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What Went Wrong With Ariane Flight 501? 

(1) Self-destruction due to instability; 

(2) Instability due to wrong steering movements (rudder); 

(3) On-board computer tried to compensate for (assumed) wrong trajectory; 

(4) Trajectory was calculated wrongly because own position was wrong; 

(5) Own position was wrong because positioning system had crashed; 

(6) Positioning system had crashed because transmission of  
sensor data to ground control failed with integer overflow; 

(7) Integer overflow occurred because values were too high; 

(8) Values were too high because positioning system was integrated unchanged 
from predecessor model, Ariane-4; 

(9) This assumption was not documented because it was satisfied tacitly with 
Ariane-4. 

(10)Positioning system was redundant, but both systems failed (systematic error). 

(11)Transmission of data to ground control also not necessary. 

 

The Accident 

The root cause 
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Two trains collided on a single-track line close to Bad Aibling 

 

 

 

 

 

 

 

 

 

 

 

 

Human error ? 

 cf.  Nancy Leveson: Engineering a Safer World 

Railway Accident in Bad Aibling 2016 
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Recent Crashes of Boeing 737 MAX 

 Lion Air flight JT 610 29.10.2018 06:33 near Jakarta 

 Ethopian Airlines flight ET 302 10.03.2019 08:44  
       near Addis Ababa 

 Accidents: 

 New planes in perfect weather fly into the ground. 

 Causes: 

 Manoeuvring Characteristics Augmentation System (MCAS) automatically 
pushes down nose of aircrafts in risk of stall. 

 What happens when sensor readings are faulty? 

 MCAS can be switched off, but not permanently – warning lights and 
permanent switch off are premium features. 

 Pilots not trained with MCAS. 

 See here: https://www.bbc.com/news/world-africa-47553174 

 MCAS introduced for cost reasons. 

 Accidents caused by push for low costs, poor user interface and sloppy 
certification process.  

 See also: Air France flight AF 447 
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What is Safety and Security? 

Safety: 

 

 product achieves acceptable levels of risk or harm to people, business, software, 
property or the environment in a specified context of use 

 Threats from “inside” 

 Avoid malfunction of a system  

 E.g. planes, cars, railways 

 Threats from “outside” 

 Protect product against force majeure (“acts of god”)  

 E.g. Lightening, storm, floods, earthquake, fatigue of material, loss of 
power 
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What is Safety and Security? 

Security: 

 

 Product is protected against potential attacks from people, environment etc.  

 Threats from “outside”  

 Analyze and counteract the abilities of an attacker 

 Threats from “inside” 

 Monitor activities of own personnel: 

 Selling of sensitive company data 

 Insertion of Trojans during HW/SW design 

 In this context: “cybersecurity” (not physical security) 
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Software Development Models 

 Definition of software development process and documents 

 

 Examples: 

 Waterfall Model 

 V-Model 

 Model-Driven 
Architectures 

 Agile Development  

 

 Motivation: 

 A well-defined development process is more likely to result in a high-
quality  product than a chaotic process 

 “Process quality ensures product quality” 
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mathematical notions 

Informal 
documents 

program 

formal specifications 

requirements 

proofs 

Formal Software Development 

Informal 
Notions 

refinement 
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Verification and Validation (V&V) 

 Verification: have we built the system right? 

 i.e. correct with respect to a reference artefact  

 specification document 

 reference system 

 model 

 

 Validation: have we built the right system?  

 i.e. effective (or adequate) for its intended operation? 

 

Korrektheit 

Wirksamkeit 
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V&V Methods 

 Testing 

 Test case generation, black- vs. white box 

 Hardware-in-the-loop testing: integrated HW/SW system is tested 

 Software-in-the-loop testing: only software is tested 

 Program runs using symbolic values 

 Simulation 

 An executable model is tested with respect to specific properties 

 This is also called Model-in-the-Loop Test 

 Static/dynamic program analysis 

 Dependency graphs, flow analysis 

 Symbolic evaluation 

 Model checking 

 Automatic proof by reduction to finite state problem 

 Formal Verification 

 Symbolic proof of program properties 
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Where are we? 

 01: Concepts of Quality 

 02: Legal Requirements: Norms and Standards 

 03: The Software Development Process 

 04: Hazard Analysis 

 05: High-Level Design with SysML 

 06: Formal Modelling with OCL 

 07: Testing 

 08: Static Program Analysis 

 09-10: Software Verification  

 11-12: Model Checking 

 13: Conclusions 
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Concepts of Quality 
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What is Quality? 

 Quality is the collection of its characteristic properties 

 

 Quality model: decomposes the high-level definition by associating attributes 
(also called characteristics, factors, or criteria) to the quality conception 

 

 Quality indicators associate metric values with quality criteria, expressing 
“how well” the criteria have been fulfilled by the process or product.  

 

 The idea is that to measure quality, with  
the aim of continuously improving it. 

 

 Leads to quality management (TQM, Kaizen) 
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Quality Criteria: Different „Dimensions“ of Quality 

 For the development of artifacts quality criteria can be measured with respect 
to the 

 development process (process quality) 

 final product (product quality) 

 

 Another dimension for structuring quality conceptions is  

 Correctness: the consistency with the product and its associated 
requirements specifications 

 Effectiveness: the suitability of the product for its intended purpose 
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Quality Criteria (cont.) 

 

 A third dimension structures quality according to product properties: 

 Functional properties: the specified services to be delivered to the 
users 

 Structural properties: architecture, interfaces, deployment, control 
structures 

 Non-functional properties: usability, safety, reliability, availability, 
security, maintainability, guaranteed worst-case execution time (WCET), 
costs, absence of run-time errors, … 
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Quality (ISO/IEC 25010/12) 

 “Systems and software engineering — Systems and software Quality 
Requirements and Evaluation (SQuaRE) — System and software quality 
models” 

 Quality model framework (replaces the older ISO/IEC 9126) 

 

 Product quality model 

 Categorizes system/software product quality properties 

 

 Quality in use model 

 Defines characteristics related to outcomes of interaction with a system 

 Also known as „end user experience“ („UX“) 

 

 Quality of data model 

 Categorizes data quality attributes 
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Product 
Quality 

Functional 
suitability 

Completeness 
Correctness 

Appropriateness 

Performance 
efficiency 

Time behavior 
Resource 
utilization 
Capacity 

Compatibility 

Co-existence 
Interoperability 

Usability 

Appropriateness 
recognizability 

Learnability 
Operability 
User error 
protection 

User interface 
aesthetics 

Accessibility 

Reliability 

Maturity 
Availability 

Fault tolerance 
Recoverability 

Security 

Confidentiality 
Integrity 

Non-repudiation 
Accountability 
Authenticity 

Maintainability 

Modularity 
Reusability 

Analysability 
Modifiability 
Testability 

Portability 

Adaptability 
Installability 

Replaceability 

Source:  ISO/IEC FDIS 25010 

Product Quality Model 
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Source:  ISO/IEC FDIS 25010 

How can we „guarantee“ safety and security ? 

Our Focus of Interest 
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System 

Quality in Use 

Computer System 

Quality 

Software Product 

Quality 

System 

Quality in Use 

Requirements 

Computer System 

Quality  

Requirements 

Software Product 

Quality 

Requirements 

Implementation 

Quality in Use Needs 

Products Requirements 

Validation 

Verification 

Validation 

Verification 

Validation 

System 

Quality in 

Use Model 

System 
and 

Software 

Product 

Quality 

Model 

Source:  ISO/IEC FDIS 25010 

System Quality Life Cycle Model 
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Quality in Use Model 
 

Quality in use 

Effectiveness Efficiency Satisfaction 

Usefulness Trust Pleasure Comfort 

Freedom from 
risk 

Economic risk 
mitigation 

Health and 
safety risk 
mitigation 

Environmental 
risk 

Context 
coverage 

Content 
completeness 

Flexibility 
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Other Norms and Standards 

 ISO 9001 (DIN ISO 9000-4): 

 Standardizes definition and supporting principles necessary for a quality 
system to ensure products meet requirements 

 “Meta-Standard” 

 

 CMM (Capability Maturity Model),  Spice (ISO 15504) 

 Standardizes maturity of development process 

 Level 1 (initial): Ad-hoc 

 Level 2 (repeatable): process dependent on individuals 

 Level 3 (defined): process defined & institutionalized 

 Level 4 (managed): measured process 

 Level 5 (optimizing): improvement feed back into process 
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Summary 
 
 Quality 

 collection of characteristic properties 

 quality indicators measuring quality criteria 

 

 Relevant aspects of quality here 

 Functional suitability 

 Reliability 

 Security 

 

 Next week 

 Concepts of Safety, Legal Requirements, Certification 
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Systeme hoher Sicherheit und Qualität 
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Christoph Lüth, Dieter Hutter, Jan Peleska 

Lecture 02: 
Legal Requirements - Norms and Standards 
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Where are we? 

 01: Concepts of Quality 

 02: Legal Requirements: Norms and Standards 

 03: The Software Development Process 

 04: Hazard Analysis 

 05: High-Level Design with SysML 

 06: Formal Modelling with OCL 

 07: Testing 

 08: Static Program Analysis 

 09-10: Software Verification  

 11-12: Model Checking 

 13: Conclusions 

 

    Systeme hoher Sicherheit und Qualität, WS 19/20 - 3 -  
  

Why Bother with Norms? 
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Why bother with norms? 
  

 The bad news: 

 As a qualified professional, you may become personally liable if you 
deliberately and intentionally (grob vorsätzlich) disregard the state of the 
art or do not comply to the rules (= norms, standards) that were to be 
applied. 

 

 The good news: 

 Pay attention here and you will be delivered from these evils. 

 

 Caution: applies to all kinds of software. 

 

 

 

 

 

If you want (or need to) to write safety-criticial software 
then you need to adhere to state-of-the-art practice 

as encoded by the relevant norms & standards. 
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Because in case of failure… 

 Whose fault is it?  Who pays for it? (“Produkthaftung”) 

 European practice: extensive regulation 

 American practice: judicial mitigation (lawsuits) 

 

 Standards often put a lot of emphasis on process and traceability (auditable 
evidence). Who decided to do what, why, and how?  

 

 What are norms relevant to safety and security? 
Examples: 

 Safety:  IEC 61508 – Functional safety 

• specialised norms for special domains 

 Security: IEC 15408 – Common criteria 

• In this context: “cybersecurity”, not “guns and gates” 

 

 What is regulated by such norms? 
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Emergent Properties 

 An emergent property of a system is one that cannot be attributed to a 
single system component, but results from the overall effect of system 
components inter-operating with each other and the environment 

 

 

 Safety and Security are emergent properties. 

 They can only be analyzed in the context of the complete system and its 
environment 

 Safety and security can never be derived from the properties of a single 
component, in particular, never from that of a software component alone 
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What is Safety? 
 
 Absolute definition: 

 

 „Safety is freedom from accidents or losses.“  

    Nancy Leveson, „Safeware: System safety and computers“ 

 

 But is there such a thing as absolute safety?  

 

 Technical definition: 
 

 „Sicherheit: Freiheit von unvertretbaren Risiken“ 

 IEC 61508-4:2001, §3.1.8 
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Legal Grounds 

 The machinery directive:  The Directive 2006/42/EC of the European 
Parliament and of the Council of 17 May 2006 on machinery, and amending 
Directive 95/16/EC (recast) 

 

 Scope: 

 Machineries (with a drive system and movable parts) 

 Objective: 

 Market harmonization (not safety) 

 Structure: 

 Sequence of whereas clauses (explanatory) 

 followed by 29 articles (main body) 

 and 12 subsequent annexes (detailed information about particular fields, 
e.g. health & safety) 

 Some application areas have their own regulations: 

 Cars and motorcycles, railways, planes, nuclear plants … 
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The Norms and Standards Landscape 

 First-tier standards (A-Normen) 

 General, widely applicable, no specific area of application 

 Example: IEC 61508 

 

 Second-tier standards (B-Normen) 

 Restriction to a particular area of application 

 Example: ISO 26262 (IEC 61508 for automotive) 

 

 Third-tier standards (C-Normen) 

 Specific pieces of equipment 

 Example: IEC 61496-3 (“Berührungslos wirkende Schutzeinrichtungen”) 

 

 Always use most specific norm. 

 
The 

standards 
quagmire ? 
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Norms for the Working Programmer 

 IEC 61508: 

 “Functional Safety of Electrical/Electronic/Programmable Electronic Safety-
related Systems (E/E/PE, or E/E/PES)” 

 Widely applicable, general, considered hard to understand  

 ISO 26262 

 Specialisation of 61508 to cars (automotive industry) 

 DIN EN 50128:2011  

 Specialisation of 61508 to software for railway industry 

 RTCA DO 178-B and C (new developments require C): 

 “Software Considerations in Airborne Systems and Equipment 
Certification“ 

 Airplanes, NASA/ESA 

 ISO 15408:  

 “Common Criteria for Information Technology Security Evaluation” 

 Security, evolved from TCSEC (US), ITSEC (EU), CTCPEC (Canada)  
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Functional Safety: 
IEC 61508 and friends 

    Systeme hoher Sicherheit und Qualität, WS 19/20 - 12 -  
  

What is regulated by IEC 61508? 

1. Risk analysis determines the safety integrity level (SIL). 

2. Hazard analysis leads to safety requirement specification. 

3. Safety requirements must be satisfied by product: 

 Need to verify that this is achieved. 

 SIL determines amount of testing/proving etc. 

4. Life-cycle needs to be managed and organised: 

 Planning: verification & validation plan. 

 Note: personnel needs to be qualified. 

5. All of this needs to be independently assessed. 

 SIL determines independence of assessment body. 
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The Seven Parts of IEC 61508 

1. General requirements 

2. Requirements for E/E/PES safety-related systems 

 Hardware rather than software 

3. Software requirements 

4. Definitions and abbreviations 

5. Examples of methods for the determination of safety-integrity levels 

 Mostly informative 

6. Guidelines on the application of Part 2 and 3 

 Mostly informative 

7. Overview of techniques and measures 
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The Safety Life Cycle (IEC 61508) 

Planning 

Realisation 

Operation 

E/E/PES: Electrical/Electronic/Programmable Electronic Safety-related Systems 
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Safety Integrity Levels 

 What is the risk by operating a system?  

 Two factors: 

 How likely is a failure ? 

 What is the damage caused by a failure? 

Risk not acceptable 

Risk acceptable 

F
re

q
u
e
n
cy

 

Extent of loss 
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Maximum average probabilty of a dangerous failure (per hour/per 
demand) depending on how often it is used: 

 

 

 

 

 

 

 

 Examples: 

 High demand: car brakes 

 Low demand: airbag control 

Note: SIL only meaningful for specific safety functions. 

 

Safety Integrity Levels 

SIL High Demand 
(more than once a year) 

Low Demand 
(once a year or less)  

4 10-9 < P/hr < 10-8 10-5 < P < 10-4 

3 10-8 < P/hr < 10-7 10-4 < P < 10-3 

2 10-7 < P/hr < 10-6 10-3 < P < 10-2 

1 10-6 < P/hr < 10-5 10-2 < P < 10-1 
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Establishing target SIL (Quantitative)  

 IEC 61508 does not describe standard procedure to establish a SIL target, it 
allows for alternatives. 

 

 Quantitative approach 

 Start with target risk level 

 Factor in fatality and  
frequency 

 

 Example: Safety system for a chemical plant  

 Max. tolerable risk exposure:  A=10-6    (per annum) 

 Ratio of hazardous events leading to fatality:  B= 10-2  

 Risk of failure of unprotected process: C= 1/5 per annum (ie. 1 in 5 years) 

 Risk of hazardous event, unprotected: B*C= 2*10-3 (ie. 1 in 5000 years) 

 Risk of hazardous event, protected A = E*B*C (with E failure on demand)  

 Calculate E as E = A/(B*C) = 5*10-4, so SIL 3 

 

 More examples: airbag, safety system for a hydraulic press 

 

Maximum tolerable  
risk of fatality 

Individual risk  
(per annum) 

Employee 10-4 

Public 10-5 

Broadly acceptable 
(„Negligible“) 

10-6 
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Establishing target SIL (Quantitative)  

 Example: Safety system for a hydraulic press 

 Max. tolerable risk exposure:  A=10-4   per annum, i.e. A’= 10-8  per hour 

 Ratio of hazardous events leading to serious injury:  B= 1/100 

 Worker will not willfully put his hands into the press 

 Risk of failure of unprotected process: C= 50 per hour 

 Press operates  

 Risk of hazardous event, unprotected: B*C= 1/2 per hour 

 E = A’/(B*C) = 2*10-8, so SIL 3 

 

 Example: Domestic appliance, e.g. heating iron 

 Overheating may cause fire 

 Max. tolerable risk exposure: A=10-5   per annum, i.e. A’= 10-9  per hour 

 Study suggests 1 in 400 incidents leads to fatality, i.e. B*C= 1/400 

 Then E= A’/B*C = 10-9*400 = 4*10-7, so SIL 3 
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Establishing Target SIL (Qualitative) 

 Qualitative method: risk graph analysis (e.g. DIN 13849) 

 DIN EN ISO 13849:1 determines the performance level  

PL SIL 

a - 

b 1 

c 2 

d 3 

e 4 

Severity of injury: 
S1 -  slight (reversible) injury 
S2 – severe (irreversible) injury 
 
Occurrence: 
F1 – rare occurrence 
F2 – frequent occurrence 
 
Possible avoidance: 
P1 – possible 
P2 – impossible 

Relation PL to SIL 

Source: Peter Wratil (Wikipedia) 
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Numerical Characteristics 

 The standard IEC 61508 defines the following numerical characteristics per 
safety integrity level: 

 

 PFD, average probability of failure to perform its design function on 
demand (average probability of dangerous failure on demand of the 
safety function), i.e. the probability of unavailability of the safety function 
leading to dangerous consequences 

  PFH, the probability of a dangerous failure per hour (average frequency 
of dangerous failure of the safety function) 

 

 Failure on demand = “function fails when it is needed” 
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What does the SIL mean for the development 
process? 

 In general:  

 „Competent“ personnel 

 Independent assessment („four eyes“) 

 SIL 1: 

 Basic quality assurance (e.g. ISO 9001) 

 SIL 2: 

 Safety-directed quality assurance, more tests 

 SIL 3: 

 Exhaustive testing, possibly formal methods 

 Assessment by separate department 

 SIL 4: 

 State-of-the-art practices, formal methods 

 Assessment by separate organization 
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Some Terminology 

 Error handling: 

 Fail-safe (or fail-stop): terminate in a safe state 

 Fail-operational systems: continue operation, even if controllers fail 

 Fault-tolerant systems: continue with a potentially degraded service (more 
general than fail operational systems) 

 

 Safety-critical, safety-relevant (sicherheitskritisch) 

 General term --  failure may lead to risk  

 

  Safety function (Sicherheitsfunktion) 

 Technical term, that functionality which ensures safety 

 

 Safety-related (sicherheitsgerichtet, sicherheitsbezogen) 

 Technical term, directly related to the safety function 
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Increasing SIL by redudancy 

 One can achieve a higher SIL by combining independent systems with lower 
SIL („Mehrkanalsysteme“). 

 

  Given two systems A,  B with failure probabilities 𝑃𝐴, 𝑃𝐵, the chance for failure 
of both is (with 𝑃𝐶𝐶  probablity of common-cause failures): 

𝑃𝐴𝐵 = 𝑃𝐶𝐶 + 𝑃𝐴𝑃𝐵 

 

 Hence, combining two SIL 3 systems may give you a SIL 4 system. 

 

 However, be aware of systematic errors (and note  that IEC 61508 considers 
all software errors to be systematic).  

 

 Note also that for fail-operational systems you need three (not two) systems. 

 

 The degree of independence can be increased by software diversity: channels 
are equipped with software following the same specification but developed by 
independent teams 

 
    Systeme hoher Sicherheit und Qualität, WS 19/20 - 24 -  
  

The Software Development Process   

 61508 in principle allows any software lifecycle model, but: 

 No specific process model is given, illustrations use a V-model, and no 
other process model is mentioned.  
 

 Appx A, B give normative guidance on measures to apply: 

 Error detection needs to be taken into account (e.g. runtime assertions, 
error detection codes, dynamic supervision of data/control flow) 

 Use of strongly typed programming languages (see table) 

 Discouraged use of certain features:  

 recursion(!), dynamic memory, unrestricted pointers, unconditional 
jumps 

 Certified tools and compilers must be used or tools “proven in use“. 
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Proven in Use: Statistical Evaluation  
  
  As an alternative to systematic development, statistics about usage may be 

employed. This is particularly relevant: 

 for development tools (compilers, verification tools etc), 

 and for re-used software (modules, libraries). 

 

 The norm (61508-7 Appx. D)  is quite brief about this subject. It states these 
methods should only be applied by those “competent in statistical analysis”. 

 

 The problem: proper statistical analysis is more than just “plugging in 
numbers”.  

 Previous use needs to be to the same specification as intended use (eg. 
compiler: same target platform).  

 Uniform distribution of test data, indendent tests. 

 Perfect detection of failure. 
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Proven in Use: Statistical Evaluation  
  
 
 Statistical statements can only be given with respect to a confidence level 

(𝜆 = 1 − 𝑝), usually 𝜆 = 0.99 or 𝜆 = 0.9. 

 With this and all other assumptions  satisfied, we get the following numbers 
from the norm:  

 For on-demand: observed demands without failure 
(𝑃1: accepted probability of failure to perform per demand) 

 For continuously-operated: observed hours w/o failure  
(𝑃2: accepted probability of failure to perform per hour of operation)  

SIL On-Demand Continuously Operated 

𝑃1 𝜆 = 99% 𝜆 = 90% 𝑃2 𝜆 = 99% 𝜆 = 90% 

1 < 10−1  46 3 < 10−5 4.6 ⋅ 105 3 ⋅ 105 

2 < 10−2 460 30 < 10−6 4.6 ⋅ 106 3 ⋅ 106 

3 < 10−3  4600 3000 < 10−7 4.6 ⋅ 107 3 ⋅ 107 

4 < 10−4  46000 30000 < 10−8 4.6 ⋅ 108 3 ⋅ 108 

Source: Ladkin, Littlewood:  Practical Statistical Evaluation of Critical Software. 
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Table A.2 - Software Architecture 

    Systeme hoher Sicherheit und Qualität, WS 19/20 - 28 -  
  

Table A.4 - Software Design & Development 
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Table A.9 – Software Verification 
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Table B.1 – Coding Guidelines 

 Table C.1, programming 
languages, mentions: 

 ADA, Modula-2, Pascal, 
FORTRAN 77, C, PL/M, 
Assembler, … 

 

 Example for a guideline: 

 MISRA-C: 2004, 
Guidelines for the use 
of the C language in 
critical systems. 
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Table B.5 - Modelling 
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Certification 

 Certification is the process of showing conformance to a standard. 

 Also sometimes (e.g. DO-178B) called `qualification‘. 

 Conformance to IEC 61508 can be shown in two ways: 

 either that an organization (company) has in principle the ability to 
produce a product conforming to the standard, 

 or that a specific product (or system design) conforms to the 
standard. 

 Certification can be done by the developing company (self-certification), 
but is typically done by an notified body (“benannte Stellen”). 

 In Germany, e.g. the TÜVs or Berufsgenossenschaften; 

 In Britain, professional role (ISA) supported by IET/BCS; 

 Aircraft certification in Europe: EASA (European Aviation Safety 
Agency) 

 Aircraft certification in US: FAA (Federal Aviation Administration) 
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Security: 
IEC 15408 - The Common Criteria 
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Recall: Security Criteria 

 Confidentiality 

 Integrity 

 Availability 

 Authenticity 

 Accountability 

Non-repudiation 
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Common Criteria (IEC 15408 ) 

Established in 1996 as a harmonization of various norms to 

evaluate security properties of IT products and systems 

(e.g.  ITSEC (Europe), TCSEC (US, “orange book”), CTCPEC 

(Canada) ) 

 

Basis for evaluation of security properties of IT products (or 

parts of) and systems (the Target of Evaluation TOE).  

 

The CC is useful as a guide for the development of products or 

systems with IT security functions and for the procurement of 

commercial products and systems with such functions.  
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General Model 

 Security is concerned with the 
protection of assets. Assets are 
entities that someone places value 
upon.  

 

 Threats give rise to risks to the 
assets, based on the likelihood of 
a threat being realized and its 
impact on the assets  

 

 (IT and non-IT) Counter-
measures are imposed to reduce 
the risks to assets. 
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Security Goals 

Protection of information from unauthorized disclosure, 
modification, or loss of use: 

 confidentiality, integrity, and availability 

 may also be applicable to aspects 

 

Focus on threats to that information arising from human 
activities, whether malicious or otherwise, but may be applicable 
to some non-human threats as well.  

 

In addition, the CC may be applied in other areas of IT, but 
makes no claim of competence outside the strict domain of IT 
security.  

 

 

    Systeme hoher Sicherheit und Qualität, WS 19/20 - 38 -  
  

Concept of Evaluation 
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Security Environment 

• Laws, organizational security policies, customs, expertise and 
knowledge relevant for TOE 

• Context in which the TOE is intended to be used.  

• Threats to security that are, or are held to be, present in the 
environment. 

 

 A statement of applicable organizational security policies would identify 
relevant policies and rules.  

 

• Assumptions about the environment  
of the TOE are considered as axiomatic  
for the TOE evaluation. 
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Security Objectives 

 Identification of all of the security concerns  

 Aspects addressed directly by the TOE or by its environment.  

 Incorporating engineering judgment, security policy, economic factors and 
risk acceptance decisions. 

 

 Analysis of the security environment results in security objectives that counter 
the identified threats and address identified organizational security policies and 
assumptions.  

 

 The security objectives for the environment would be implemented within the 
IT domain, and by non-technical or procedural means. 

 

 Only the security objectives for the TOE and its IT environment are addressed 
by IT security requirements 
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Threats and Their Risks 

 

 Threats to security of the assets relevant to the TOE.  

 in terms of a threat agent,  

 a presumed attack method,  

 any vulnerabilities that are the foundation for the attack, and  

 identification of the asset under attack. 

 

 Risks to security. Assess each threat  

 by its likelihood developing into an actual attack,  

 its likelihood proving successful, and  

 the consequences of any damage that may result. 
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Security Requirements 

 Refinement of security objectives into  

 Requirements for TOE and  

 Requirements for the environment 

 

 Functional requirements 

 Functions in support for security of IT-system 

 E.g. identification & authentication, cryptography,… 

 

 Assurance Requirements 

 Establishing confidence in security functions 

 Correctness of implementation 

 E.g. development, life cycle support, testing, … 
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Security Functions 

 The statement of TOE security functions shall cover the IT security 
functions and shall specify how these functions satisfy the TOE security 
functional requirements. This statement shall include a bi-directional mapping 
between functions and requirements that clearly shows which functions satisfy 
which requirements and that all requirements are met. 

 

 Starting point for design process. 
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Security Functional Components 

 Class FAU: Security audit 

 Class FCO: Communication  

 Class FCS: Cryptographic support  

Class FDP: User data protection  

 Class FIA: Identification and authentication  

 Class FMT: Security management  

 Class FPR: Privacy 

 Class FPT: Protection of the TSF  

 Class FRU: Resource utilisation  

 Class FTA: TOE access  

 Class FTP: Trusted path/channels  
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Security Functional Components  

 Content and presentation of the functional requirements 

 

FDP: User Data Protection 

FDP_IFF: Information flow control functions 
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FDP – Information Flow Control 

FDP_IFC.1 Subset information flow control  

Hierarchical to:   No other components.  

Dependencies:   FDP_IFF.1 Simple security attributes  

FDP_IFC.1.1 The TSF shall enforce the [assignment: information flow control SFP] on 
[assignment: list of subjects, information, and operations that cause controlled information 
to flow to and from controlled subjects covered by the SFP].  

 

FDP_IFC.2 Complete information flow control  

Hierarchical to: FDP_IFC.1 Subset information flow control  

Dependencies: FDP_IFF.1 Simple security attributes  

FDP_IFC.2.1 The TSF shall enforce the [assignment: information flow control SFP] on 
[assignment: list of subjects and information] and all operations that cause that information 
to flow to and from subjects covered by the SFP.  

FDP_IFC.2.2 The TSF shall ensure that all operations that cause any information in the 
TOE to flow to and from any subject in the TOE are covered by an information flow control 
SFP.  
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Assurance Requirements 

 

Assurance Approach 
 

“The CC philosophy is to provide assurance based upon an evaluation (active 
investigation) of the IT product that is to be trusted. Evaluation has been the 
traditional means of providing assurance and is the basis for prior evaluation 
criteria documents. “ 

 

     

CC, Part 3, p.15 
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Assurance Requirements 

 Concerning actions of the developer, evidence 
produced and actions of the evaluator.  

 Examples:  

 Rigor of the development process 

 Search for and analysis of the impact of 
potential security vulnerabilities. 

 

Degree of assurance  

 varies for a given set of functional 
requirements 

 typically expressed in terms of increasing 
levels of rigor built with assurance 
components. 

 

 Evaluation assurance levels (EALs) 
constructed using these components.  
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Assurance Components 

 Class APE: Protection Profile evaluation  

 Class ASE: Security Target evaluation  

 Class ADV: Development  

 Class AGD: Guidance documents   

 Class ALC: Life-cycle support  

 Class ATE: Tests  

 Class AVA: Vulnerability assessment  

 Class ACO: Composition  
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Evaluation Assurance Level  

 EALs define levels of assurance (no 
guarantees) 

 

1. Functionally tested 

2. Structurally tested  

3. Methodically tested and checked  

4. Methodically designed, tested, and 
reviewed  

5. Semi-formally designed and tested  

6. Semi-formally verified design and 
tested  

7. Formally verified design and tested  

EAL5 – EAL7 require formal methods 
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Assurance Components  
Example: Development 

ADV_FSP.1 Basic functional specification 
 

EAL-1:   … The functional specification shall describe the purpose and method of use for  
 each SFR-enforcing and SFR-supporting TSFI.  

 

EAL-2:   … The functional specification shall completely represent the TSF.  

 

EAL-3:    + … The functional specification shall summarize the SFR-supporting and  
 SFR-non-interfering actions associated with each TSFI. 

 

EAL-4:   + … The functional specification shall describe all direct error messages that  
 may result from an invocation of each TSFI. 

 

EAL-5:  … The functional specification shall describe the TSFI using a semi-formal style.  

 

EAL-6:  … The developer shall provide a formal presentation of the functional  
 specification of the TSF. The formal presentation of the functional specification  
 of the TSF shall describe the TSFI using a formal style, supported by informal,  
 explanatory text where appropriate. 
 

(TSFI : Interface of the TOE Security Functionality (TSF),  SFR : Security Functional Requirement ) 
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Conclusion 
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Summary 

 Norms and standards enforce the application of the state-of-the-art when 
developing software which is safety-critical or security-critical. 

 

 Wanton disregard of these norms may lead to personal liability. 

 

 Norms typically place a lot of emphasis on process. 

 

 Key question are traceability of decisions and design, and verification and 
validation. 

 

 Different application fields have different norms: 

 IEC 61508 and its specializations, e.g. DO-178B. 

 IEC 15408 („Common Criteria“) 
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Further Reading 

 Terminology for dependable systems: 

 J. C. Laprie et al.: Dependability:  Basic Concepts and 
Terminology. Springer-Verlag, Berlin Heidelberg New York (1992). 

 

 Literature on safety-critical systems:  

 Storey, Neil: Safety-Critical Computer Systems. Addison Wesley 
Longman (1996). 

 Nancy Levenson: Safeware – System Safety and Computers. 
Addison-Wesley (1995). 

 

 A readable introduction to IEC 61508: 

 David Smith and Kenneth Simpson: Functional Safety. 2nd Edition, 
Elsevier (2004). 
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Organisatorisches 

 

 

 

 Die Übung am Donnerstag, 31.10.2019, fällt aus (Reformationstag). 

 

 

 Nächste Übung am Dienstag, 05.11.2019. 
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Where are we? 

 01: Concepts of Quality 

 02: Legal Requirements: Norms and Standards 

 03: The Software Development Process 

 04: Hazard Analysis 

 05: High-Level Design with SysML 

 06: Formal Modelling with OCL 

 07: Testing 

 08: Static Program Analysis 

 09-10: Software Verification  

 11-12: Model Checking 

 13: Conclusions 
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Software Development Models 
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Software Development Process 

 A software development process is the structure imposed on the development 
of a software product. 

 

 We classify processes according to models which specify 

  the artefacts of the development, such as  

 the software product itself, specifications, test documents, reports, 
reviews, proofs, plans etc; 

 the different stages of the development; 

 and the artefacts associated to each stage. 

 

 Different models have a different focus: 

 Correctness, development time, flexibility. 

 

 What does quality mean in this context? 

 What is the output? Just the software product, or more? (specifications, 
test runs, documents, proofs…) 
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Artefacts in the Development Process 

Planning: 
• Document plan 
• V&V plan 
• QM plan 
• Test plan 
• Project manual 

Specifications: 

• Requirements 
• System specification 
• Module specification 
• User documents 

Implementation: 

• Source code 
• Models 
• Documentation 

 
 

Possible formats: 
• Documents: 

• Word documents 
• Excel sheets 
• Wiki text 
• Database (Doors) 

• Models: 
• UML/SysML diagrams 
• Formal languages: Z, 

HOL, etc. 
• Matlab/Simulink or 

similar diagrams 
• Source code 

Verification & validation: 

• Code review protocols 
• Test cases, procedures, and 

test results 
• Proofs 
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Waterfall Model (Royce 1970) 

 Classical top-down sequential workflow with strictly separated phases. 

 

 

 

 

 

 

 

 

 

 

 Unpractical as an actual workflow (no feedback between phases), but even the 
original paper did not really suggest this.  

 

 

 

 

 

 

Requirement 

Implementation 

Design 

Maintenance 

Verification 
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Spiral Model (Böhm 1986) 

 Incremental development guided by risk factors 

 

 Four phases: 

 Determine objectives 

 Analyse risks 

 Development and test 

 Review, plan next iteration 

 

 See e.g.  

 Rational Unified Process (RUP) 

 

 

 Drawbacks: 

 Risk identification is the key, and can be quite difficult 
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Model-Driven Development (MDD, MDE) 

 Describe problems on abstract level using a modeling language (often a 
domain-specific language), and derive implementation by model transformation 
or run-time interpretation.  

 Often used with UML (or its DSLs, eg. SysML) 

 

 

 

 Variety of tools: 

 Rational tool chain, Enterprise Architect, Rhapsody, Papyrus, Artisan 
Studio, MetaEdit+, Matlab/Simulink/Stateflow* 

 EMF (Eclipse Modelling Framework) 

 

 Strictly sequential development 

 

 Drawbacks: high initial investment, limited, reverse engineering and change 
management (code changes to model changes) is complex 

 * Proprietary DSL – not related to UML 

Platform-
specific model 

Platform-
independent 

model 
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Agile Methods 

 Prototype-driven development  

 E.g. Rapid Application Development 

 Development as a sequence of prototypes 

 Ever-changing safety and security requirements 

 

 Agile programming 

 E.g. Scrum, extreme programming 

 Development guided by functional requirements  

 Process structured by rules of conduct for developers 

 Rules capture best practice 

 Less support for non-functional requirements 

 

 Test-driven development 

 Tests as executable specifications: write tests first 

 Often used together with the other two 
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V-Model 

 Evolution of the waterfall model: 

 Each phase supported by corresponding verification & validation phase 

 Feedback between next and previous phase 

 Standard model for public projects in Germany 

 … but also a general term  for models of this „shape“ 

 Current: V-Modell XT („extreme tailoring“) 

 Shape gives depencies, not development sequence 

 
Validated w.r.t. 
completeness, 
verified w.r.t. 
consistency 
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Software Development Models 

Structure 
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from S. Paulus: Sichere Software 

Spiral model 

Prototype-based 
developments 

Agile 

Methods 

Waterfall 

model 

V-model 

Model-driven 

developement 
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Development Models for Safety-Critical Systems 
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Development Models for Critical Systems 

 Ensuring safety/security needs structure. 

 …but too much structure makes developments bureaucratic, which is in 
itself a safety risk. 

 Cautionary tale: Ariane-5 

 

 Standards put emphasis on process. 

 Everything needs to be planned and documented. 

 Key issues: auditability, accountability, traceability. 

 

 Best suited development models are variations of the V-model or spiral model. 

 

 A new trend? V-Model XT allows variations of original V-model, e.g.: 

 V-Model for initial developments of a new product 

 Agile models (e.g. Scrum) for maintenance and product extensions 
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Auditability and Accountability 

 Version control and configuration management is mandatory in safety-critical 
development (auditability). 

 

 Keeping track of all artifacts contributing to a particular instance (build) of the 
system (configuration), and their versions. 

 

 Repository keeps all artifacts in all versions. 

 Centralised: one repository vs. distributed (every developer keeps own 
repository) 

 General model: check out – modify – commit 

 Concurrency: enforced lock, or merge after commit. 

 

 Well-known systems: 

 Commercial: ClearCase, Perforce, Bitkeeper… 

 Open Source: Subversion (centralised); Git, Mercurial (distributed) 
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Traceability 

 The idea of being able to follow requirements (in particular, safety 
requirements) from requirement spec to the code (and possibly back). 
 

 On the simplest level, an Excel sheet with (manual) links to the program. 
 

 More sophisticated tools include DOORS: 

 Decompose requirements, hierarchical requirements 

 Two-way traceability: from code, test cases, test procedures, and test 
results back to requirements 

 E.g. DO-178B requires all code derives from requirements 

 

 The SysML modelling language has traceability support: 

 Each model element can be traced to a requirement. 

 Special associations to express traceability relations. 
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Development Model in IEC 61508 

 IEC 61508 in principle allows any development model, but:  

 It requires safety-directed activities in each phase of the life cycle  
(safety life cycle, cf. last lecture). 

 Development is one part of the life cycle.  

 The only development model mentioned is a V-model: 
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Development Model in DO-178B/C 
 
DO-178B/C defines different processes in the SW life cycle: 

 Planning process 

 Development process, structured in turn into 

 Requirements process 

 Design process 

 Coding process 

 Integration process 

 Verification process 

 Quality assurance process 

 Configuration management process 

 Certification liaison process 

 

 There is no conspicuous diagram, but the Development Process has 
sub-processes suggesting the phases found in the V-model as well. 

 Implicit recommendation of the V-model. 
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Development Model for Hardware 

Specification 

System Model 

RTL Model 

Gate Level 

Layout 

Transistor Level 

Silicone 

always @(posedge clk) 
   if (rst) out <= 0; 
   else 
     if (! ctrl)   out <= s0 | in;  
     else        out <= s0 & in; 

Register-Transfer-Ebene: Verilog 

Gate Level 

SC_MODULE(example) { 
sc_in_clk clk; 
sc_in<bool> rst, in, ctrl; sc_out<bool> out;  
int o, s0; 
 
void tick() { 
  if (rst.read) o= 0; 
  else if (!ctrl.read) o= s0 | in.read; 
          else o= s0 & in.read; 
  out.write(o); s0= o; 
} 
…  
}    System-Model:  SystemC 
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Development Model for Hardware 

Equivalence Check 

Test 

Property Check 
Specification 

System Model 

RTL Model 

Gate Level 

Layout 

Transistor Level 

Silicone 

Simulation 

Emulation 
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Basic Notions of Formal Software Development 
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Formal Software Development 

 In a formal development, properties are stated in a rigorous way with a 
precise mathematical semantics. 

 Formal specification requirements can be proven.  

Advantages: 

 Errors can be found early in the development process. 

 High degree of confidence into the system. 

 Recommend use of formal methods for high SILs/EALs. 

Drawbacks:  

 Requires a lot of effort and is thus expensive. 

 Requires qualified personnel (that would be you). 

 There are tools which can help us by 

 finding (simple) proofs for us (model checkers), or 

 checking our (more complicated) proofs (theorem provers). 
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Formal Semantics 

 States and transitions between them: 

 

 

 

 

 

 Operational semantics describes relation between states and transitions: 

 

 

 

 

 Formal proofs;  e.g. proving 

 x = y + 4; z = y – 2;   

                                             yields the same final state as  
 z = y - 2;  x = y + 4; 

x 5 

y 3 

z 8 

x 7 

y 3 

z 8 

x = y + 4; z = y – 2; 
x 7 

y 3 

z 1 

s0 s1 s2 

s ` e  n 

s ` x = e    s[x / n] 

s0 ` y + 4  7 

s0 ` x = y + 4   s1 
hence: 

System run 
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Semantics of Programs and Requirements 

 Set of all possible system runs 

 

 

 

 

 

 

 

 

 Requirements related to safety and security: 

 Requirements on single states ? 

 Requirements on system runs ? 

 Requirements on sets of system runs ? 

 

x 5 

y 3 

z 8 

x 7 

y 3 

z 8 

x = y + 4; z = y – 2; 
x 7 

y 3 

z 1 

s0 s1 s2 

… 

Alpern & Schneider (1985, 1987) 
Clarkson & Schneider (2008) 
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Some Notions 

 Let 𝑏, 𝑡 be two traces then 

       𝑏 ≤ 𝑡  iff. ∃𝑡′. 𝑡 = 𝑏 ⋅ 𝑡′   i.e.  𝑏 is a finite prefix of 𝑡 

 

 A property is a set of infinite execution traces  (like a program) 

 Trace t satisfies property P, written 𝑡 ⊨ 𝑃, iff 𝑡 ∈ 𝑃  

 

 A hyperproperty is a set of sets of infinite execution traces (like a set of 

programs) 

 A system (set of traces) S satisfies H iff S  H 

 An observation 𝑂𝑏𝑠 is a finite set of finite traces 

 𝑂𝑏𝑠 ≤ 𝑆 (𝑂𝑏𝑠 is a prefix of 𝑆) iff   

      𝑂𝑏𝑠 is an observation and  ∀𝑚 ∈ 𝑂𝑏𝑠. ∃𝑡 ∈ 𝑆. 𝑚 ≤ 𝑡 

    Systeme hoher Sicherheit und Qualität, WS 19/20 - 27 -  
    

Requirements on States: Safety Properties 

 Safety property S:   „Nothing bad happens“ 

 i.e. the system will never enter a bad state 

 E.g. “Lights of crossing streets do not go 
green at the same time”  

 

 A bad state: 

 can be immediately recognized; 

 cannot be sanitized by following states. 

 

 S is a safety property iff 

∀𝑡.  𝑡 ∉ 𝑆 ⟹ ∃𝑡1.  𝑡1 ≤ 𝑡 ⟹ ∀𝑡2.   𝑡1 ≤ 𝑡2 ⟹  𝑡2 ∉ 𝑆 ,   𝑡1 finite 

 

𝑡1 

𝑡2 
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Proving Safety Properties 

 In the previous specification, 𝑡1  is finite. As a consequence, 

 a property is a safety property if and only if its violation can be detected 
on a finite trace. 

 

 Safety properties are typically proven by induction 

 Base case:  initial states are good (= not bad) 

 Step case: each transition transforms a good state again in a good state 

 

 Safety properties can be enforced by run-time monitors 

 Monitor checks following state in advance 
and allows execution only if it is a good state 
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Requirements on Runs: Liveness Properties 

 Liveness property L:   

 „Good things will happen eventually“ 

 E.g. “my traffic light will go green 
eventually * ” 

 

 A good thing is always possible and possibly infinite. 
 

 L is a liveness property iff 

 ∀ 𝑡.  finite(𝑡)  → ∃ 𝑡1.   𝑡 ⋅ 𝑡1 ∈ 𝐿 
 

 i.e. all finite traces t can be extended to a trace in L. 

 

* Achtung:   “eventually” bedeutet  “irgendwann” oder “schlussendlich” 
         aber nicht “eventuell” ! 
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Satisfying Liveness Properties 

 Liveness properties cannot (!) be enforced by run-time monitors. 

 

 Liveness properties are typically proven by the help of well-founded orderings 

 Measure function m on states s 

 Each transition decreases m  
 t 2 L  if we reach a state with minimal m 

 

 E.g. measure denotes the number of transitions for the light to go green 
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Requirements on Sets of Runs:  
Safety Hyperproperties 

 Safety hyperproperty:   „System never behaves bad“ 

 No bad thing happens in a finite set of finite traces 

 (the prefixes of) different system runs do not exclude each other 

 E.g. “the traffic light cycle is always the same” 

 

 A bad system can be recognized by a bad observation (set of finite runs) 

 A bad observation cannot be sanitized regards less how we continue 
it or add additional system runs 

 E.g. two system runs having different traffic light cycles 

 

 S is a safety hyperproperty iff  (see safety property): 

 

  ∀𝑇. 𝑇 ∉ 𝑆 ⟹ (∃𝑂𝑏𝑠.  𝑂𝑏𝑠 ≤ 𝑇 ⟹  ∀𝑇′. 𝑂𝑏𝑠 ≤ 𝑇′ ⟹ 𝑇′ ∉ 𝑆)  

 

 

    Systeme hoher Sicherheit und Qualität, WS 19/20 - 33 -  
    

Requirements on Sets of Runs: 
Liveness Hyperproperties 

 Liveness hyperproperty S:   
„The system will eventually develop to a good system“ 

 Considering any finite part of a system behavior, the system 
eventually develops into a “good” system (by continuing 
appropriately the system runs or adding new system runs) 

 E.g. “Green light for pedestrians can always be omitted” 

 L is liveness hyperproperty  iff   
∀𝑇. ∃𝐺. 𝑇 ≤ 𝐺 ∧ 𝐺 ∈ 𝐿 

 T is a finite set of finite traces (observation) 

 Each observation can be explained by a system G satisfying L 

 

 Examples:  

 Average response time 

 Closure operations in information flow control 

 Fair scheduling 
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Landscape of (Hyper)Properties 

 Each (hyper-) property can be represented as a combination of  
safety and liveness (hyper-) properties. 

 

Safety  
Hyperproperties 

Liveness  
Hyperproperties 

Safety  
Properties 

Liveness 
Properties 

Invariants 
Guaranteed  

Service 

Average  
Response 

Non- 
Interference 

Closure 
 Predicates Observational 

determinism 
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Structuring the Formal Development 
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The Global Picture 

Informal Specification 

Safety/Security 
Requirements 

Composite Specification 

Abstract Specification 

Refined Specification 

Decomposition 

Refinement / 
Decomposition 

Safety/Security 
Requirements 

Satisfies 

Satisfies 

Satisfies 

Satisfies 

• Test 
• Program analysis 
• Model checking 
• Formal proof 
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Structuring the Development 

Horizontal structuring: 

 Modularization into components 

 Composition and Decomposition 

 Aggregation 
 

 Vertical structuring: 

 Abstraction and refinement 
from design specification to implementation 

 Declarative vs. imparative specification 

 Inheritance of properties  
 

 Views: 

 Addresses multiple aspects of a system 

 Behavioral model, performance model, structural model, analysis 
model(e.g. UML, SysML) 

 

    Systeme hoher Sicherheit und Qualität, WS 19/20 - 38 -  
    

Horizontal Structuring (informal) 

 Composition of components  

 Dependent on the individual layer of abstraction 

 E.g. modules, procedures, functions,… 

 Example: 
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Modular Structuring of Requirements 

System 
Requirements 

Component 1 
Requirement 

Component n 
Requirement 

Component 1 
Guarantees 

Component n 
Guarantees 

System Guarantees 

… 

… 

Decomposition of requirements 

Composition of guarantees 

Verification of requirements 
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Mutual Dependencies: Assume/Guarantee 

 Safety requirement:  Queue does not loose any items. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Components depend on each other! 

 Initialization ? 

Loop:  
  if (s1 == a1) {  
   send(x, in);  s1 = not s1 } 

Loop:  
  if (s1 != a1 && |q| < max)  { 
       enq(q, in);  
       a1 = not a1; 
       } 
  if (s2 == a2 && |q| > 0)  { 
       deq(q, out);   
       s2 != not s2  
       } 
 

Loop:  
  if (s2 != a2) then { 
     read(y, out); 
     a2 = not a2; 
     consume(y)  
     } 

in out 

s1 s2 

a2 a1 

q 

Producer Queue Consumer 

Fixed capacity 
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Composition of Security Guarantees 

Only complete bicycles are allowed to pass the gate.   

Secure ! Secure ! 
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Composition of Security Guarantees 

Insecure ! 

Only complete bicycles are allowed to pass the gate.   Security properties are 
non-compositional ! 
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Concurrent shared variable programs are non-
compositional 

Thread1() { 

       x = 1; 

} 

// @post: x == 1 

Thread2() { 

       x = (1 << 64); 

} 

// @post: x == (1 << 64) 

long long x; 

Global variable 

Post conditions hold in 
absence of concurrent 

threads 

 

(Thread1() || Thread2()); 

// @post: x == 1 or x == (1<<64) Does composition hold? 
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Concurrent shared variable programs are non-
compositional 

 This post-condition cannot be derived from any logical composition of the 
original post-conditions of Thread1() and Thread2() 
 

 For writing a 128bit integer to memory, two writes on the memory  bus are 
required. As a consequence, the final value of x may also be (1<<64) + 1 

 

 

 

long long x; 

 

(Thread1() || Thread2()); 

 

// @post: x == 1 or x == (1<<64) or x == (1<<64) + 1 
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Vertical Structuring - Refinement 

 Idea:   start at an abstract description and add        details 
step by step 

 

     From abstract specification to an implementation 

 

 What do we want to refine? 

 Algorithm: algebraic refinement 

 Data:  data refinement 

 Process:  process refinement 

 Events:  action refinement 
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empty: stack;  
pop(stack):stack; 
push(int, stack):stack 

 

Stack 

Algebraic Refinement 

[]     :: [a]   
head :: [a]-> a 
(:)    :: a-> [a]-> [a] 
tailSafe :: [a]-> [a] 
 
tailSafe xs = if null xs then [] else tail xs 

List 

empty ↦  [] 
push   ↦ (:) 
pop     ↦ safetail 

Implementing  
stacks by lists 

safetail([])    == [] 
safetail(y:xs) == y 

To prove: 

Refinement preserves  
properties of stack by 
transitivity of the logic ! 

Refinement Satisfies 

pop(empty) = empty    

pop(push(x, y)) = y 
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Even More Refinements 

 Data refinement 

 Abstract datatype is „implemented“ in terms of the more concrete 
datatype 

 Simple example: define stack with lists 

 

 Process refinement 

 Process is refined by excluding certain runs 

 Refinement as a reduction of underspecification by eliminating possible 
behaviours 

 

 Action refinement 

 Action is refined by a sequence of actions 

 E.g.  a stub for a procedure is refined to an executable procedure 
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Conclusion & Summary 

Software development models: structure vs. flexibility 

Safety standards such as IEC 61508, DO-178B suggest 
development according to V-model. 

 Specification and implementation linked by verification and 
validation. 

 Variety of artefacts produced at each stage, which have to 
be subjected to external review. 

Safety / Security Requirements 

 Properties:  sets of traces 

 Hyperproperties:  sets of properties 

Structuring of the development: 

 Horizontal – e.g. composition 

 Vertical – refinement (e.g. algebraic, data, process…) 
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Where are we? 

 01: Concepts of Quality 

 02: Legal Requirements: Norms and Standards 

 03: The Software Development Process 

 04: Hazard Analysis 

 05: High-Level Design with SysML 

 06: Formal Modelling with OCL 

 07: Testing 

 08: Static Program Analysis 

 09-10: Software Verification  

 11-12: Model Checking 

 13: Conclusions 
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Hazard Analysis in the Development Cycle 
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The Purpose of Hazard Analysis 

System Safety 

Hazard 
Analysis 

Safety 
Requirements 

Validated 
Software 

Hazard Analysis  
systematically 
determines a list of 
safety requirements. 
 
The realization of the 
safety requirements by 
the software product 
must be verified. 
 
The product must be 
validated wrt. the 
safety requirements. 

Software Development  
(V-Model) 

V
a

li
d

a
ti

o
n

 

Verification 
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Hazard Analysis …  

 provides the basic foundations for system safety. 

 

 is performed to identify hazards, hazard effects, and hazard causal factors. 

 

 is used to determine system risk, to determine the significance of hazards, 
and to establish design measures that will eliminate or mitigate the identified 
hazards. 

 

 is used to systematically examine systems, subsystems, facilities, 
components, software, personnel, and their interrelationships. 

 

Clifton Ericson: Hazard Analysis Techniques for System Safety. 

 Wiley-Interscience, 2005. 
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Form and Output of Hazard Analysis 

 

 

 

 

 

 Because the process is informal, it can only be checked by reviewing. 

 

 It is therefore critical that 

 standard forms of analysis are used, 

 documents have a standardized form, and 

 all assumptions are documented. 

The output of hazard analysis is a list of safety requirements and 
documents detailing how these were derived. 
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Classification of Requirements 

 Requirements to ensure: 

 safety 

 security 

 

 Requirements for: 

 hardware 

 software 

 

 Characteristics / classification of requirements: 

 according to the type of a property 
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Classification of Hazard Analysis 

 Top-down methods start with an anticipated hazard and work backwards 
from the hazard event to potential causes for the hazard. 

 Good for finding causes for hazard; 

 good for avoiding the investigation of “non-relevant” errors;  

 bad for detection of missing hazards. 

 

 Bottom-up methods consider “arbitrary” faults and resulting errors of the 
system, and investigate whether they may finally cause a hazard. 

 Properties are complementary to top-down properties; 

 Not easy with software where the structure emerges during development.  
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Hazard Analysis Methods 

 Fault Tree Analysis (FTA) – top-down  

 Event Tree Analysis (ETA) – bottom-up  

 Failure Modes and Effects Analysis (FMEA) – bottom up  

 Cause Consequence Analysis – bottom up  

 HAZOP Analysis – bottom up  
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Fault Tree Analysis 

    Systeme hoher Sicherheit und Qualität, WS 19/20 - 11 -  
  

Fault Tree Analysis (FTA) 

 Top-down deductive failure analysis (of undesired states) 

 Define undesired top-level event (UE); 

 Analyze all causes affecting an event  to construct fault (sub)tree; 

 Evaluate fault tree. 
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FTA: Cut Sets 

 A cut set is a set of events that cause the top UE to occur (also called a fault 
path). 

 Cut sets reveal critical and weak links in a system. 

 Extension- probabilistic fault trees: 

 Annotate events with probabilities; 

 Calculate probabilities for cut sets. 

 We do not pursue this further here, as it is mainly useful for hardware 
faults. 

 Cut sets can be calculated top down or bottom up. 

 MOCUS algorithm (Ericson, 2005) 

 Corresponds to the DNF of underlying formula. 

 What happens to priority AND, conditioning and inhibiting events 
(modelled as implication?). 
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Fault-Tree Analysis: Process Overview 

1. Understand system design 

2. Define top undesired event 

3. Establish boundaries (scope) 

4. Construct fault tree 

5. Evaluate fault tree (cut sets, probabilities) 

6. Validate fault tree (check if correct and complete) 

7. Modify fault tree (if required) 

8. Document analysis 
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Fault Tree Analysis: First Simple Example 

 Consider a simple fire protection system connected to smoke/heat 
detectors. 

Smoke detection  
failed. 

Heat detection  
failed. 

Fire was not 
detected. 

Pump failed. Nozzles blocked. 

Deluge water was 
not released 

Fire protection system fails: 
Fire, but no deluge water 

 

E1 

E2 E3 

E4 E5 E6 E7 
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Fault Tree Analysis: Another Example 
 

Battery 

Fuse 
Float switch  

Lamp 

• A lamp warning about low 
level of brake fluid. 

• Top undesired event: 
warning lamp off despite 
low level of fluid.  

Source: N. Storey, Safety-Critical Computer Systems. 

E1 

P1 

E2 

S1 E3 E4 

P3 P4 

P2 

S2 S3 
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Fault Tree Analysis: Final Example 

A laser is operated from a control computer 
system. 
 The laser is connected via a relay and a 

power driver, and protected by a cover 
switch. 

 Top Undesired Event: 
Laser activated without explicit command 
from computer system.  

Source: N. Storey, Safety-Critical Computer Systems. 

E1 

S1 

E2 

E3 

E4 

P2 

E6 

E7 

E8 

P3 

P4 

P5 

P7 

P6 

P1 

S2 
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FTA - Conclusions 

 Advantages: 

 Structured, rigorous, methodical approach; 

 Can be effectively performed and computerized, commercial tool support; 

 Easy to learn, do, and follow; 

 Combines hardware, software, environment, human interaction. 

 Disadvantages: 

 Can easily become time-consuming and a goal in itself rather than a tool if 
not careful; 

 Modelling sequential timing and multiple phases is difficult. 
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Event Tree Analysis 
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Event Tree Analysis (ETA) 

 Bottom-up method 

 Applies to a chain of cooperating activities 

 Investigates the effect of activities failing while the chain is processed 

 Depicted as binary tree; each node has two leaving edges: 

 Activity operates correctly 

 Activity fails 

 Useful for calculating risks by assigning probabilities to edges 

 Complexity: 𝒪(2𝑛)  
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Event Tree Analysis - Overview 

Input: 
 

• Design knowledge 
• Accident histories 

ETA Process: 
 

1. Identify Accident Scenarios 
2. Identify IEs (Initiating Events) 
3. Identify pivotal events 
4. Construct event  tree diagrams 
5. Evaluate risk paths 
6. Document process 

Output: 
 

• Mishap outcomes 
• Outcome risks 
• Causal sources 
• Safety Requirements 
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Example: Cooling System for a Nuclear Power Plant 
 

 

 

 

Pipe 
Breaks 

Fails 

Available 

Available 

Available 
Available 

Fails 

Available 

Fails 
Fails 

Fails 
Available 

Fails 

Very Small 

Small 

Small 

Medium 

Large 

Very Large 

Very Large 

Initating 
Event 

Pivotal Events Outcome 

Electricity Emergency 
Core 
Cooling 
 

Fission 
Product 
Removal 

Containment Fission 
Release 
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Probabilistic ETA:  
Fire Detection/Suppression System for Office Building 

Fire Starts 
P= 0.01 

YES (P= 0.9) 

NO (P= 0.1) 

YES (P= 0.7) 

NO  (P= 0.3) 

YES (P= 0.8) 

NO  (P= 0.2) 

YES (P= 0.8) 

NO  (P= 0.2) 

Limited damage 

Extensive damage, 
People escape 

Limited damage, 
Wet people 

Death/injury, 
Extensive damage 

Death/injury, 
Extensive damage 

0.00504 

0.00126 

0.00216 

0.00054 

0.001 

Initating 
Event 
Prob. 

Pivotal Events Outcome Prob. 

Fire Detection 
Working 

Fire Alarms 
Working 

Fire 
Sprinkler 
Working 
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ETA - Conclusions 

 Advantages: 

 Structured, rigorous and metodical; 

 Can be effectively computerized, tool support is available; 

 Easy to learn, do, and follow; 

 Combines hardware, software, environment and human interaction; 

 Can be effectively performed on varying levels of system detail. 

 

 Disadvantages: 

 An ETA can only have one IE; 

 Can overlook subtle system dependencies; 

 Partial success/failure not distinguishable. 
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Failure Mode and Effects Analysis 
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Failure Modes and Effects Analysis (FMEA) 

 Analytic approach to review potential failure modes and their causes. 

 Three approaches: functional, structural or hybrid. 

 Typically performed on hardware, but useful for software as well.  

 It analyzes  

 the failure mode, 

 the failure cause, 

 the failure effect, 

 its criticality, 

 and the recommended action, 

  and presents them in a standardized table. 
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Software Failure Modes 

Guide word Deviation Example Interpretation 

omission The system produces no output 
when it should. Applies to a single 
instance of a service, but may be 
repeated. 

No output in response to change 
in input; periodic output missing. 

commission The system produces an output, 
when a perfect system would have 
produced none. One must 
consider cases with both, correct 
and incorrect data. 

Same value sent twice in series; 
spurious output, when inputs have 
not changed. 

early Output produced before it should 
be. 

Really only applies to periodic 
events; Output before input is 
meaningless in most systems. 

late Output produced after it should 
be. 

Excessive latency (end-to-end 
delay) through the system; late 
periodic events. 

value 
(detectable) 

Value output is incorrect, but in a 
way, which can be detected by the 
recipient. 

Out of range. 

value 
(undetectable) 

Value output is incorrect, but in a 
way, which cannot be detected. 

Correct in range; but wrong value 
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Criticality Classes 

  Risk as given by the risk mishap index (MIL-STD-882): 

 

 

 

 

 

 

 

 

 

 

 Names vary, principle remains: 

 Catastrophic – single failure 

 Critical – two failures 

 Marginal – multiple failures/may contribute 

 

 

 

 

 

 

 

 

 

Severity Probability 

1. Catastrophic A. Frequent 

2. Critical B. Probable 

3. Marginal  C. Occasional 

4. Negligible D. Remote 

E. Improbable 
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Source:MIL-STD-822E, www.system-safety.org/Documents/MIL-STD-882E.pdf 
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FMEA Example: Airbag Control 

 Consider an airbag control system, consisting of 

 the airbag with gas cartridge; 

 a control unit with  

 Output: Release airbag 

 Input: Accelerometer, impact sensors, seat sensors, … 

 

 FMEA: 

 Structural: what can be broken? 

 Mostly hardware faults. 

 Functional: how can it fail to perform its intended function?  

 Also applicable for software. 
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Airbag Control (Structural FMEA) 

ID  Mode Cause Effect Crit. Appraisal 

1 Omission Gas cartridge 
empty 

Airbag not released in 
emergency situation 

C1 SR-56.3 

2 Omission Cover does not 
detach 

Airbag not released fully in 
emergency situation 

C1 SR-57.9 

3 Omission Trigger signal 
not present in 
emergency. 

Airbag not released in 
emergency situation 
 

C1 Ref. To SW-
FMEA 

4 Comm. Trigger signal 
present in non-
emergency 

Airbag released during 
normal vehicle operation 

C2 Ref. To SW-
FMEA 
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Airbag Control (Functional FMEA) 
ID Mode Cause Effect Crit. Appraisal 

5-1 Omission Software terminates 
abnormally 

Airbag not 
released in 
emergency. 

C1 See 5-1.1, 5-1.2. 

5-1.1 Omission - Division by 0 See 5-1 C1 SR-47.3 
Static Analysis 

5-1.2 Omission - Memory fault See 5-1 C1 SR-47.4 
Static Analysis 

5-2 Omission Software does not 
terminate 

Airbag not 
released in 
emergency. 

C1 SR-47.5 
Termination Proof 

5-3 Late Computation takes 
too long. 

Airbag not 
released in 
emergency. 

C1 SR-47.6 
WCET Analysis 

5-4 Comm. Spurious signal 
generated 

Airbag released in 
non-emergency 

C2 SR-49.3 
 

5-5 Value (u) Software computes 
wrong result 

Either of 5-1 or 
5-4. 

C1 SR-12.1 
Formal Verification 
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FMEA - Conclusions 

 Advantages: 

 Easily understood and performed; 

 Inexpensive to perform, yet meaningful results; 

 Provides rigour to focus analysis; 

 Tool support available. 

 

 Disadvantages: 

 Focuses on single failure modes rather than combination; 

 Not designed to identify hazard outside of failure modes; 

 Limited examination of human error, external influences or interfaces. 
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Conclusions 
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The Seven Principles of Hazard Analysis 
 

Source: Ericson (2005) 

1) Hazards, mishaps and risk are not chance events. 

2) Hazards are created during design. 

3) Hazards are comprised of three components (HE, IM, T/T). 

4) Hazards and mishap risk is the core safety process. 

5) Hazard analysis is the key element of hazard and mishap risk management. 

6) Hazard management involves seven key hazard analysis types. 

7) Hazard analysis primarily encompasses seven hazard analysis techniques.  
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Summary 

 Hazard Analysis is the start of the formal development. 

 

 Its most important output are safety requirements. 

 

 Adherence to safety requirements has to be verified during development, and 
validated at the end. 

 

 We distinguish different types of analysis: 

 Top-Down analysis (Fault Trees) 

 Bottom-up (FMEAs, Event Trees) 

 

 It makes sense to combine different types of analyses, as their results are 
complementary. 
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Conclusions 

 Hazard Analysis is a creative process, as it takes an informal input („system 
safety“) and produces a formal output (safety requirements). Its results cannot 
be formally proven, merely checked and reviewed. 

 
 

 Review plays a key role. Therefore, 

 documents must be readable, understandable, auditable; 

 analysis must be in well-defined and well-documented format; 

 all assumptions must be well documented. 
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Where are we? 

 01: Concepts of Quality 

 02: Legal Requirements: Norms and Standards 

 03: The Software Development Process 

 04: Hazard Analysis 

 05: High-Level Design with SysML 

 06: Formal Modelling with OCL 

 07: Testing 

 08: Static Program Analysis 

 09-10: Software Verification  

 11-12: Model Checking 

 13: Conclusions 
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High-Level Design in the Development Cycle 
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What is a model? 

Different notions of models 
in physics, philosophy or  
computer science 

 

Here: an abstraction of a system / a software / a development 

 

Purposes of models: 

 Understanding, communicating and capturing the design 

 Organizing decisions / information about a system 

 Analyzing design decisions early in the development process 

 Analyzing requirements 

 

 

 

A model is a representation in a certain medium of 

something in the same or another medium.  

The model captures the important aspects of the 

thing being modelled from a certain point of view 

and simplifies or omits the rest. 

             Rumbaugh, Jacobson, 

Booch: UML Reference Manual. 
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Different notions of models 

 In physics: Models give mathematical representations of some part of reality 

 Example. Space-time models for understanding our universe. 

 

 In philosophy: Models attach meaning to symbols and syntax 

 Example. Ontologies are used to a specify set of concepts and 
categories in a subject area or domain that shows their properties and 
the relations between them.  

 

 In computer science: Models are used to specify systems to be built 

 Example. Class diagrams model the collection of classes to be 
programmed or used in a library, and the relations between these 
classes. 

 

 In organizational theory: Models are used to specify organizations, 
companies, projects 

 Example. Organization charts 
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An Introduction to SysML 
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The Unified Modeling Language (UML) 

 Grew out of a wealth of modelling languages in the 1990s 
(James Rumbaugh, Grady Booch and Ivar Jacobson at Rational) 

 Adopted by the Object Management Group (OMG) in 1997, and approved as ISO 
standard in 2005. 

 UML 2.5 consists of  

 a core meta-model, 

 a concrete modeling syntax, 

 the object constraint language (OCL), 

 an interchange format  

 UML 2 is not a fixed language, it can be extended and customized using profiles. 

 

 SysML is a modeling language for systems engineering 

 Standardized in 2007 by the OMG (May 2017 at Ver 1.5) 

 Latest SysML standard at https://www.omg.org/spec/SysML/About-SysML/ 
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What for SysML? 

Serving as a standardized notation allowing all stakeholders to 
understand and communicate the salient aspects of the system 
under development 

 the requirements, 

 the structure (static aspects), and 

 the behaviour (dynamic aspects) 

 

Certain aspects (diagrams) of the SysML are formal, others are 
informal 

  Important distinction when developing critical systems 

 

All diagrams are views of one underlying model 
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Different Views in SysML 

 Structure: 

 How is the system constructed?  
How does it decompose? 

 

 Behaviour: 

 What can we observe?   Does it have a state? 

 

 Requirements: 

 What are the requirements?   Are they met? 

 

 Parametrization: 

 What are the constraints (physical/design)? 

 

 … and possibly more. 
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Example: A Cleaning Robot (HooverBot) 

 Structure: 

 Has an engine, wheels (or tracks?), a vacuum cleaner, a control 
computer, a battery… 

 

 Behaviour: 

 General: starts, then cleans until battery runs out, returns to charging 
station 

 Cleaning: moves in irregular pattern, avoids obstacle 

 

 Requirements: 

 Must cover floor when possible, battery must last at least six hours, 
should never run out of battery, … 

 

 Constraints: 

 Can only clean up to 5 g, can not drive faster than 1m/s, laws concerning 
movement and trajectory, … 
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SysML Diagrams 
 

Structural Diagrams 

Package Diagram 

Internal Block Diagram Parametric Diagram 

Block Definition Diagram 

Behavioural Diagrams 

Use Case Diagram * 

State Machine Diagram Sequence Diagram 

Activity Diagram 

Requirement Diagram * 

* Not considered further. 
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Structural Diagrams in SysML 
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Block Definition Diagram 

 Blocks are the basic building elements of a model 

 Models are instances of blocks 

 

 Block definition diagrams model blocks and their relations: 

 Inheritance 

 Association 

 

 Blocks can also model interface definitions. 

 

 Corresponds to class diagrams in the UML. 

 

 Blocks modelling concurrent processes or HW units with a specific behaviour 
can be associated with state machines or activity charts (see below) specifying 
the behavior of the block. This behaviour is called the classifier behaviour. 
The block is marked with stereotype <<activity>> or <<stateMachine>> 
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BDD – Summary of Notation 

Quelle: Holt, Perry. SysML for Systems Engineering. 
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Example 1: Vehicles 

 A vehicle can be a car, or a bicycle. 

 

 A car has an engine 

 

 A car has 4 wheels,  
a bicycle has 2 wheels 

 

 Engines and wheels have operations 
and values 

 

 In SysML, engine and wheel are 
parts of car and bicycle. 
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Example 2: HooverBots 

The hoover bots have a control computer, and a vacuum cleaner 
(v/c). 

 HooverBot 100 has one v/c, Hoover 1000 has two. 

 Two ways to model this (i.e. two views): 
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Internal Block Diagrams 

 Internal block diagrams decribe instances of blocks 

 

 Here, instances for HooverBots 

 

 On this level, we can describe connections between ports (flow specifications) 

 

 Flow specifications have directions. 

 Item flow specifications have directions. 

 Variants of ports 

 Proxy ports – typed by interface blocks 

 Full ports (“real physical interface”) – typed by normal blocks 

 “normal, unspecified” ports ” – typed by normal blocks 
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Example: HooverBot 100 and 1000  
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Modelling the system context 

 SysML provides a special diagram type “Context Diagram” for modeling the 
target system as a black box, together with its interfaces to the operational 
environment. 

 

 Alternatively, the context can be modeled by 

 

 a bdd showing the target system and the blocks of the operational 
environment, and 

 

 an ibd showing the target system block, the blocks of the operation 
environment, and the ports and item flows representing the interfaces 
between target system and environment. 
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Package Diagrams 

 Packages are used to group diagrams, 
much like directories in the file system. 

 

 Not considered much in the following. 
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Parametric Diagrams 

 Parametric diagrams describe constraints between properties and their 
parameters. 

 

 It can be seen as a restricted form of an internal block diagram, or as 
equational modeling as in Simulink. 

 

fuelflow : FuelFlow 
 
 
{ flowrate = press / (4*injectorDemand) } 

ice.fi.FuelDemand:Real 

ice.fi.FuelFlowRate:Real ice.fi.fuel.FuelPressure::Real 

injectorDemand:Real 

flowrate:Real press:Real 

Relation of fuel flowrate to FuelDemand and FuelPressure value properties  (Source: OMG SysML v1.2)  
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Modeling Tool: Astah-SysML 

 Astah-SysML is available at  
 
   http://astah.net/editions/sysml 

 

 A faculty license is available for FB3 Uni Bremen 

 Non-commercial use only, do not distribute! 

 

 The tool not only helps with the drawing, it also keeps track of the relationship 
between the diagrams: you  edit the model rather than the diagrams. 
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SysML Diagrams Overview 
 

Structural Diagrams 

Package Diagram 

Internal Block Diagram Parametric Diagram 

Block Definition Diagram 

Behavioural Diagrams 

Use Case Diagram * 

State Machine Diagram Sequence Diagram 

Activity Diagram 

Requirement Diagram * 

* Not considered further. 
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Detailed Specification in the Development Cycle 
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Why detailed Specification? 

 Detailed specification is the specification of single modules making up our 
system.  

 

 This is the „last“ level both in abstraction and detail before we get down to the 
code – in fact, some specifications at this level can be automatically translated 
into code. 

 

 Why not write code straight away?  

 We want to stay platform-independent. 

 We may not want to get distracted by details of our target platform.  

 At this level, we have a better chance of finding errors or proving safety 
properties. 
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Levels of Detailed Specification 

We can specify the basic modules: 

 

 By their (external) behaviour 

 Operations defined by their pre/post-conditions and effects (e.g. in OCL) 

 

 Modeling the system‘s internal states by a state machine (i.e. states and 
guarded transitions) 

 

 By their (internal) structure 

 Modeling the control flow by flow charts (aka. activity charts) 

 

 By action languages (platform-independent programming languages for 
UML, but these are not standard for SysML) 

    Systeme hoher Sicherheit und Qualität, WS 19/20 - 27 -  
  

State Diagrams: Basics 

 State diagrams are a particular form of (hierarchical) finite state machines: 

 

 

 

 

 

 

 

 

 Example: a simple coffee machine 

 

 We will explore FSMs in detail later. 

 In hierarchical state machines, a state may contain another FSM (with initial/final 
states). 

 State Diagrams in SysML are taken unchanged from UML. 

Definition: Finite State Machine (FSM) 

A FSM is given by ℳ = Σ, 𝐼, →  where 
• Σ is a finite set of states,  
• 𝐼 ⊆ Σ is a set of initial states, and 
• →⊆ Σ × Σ  is a transition relation, s.t. → is left-total: 

∀𝑠 ∈ Σ. ∃𝑠′ ∈ Σ. 𝑠 → 𝑠′ 
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Basic Elements of State Diagrams 

 States 

 Initial/Final 

 

 Transitions 

 

 Events (Triggers) 

 

 Guards  

 

 Actions (Effects) 
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What is an Event? 

 „The specification of a noteworthy occurence which has a location in time and 
space.“                           (UML Reference Manual) 

 

 

 SysML knows: 

 

 Signal events            event name/ 

 Call events                operation name/ 

 Time events              after(t)/ 

 Change event            when(e)/ 

 Entry events              Entry/ 

 Exit events                 Exit/ 
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SMDs – Summary of Notation  

Quelle: Holt, Perry. SysML for Systems Engineering. 
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State Diagram Elements (SysML Ref. §13.2) 

 Choice pseudo state 

 Composite state 

 Entry point 

 Exit point 

 Final state 

 History pseudo states 

 Initial pseudo state 

 Junction pseudo state 

 Receive signal action 

 Send signal action 

 Action 

Region 

Simple state 

State list 

State machine 

Terminate node 

Submachine state 
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Activity Charts: Foundations 

 The activity charts of SysML (UML) are a variation of good old-fashioned flow 
charts. 

 Those were standardized as DIN 66001 
 (ISO 5807). 
 

 Flow charts can describe  
programs (right example)  
or non-computational 
activities (left example)  
 

 SysML activity charts 
are extensions of 
UML activity charts. 

Quelle: Erik Streb, via Wikipedia 

Quelle: Wikipedia 
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Basics of Activity Diagrams 

 Activities model the work flow of low-level behaviours:  
“An activity is  the specification of parameterized behaviour as the coordinated 
sequencing of subordinate unites whose individual elements are actions.”                    
(UML Ref. §12.3.4) 

 

 Diagram comprises of actions, decisions, joining and forking activities, 
start/end of work flow. 

 

 Control flow allows to disable and enable (sub-) activities. 

 

 An activity execution results in the execution of a set of actions in some 
specific order. 
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What is an Action? 

 A terminating basic behaviour, such as 

 Changing variable values                  [UML Ref. §11.3.6] 

 Calling operations                              [UML Ref. §11.3.10] 

 Calling activities                                  [UML Ref. §12.3.4] 

 Creating and destroying objects, links, associations 

 Sending or receiving signals 

 Raising exceptions . 

 

 Actions are part of a (potentially larger, more complex) behaviour. 

 

 Inputs to actions are provided by ordered sets of pins: 

 A pin is a typed element, associated with a multiplicity 

 Input pins transport typed elements to an action 

 Actions deliver outputs consisting of typed elements on output pins 
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Elements of Activity Diagrams 

 Paths (arrows): 

 Control flow 

 Object flow 

 Probability and rates 

 

 Activities in BDDs 

 Partitions 

 Interruptible Regions 

 Structured activities 

 

Nodes:  

 

 Action nodes 

 Activities 

 Decision nodes 

 Final nodes 

 Fork nodes 

 Initial nodes 

 Local pre/post-conditions 

 Merge nodes 

 Object nodes 

 Probabilities and rates 
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Activity Diagrams – Summary of Notation 
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Behavioural Semantics 

 Semantics is based on token flow – similar to Petri Nets, see [UML Ref. 
pp. 326] 

 

 A token can be an input signal, timing condition, interrupt, object 
node (representing data), control command (call, enable) 
communicated via input pin, … 

 

 An executable node (action or sub-activity) in the activity diagram 
begins its execution, when the required tokens are available on their 
input edges. 

 

 On termination, each executable node places tokens on certain 
output edges, and this may activate the next executable nodes 
linked to these edges. 
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Activity Diagrams – Links With BDDs 

Block definition diagrams may show: 

 Blocks representing activities 

 

 

 

 

 

 

 

 One activity may be composed of other activities – composition indicates 
parallel execution threads of the activities at the “part end”. 

 

 One activity may contain several blocks representing object nodes (which 
represent data flowing through the activity diagram). 
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Sequence Diagrams 

 Sequence Diagrams describe the flow of messages between actors. 

 Extremely useful, but also extremely limited. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 We consider concurrency in more depth later on. 

 

 

 

 

 

 

 

 

Quelle:  
IBM developerWorks 
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Summary 
 
 High-level modeling describes the structure of the system at an abstract level. 

 

 SysML is a standardized modeling language for systems engineering, based on 
the UML. 

 We disregard certain aspects of SysML in this lecture. 

 

 SysML  structural diagrams describe this structure: 

 block definition diagrams, 

 internal block definition diagrams, 

 package diagrams. 

 

 We may also need to describe formal constraints, or invariants. 
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Summary (cont.) 

 Detailed specification means we specify the internal structure of the modules 
in our systems. 
 

 Detailed specification in SysML: 

 State diagrams are hierarchical finite state machines which specify states 
and transitions. 

 Activity charts model the control flow of the program. 
 

 More behavioural diagrams in SysML: 

 Sequence charts model the exchange of messages between actors. 

 Use case diagrams describe particular uses of the system. 
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Where are we?

 01: Concepts of Quality

 02: Legal Requirements: Norms and Standards

 03: The Software Development Process

 04: Hazard Analysis

 05: High-Level Design with SysML

 06: Formal Modelling with OCL

 07: Testing

 08: Static Program Analysis

 09-10: Software Verification 

 11-12: Model Checking

 13: Conclusions
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Formal Modeling in the Development Cycle

Systeme hoher Sicherheit und Qualität, WS 19/20 - 4 -

What is OCL?

 OCL is the Object Constraint Language.

 Standardized by OMG actual version is OCL 2.4

 Available at https://www.omg.org/spec/OCL/

 What is OCL?

 „A formal language used to describe expressions on UML 
models. These expressions typically specify invariant 
conditions that must hold for the system being modeled or 
queries over objects described in a model.” (OCL standard, §7)

 Why OCL? 

 „A UML diagram, such as a class diagram, is typically not 
refined enough to provide all the relevant aspects of a 
specification. There is, among other things, a need to 
describe additional constraints about the objects in the 
model. “                                                    (OCL standard, §7.1)
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Characteristics of the OCL

 OCL is a pure specification language

 OCL expressions do not have side effects

 OCL is not a programming language.

 Expressions are not executable (though some may be)

 OCL is typed language

 Each expression has a  type; all expressions must be well-typed

 Types are classes, defined by class diagrams
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Usage of the OCL

 as a query language

 to specify invariants on classes and types in the class 

 to specify type invariant for Stereotypes

 to describe pre- and post conditions on Operations and Methods

 to describe guards

 to specify target (sets) for messages and actions

 to specify constraints on operations

 to specify derivation rules for attributes for any expression over a UML model. 

(OCL standard, §7.1.1)
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OCL by Example
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Why is SysML not enough?

What about requirements like:

 The minimal age of car owners

 The maximal number of cars (of a specific color) owned

 The maximal number of owners of a car

Person

name: string

age: Integer

Vehicle

Color: Color

Car Bike

<<enumeration>>

Color

#black

#white

#red

owner

1

fleet

0 .. *

<<query>>

getName(): string

birthday()

setAge(newAge: Integer):Integer

Bdd VehicleOwners
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OCL Basics

 The language is typed: each expression has a type.

 Multiple-valued logic (true, false, undefined).

 Expressions always live in a context:

 Invariants on classes, interfaces, types.

 Pre/postconditions on operations or methods

context Class

inv Name: expr

context Class :: op(a1: Type, …, an: Type) : Type

pre Name: expr

post Name: expr
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OCL Types

 Basic types:

 Boolean, Integer, Real, String

 OclAny – Enthält alle Typen

 OclVoid – In allen Typen enthalten, nur eine Instanz null

 OclInvalid – Fehlerwert (nur eine Instanz invalid)

 Collection types:

 Sequences, Bag, OrderedSet, Set

 Model types
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Invariants of Classes

“A vehicle owner must be at least 18 years old”

Person

name: string

age: Integer

Vehicle

Color: Color

Car Bike

<<enumeration>>

Color

#black

#white

#red

owner

1

fleet

0 .. *

<<query>>

getName(): string

birthday()

setAge(newAge: Integer):Integer

context  Vehicle

inv: self.owner.age >= 18

Bdd VehicleOwners
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Basic types and operations

 Integer (ℤ)                                                     OCL-Std. §11.5.2

 Real (ℝ)                                                         OCL-Std. §11.5.1

 Integer is a subclass of Real

 round, floor from Real to Integer

 String (Zeichenketten)                                OCL-Std. §11.5.3

 substring, toReal, toInteger, characters, etc.

 Boolean (Wahrheitswerte)                         OCL-Std. §11.5.4             

 or, xor, and, implies

 Relationen auf Real, Integer, String
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Collection Types

Sequence, Bag, OrderedSet, Set                  OCL-Std. §11.6, §11.7

 Operations on all collections: 

 size, includes, count, isEmpty, flatten

 Collections are always „flattened“

 Syntax: collection->operation(…)

 Set, OrderedSet

 union, intersection

 Bag

 union, intersection, count

 Sequence (lists)

 first, last, reverse, prepend, append
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Collections

“Nobody has more than 3 vehicles”

context Person

Inv: self.fleet->size <= 3

Person

name: string

age: Integer

Vehicle

Color: Color

Car Bike

<<enumeration>>

Color

#black

#white

#red

owner

1

fleet

0 .. *

<<query>>

getName(): string

birthday()

setAge(newAge: Integer):Integer

Bdd VehicleOwners
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Collection Types: Quantification

We can quantify over collections:                                             OCL-Std. §11.9.1

 Universal quantification :

coll->forAll(elem: Type| expr[elem]) : Boolean

 Existential quantification:

coll->exists(elem: Type| expr[elem]) : Boolean

 Comprehension operator:
coll->select(elem: Type| expr[elem]) : Coll[Type]

where expr is an expression of type Boolean.
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Universal Quantification

“All vehicles of a person are black”

context Person

inv: self.fleet->forAll(v | v.color = #black)

“No person has more than three black vehicles”

context Person

inv: self.fleet->select(v | v.color = #black)->size <= 3

Person

name: string

age: Integer

Vehicle

Color: Color

Car Bike

<<enumeration>>

Color

#black

#white

#red

owner

1

fleet

0 .. *

<<query>>

getName(): string

birthday()

setAge(newAge: Integer):Integer

Bdd VehicleOwners
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Universal Quantification

“A person younger than 18 owns no cars”

context  Person

inv: self.age < 18 implies 

self.fleet -> forAll(v | not v.ocllsKindOf(Car))

Person

name: string

age: Integer

Vehicle

Color: Color

Car Bike

<<enumeration>>

Color

#black

#white

#red

owner

1

fleet

0 .. *

<<query>>

getName(): string

birthday()

setAge(newAge: Integer):Integer

Bdd VehicleOwners
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Existential Quantification

context   Car

inv: Car.allInstances()->exists(c | c.color=#red)

“There is a red car”

Person

name: string

age: Integer

Vehicle

Color: Color

Car Bike

<<enumeration>>

Color

#black

#white

#red

owner

1

fleet

0 .. *

<<query>>

getName(): string

birthday()

setAge(newAge: Integer):Integer

Bdd VehicleOwners
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Pre/Post Conditions

“If setAge(a) is called with a non-negative argument a, then a becomes the 

new value of the attribute age.”

context   Person::setAge(a:int)

pre: a >= 0

post: self.age = a

Person

name: string

age: Integer

Vehicle

Color: Color

Car Bike

<<enumeration>>

Color

#black

#white

#red

owner

1

fleet

0 .. *

<<query>>

getName(): string

birthday()

setAge(newAge: Integer):Integer

Bdd VehicleOwners
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Pre/Post Conditions

“Calling birthday() increments the age of a person by 1.”

context   Person::birthday()

post: self.age = self.age@pre + 1

Person

name: string

age: Integer

Vehicle

Color: Color

Car Bike

<<enumeration>>

Color

#black

#white

#red

owner

1

fleet

0 .. *

<<query>>

getName(): string

birthday()

setAge(newAge: Integer):Integer

Bdd VehicleOwners
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Dynamic Aspects
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Modelling Dynamic Aspects

 Block diagrams model the static structure of the system: classes, attributes
and the type of the operations. The possible system states are all instances
of these model types. 

 Invariants and pre/post conditions can be used to model the dynamic aspects
of the system. In particular, they model all possible state transitions between
the system states.

 An operation can become active (there is a state transition emanating from it) 
if the invariant holds, and the precondition holds. If there are no active state
transitions, the system is deadlocked.

 Deadlocks should be avoided. 
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Example: The Traffic Light
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pedLight: False
carLight: True
request: False
counter: 0

Example: The Traffic Light
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pedLight: False
carLight: True
request: True
counter: 1

Example: The Traffic Light
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pedLight: False
carLight: False
request: True
counter: 1

Example: The Traffic Light

Systeme hoher Sicherheit und Qualität, WS 19/20 - 28 -

Deadlock

pedLight: True
carLight: False
request: False
counter: 1

Example: The Traffic Light
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OCL Details
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Model types

 Model types are given by

 Attributes, 

 Operations, and

 Associations of the model

 Navigation along the association

 If cardinality is 1, type is of target type T

 Otherwise, it is Set(T)

 User-defined operations in expressions have to be stateless (stereotype 
<<query>>)
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Collection Types: Iterators

 Quantifiers are a special case of iterators.

 Think of all/any in Haskell defined via foldr

 All iterators defined via iterate OCL-Std. §7.6.6

coll->iterate(elem: T; acc: T2 = initial_expr

| expr[elem, acc]) : T2

where expr of type T denotes a function on elem and acc

c.iterate(e: T, acc: T2 = v) = {

acc= v;

for (Enumeration e= c.elements(); e.hasMoreElements();) {

acc= expr[e, acc];

e= e.nextElement();

}

return acc;

}

acc stands for 
“accumulator”
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Collection Types: Iterators

“A person owns at most 3 black vehicles”

Person

name: string

age: Integer

<<query>>

getName(): string

birthday()

setAge(newAge: Integer):Integer

Vehicle

Color: Color

Car Bike

<<enumeration>>

Color

#black

#white

#red

owner

1

fleet

0 .. *

context   Person

inv: self.fleet->iterate(v; acc:Integer = 0 

| if (v.color = #black)

then acc + 1 else acc

endif ) <= 3
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Undefinedness in OCL 

 Each domain of a basic type has two values denoting “undefinedness”:                                                 
OCL-Std §A.2.1.1

 null or 𝜀 stands for “undefined”, e.g. if an attribute value has not been 
set or is not defined (Type OclVoid)

 invalid or ⊥ stands for “invalid” and signals an error in the evaluation of 
an expression (e.g. division by 0, or application of a partial function) 
(Type OclInvalid)

 As subtypes: OclInvalid ⊆ OclVoid ⊆ all other types

 Undefinedness is propagated.

 In other words, all operations are strict: „an invalid or null operand
causes an invalid result“.
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The OCL Logic

 Exceptions to strictness:

 Boolean operators (see below)

 Case distinction

 Test on definedness: oclIsUndefined with

𝑜𝑐𝑙𝐼𝑠𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑒 = ቊ
𝑡𝑟𝑢𝑒 𝑖𝑓 𝑒 = ⊥ ∨ 𝑒 = 𝑛𝑢𝑙𝑙
𝑓𝑎𝑙𝑠𝑒 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 The domain type for Boolean also contains null and invalid.

 The resulting logic is four-valued.

 It is a Kleene-Logic:     𝐴 → 𝐵 ≡ ¬ 𝐴 ∨ 𝐵

 Boolean operators (and, or, implies, xor) are non-strict on both

sides.

 But equality (like all other relations) is strict: ⊥ = ⊥ is ⊥
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OCL Boolean Operators: Truth Table

 Legend: ⊥ is invalid, 𝜀 is null.                                          OCL-Std §A .2.1.3, Table A.2
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OCL Style Guide

 Avoid complex navigation („Loose coupling“).

 Otherwise changes in models break OCL constraints.

 Always choose adequate context.

 „Use of allInstances()is discouraged“

 Split up invariants if possible.

 Consider defining auxiliary operations if expressions become too complex.
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Summary

 OCL is a typed, state-free specification language which allows us to denote
constraints on models.

 We can define or models much more precise.

 Ideally: no more natural language needed.

 OCL is part of the more „academic“ side of UML/SysML. 

 Tool support is not great, some tools ignore OCL, most tools at least type-
check OCL, hardly any do proofs.

 However, in critical system development, the kind of specification that OCL 
allows is essential.

 Try it yourself:  USE – Tool  http://useocl.sourceforge.net
Martin Gogolla, Fabian Büttner, and Mark Richters. USE: A UML-Based Specification
Environment for Validating UML and OCL. Science of Computer Programming, 69:27-34, 
2007.
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Where are we? 

 01: Concepts of Quality 

 02: Legal Requirements: Norms and Standards 

 03: The Software Development Process 

 04: Hazard Analysis 

 05: High-Level Design with SysML 

 06: Formal Modelling with OCL 

 07: Testing 

 08: Static Program Analysis 

 09-10: Software Verification  

 11-12: Model Checking 

 13: Conclusions 

 

    Systeme hoher Sicherheit und Qualität, WS 19/20 - 3 -  
  

Testing in the Development Cycle 
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What is Testing? 

 In our sense, testing is selected, controlled program execution 

 The aim of testing is to detect bugs, such as 

 derivation of occurring characteristics of quality properties 
compared to the specified ones 

 inconsistency between specification and implementation 

 structural features of a program that cause a faulty behavior of a 
program 

 

Testing is the process of executing a program or system with the 
intent of finding errors. 

G.J. Myers, 1979 

Program testing can be used to show the presence of bugs, but 
never to show their absence. 

E.W. Dijkstra, 1972 

BUT: testing can prove the absence of errors under 
certain hypotheses – so-called complete test 
methods 
 
see http://www.informatik.uni-
bremen.de/agbs/jp/papers/test-automation-huang-
peleska.pdf 
 
This concept is closely related to model checking 
 
It is well known that Dijkstra hated model checking 
and frowned upon testing … 
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Why is testing so important? 

 Even if one day code can be completely verified using formal methods, tests 
will still be required because-- 

 

 for embedded systems, the correctness of the HW/SW integration must be 
verified by testing, because-- 

 

 as of today, it is infeasible to provide a correct and complete formal model for 
complete HW/SW systems, comprising: 

 source code, 

 machine code, 

 CPU micro code, 

 firmware on interface hardware, 

 CPUs, busses, caches, memory, and interface boards. 

 

 This will stay infeasible in the foreseeable future 
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The Testing Process 

 Test cases, test plan, etc. 

 System-under-test (s.u.t.)  

 Aka. TOE (target-of-evaluation) in CC 

 Aka. Implementation-under-test 

 Warning -- test literature is quite expansive: 

 
Testing is any activity aimed at evaluating an attribute or capability of 
a program or system and determining that it meets its required 
results. 

Hetzel, 1983 
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Test Levels 

 Component and unit tests 

  test at the interface level of single components (modules, classes) 
 

 Integration test 

 testing interfaces of components fit together 
 

 System test 

 functional and non-functional test of the complete system from the user’s 
perspective 
 

 Acceptance test 

 testing if system implements contract details 
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Test Methods 

 Static vs. dynamic 

 With static tests, the code is analyzed without being run. We cover 
these methods as static program analysis later 

 With dynamic tests, we run the code under controlled conditions, and 
check the results against a given specification 

 

 Central question: where do the test cases come from? 

 Black-box: the inner structure of the s.u.t. is opaque, test cases are 
derived from specification only. 

 Grey-box: some inner structure of the s.u.t. is known, e.g. module 
architecture. 

 White-box: the inner structure of the s.u.t. is known, and tests cases are 
derived from the source code and coverage objectives for the source 
code 
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Black-Box Tests 

 Limit analysis: 

 If the specification limits input parameters, then values close to these 
limits should be chosen 

 Idea is that programs behave continuously, and errors occur at these 
limits 
 

 Equivalence classes: 

 If the input parameter values can be decomposed into classes which are 
treated equivalently, test cases have to cover all classes 
 

 Smoke test: 

 “Run it, and check it does not go up in smoke.” 
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Example: Black-Box Testing 

 Equivalence classes or limits? 

 

 

 

 

 

 

 

 

 Equivalence classes or limits? 

Example: A Company Bonus System 

The loyalty bonus shall be computed depending on the time of employment. 
For employees of more than three years, it shall be 50% of the monthly 
salary, for employees of more than five years, 75%, and for employees of 
more than eight years, it shall be 100%. 

Example: Air Bag 

The air bag shall be released if the vertical acceleration 𝑎𝑣  equals or 
exceeds  15 𝑚 𝑠2 . The vertical acceleration will never be less than zero, or 

more than 40 𝑚 𝑠2 . 
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Black-Box Tests 

 Quite typical for GUI tests, or functional testing 

 

 Testing invalid input: depends on programming language  the stronger the 
typing, the less testing for invalid input is required 
 

 Example: consider lists in C, Java, Haskell 

 Example: consider object-relational mappings1 (ORM) in Python, Java 

 

 

 

 
1) Translating e.g. SQL-entries to objects 
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Complete Model-based Black-box Testing 

 Create a model M of the expected system behaviour 

 

 Specify a fault model (M, ≤, Dom) with reference model M, conformance 
relation ≤ and fault domain Dom (a collection of models that may or may 
not conform to M) 

 

 Derive test cases from fault model 

 

 The resulting test suite is complete if 

 Every conforming SUT will pass all tests (soundness) 

 Every non-conforming SUT whose true behavior is reflected by a member 
of the fault domain fails at least on test case (exhaustiveness) 

 (nothing is guaranteed for SUT behaviors outside the fault domain)  
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Example: the W-Method 

 The W-Method specifies a recipe for constructing complete test suites for finite 
state machines (FSMs) with conformance relation “∼”  
language equivalence (I/O-equivalence): 

 

 Create a state cover V 

 Create a characterization set W 

 Assume that implementation has at most m ≥ n states (n is the number of 
states in the observable, minimized reference model) 

 Create test suite according to formula   
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B (SUT) 

A (Reference Model) 
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Property-based Testing 

 In property-based testing (or random testing), we generate random input 
values, and check the results against a given executable specification. 

 

 Attention needs to be paid to the distribution values. 

 

 Works better with high-level languages, where the datatypes represent 
more information on an abstract level and where the language is powerful 
enough to write comprehensive executable specifications (i.e. Boolean 
expressions). 

 Implementations for e.g. Haskell (QuickCheck), Scala (ScalaCheck), Java 

 

 Example: consider list reversal in C, Java, Haskell 

 Executable spec: reversal is idempotent and distributes over 
concatenation. 

 Question: how to generate random lists? 
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White-Box Tests 

 In white-box tests, we derive test cases based on the structure of the program 
(structural testing) 

 To abstract from the source code (which is a purely syntactic artefact), we 
consider the control flow graph of the program. 

 

 

 

 

 

 

 

 

 

 

 Hence, paths in the CFG correspond to runs of the program. 

Def: Control Flow Graph (CFG) 
• nodes as elementary statements (e.g. assignments, return, 

break, . . . ), as well as control expressions (e.g. in conditionals 
and loops), and 

• vertices from n to m if the control flow can reach a node m 
coming from a node n. 
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Example: Control-Flow Graph 

if (x < 0)  /*1*/  { 

   x= – x; /*2*/ 

} 

z = 1;  /*3*/ 
 

while (x > 0)  /*4*/ { 

  z = z * y;  /*5*/ 

  x = x – 1;   /*6*/ 

} 

return z;  /*7*/ 

1 

2 

3 

4 

5 

6 

7 

An execution path is a path 
though the cfg ending with 
an exit node. 

 
Examples: 
• [1,3,4,7, E] 
• [1,2,3,4,7, E] 
• [1,2,3,4,5,6,4,7, E] 
• [1,3,4,5,6,4,5,6,4,7, E] 
• … 

E 
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Coverage 

 Statement coverage:  
Measures the percentage of statements that were covered by the tests.  
100% statement coverage is reached if each node in the CFG has been visited 
at least once. 

 

 Branch coverage:  
Measures the percentage of edges (emanating from branching or non-
branching nodes) covered by the tests.  
100% branch coverage is reached if every edge of the CFG has been traversed 
at least once. 

 

 Path coverage:  
Measures the percentage of CFG paths that have been covered by the tests. 
100% path coverage is achieved if every path of the CFG has been covered at 
least once. 
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Decision Coverage 

 

 Decision coverage:  
Measures the coverage of conditional branches (i.e., edges emanating from 
conditional nodes). 100% decision coverage is reaches if the tests cover all 
conditional branches.   

 

 Decision coverage vs. branch coverage: 

 If branch coverage is 100%, then decision coverage is 100% and vice 
versa.  

 A lower percentage p < 100% of branch coverage, however, has a 
different meaning than a decision coverage of p, because 

 branch coverage considers all edges, whereas 

 decision coverage considers edges emanating from decision nodes only 
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Example: Statement Coverage 

 Which (minimal) path covers all 
statements? 
 
 p = [1,2,3,4,5,6,4,7,E] 

 

 Which state generates p? 
 
  x = -1 

  y any 
  z any 
  

 

1 

2 

3 

4 

5 

6 

7 

E 

if (x < 0)    /*1*/  { 

   x= – x;   /*2*/ 

   } 

z = 1;  /*3*/ 
 

while (x > 0)  /*4*/ { 

  z = z * y;   /*5*/ 

  x = x – 1;   /*6*/ 

  } 

return z;   /*7*/ 
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Example: Branch Coverage 

 Which (minimal) paths cover all 
vertices? 
              𝑝1= 1,2,3, 4,5,6, 4,7, 𝐸  

𝑝2 = [1,3, 4, 7, 𝐸] 

 

 Which states generate 𝑝1, 𝑝2? 

 

 

 

 

 

 

 

 Note 𝑝3 with x= 1 does not add 
coverage.   

1 

2 

3 

4 

5 

6 

7 

E 

if (x < 0)    /*1*/  { 

   x= – x;   /*2*/ 

   } 

z = 1;  /*3*/ 
 

while (x > 0)  /*4*/ { 

  z = z * y;   /*5*/ 

  x = x – 1;   /*6*/ 

  } 

return z;   /*7*/ 

𝒑𝟏 𝒑𝟐 

x -1 0 

y any any 

z any Any 
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Example: Path Coverage 

 How many paths are there? 

 

 Let     𝑞1 = 1,2,3   
          𝑞2 = 1,3  

              𝑝 = 4,5,6  

              𝑟 = 4,7, 𝐸  

 

   then all paths are  

 
𝑃 = 𝑞1 𝑞2) 𝑝

∗ 𝑟 

 

 Number of possible paths: 

 

      𝑃 = 2 ⋅ 𝑀𝑎𝑥𝐼𝑛𝑡 − 1   

1 

2 

3 

4 

5 

6 

7 

E 

if (x < 0)    /*1*/  { 

   x= – x;   /*2*/ 

   } 

z = 1;  /*3*/ 
 

while (x > 0)  /*4*/ { 

  z = z * y;   /*5*/ 

  x = x – 1;   /*6*/ 

  } 

return z;   /*7*/ 
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Statement, Branch and Path Coverage 

Statement Coverage: 

 Necessary but not sufficient, not suitable as only test approach. 

 Detects dead code (code which is never executed). 

 About 18% of all defects are identified. 
 

Branch coverage: 

 Least possible single approach. 

 Needs to be achieved by (specification-based) tests for avionic 
software of DAL-C – does not suffice for DAL-B or DAL-A. 

 Detects dead code, but also frequently executed program parts. 

 About 34% of all defects are identified. 
 

Path Coverage: 

 Most powerful structural approach; 

 Highest defect identification rate (close to 100%); 

 But no practical relevance. 
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Decision Coverage Revisited 

 Decision coverage requires that for all decisions in the program, each 
possible outcome is considered once. 

 

 Problem: cannot sufficiently distinguish Boolean expressions. 

 

 Example: for A || B, the following are sufficient:  
      

 

 

 

 

 

 But this does not distinguish A || B from A; B is effectively not tested. 

A B  Result 

False False False 

True False True 
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Decomposing Boolean Expressions 

 The binary Boolean operators include conjunction 𝑥 ∧ 𝑦, disjunction 𝑥 ∨ 𝑦, or 
anything expressible by these (e.g. exclusive disjunction, implication) 

 

 

 

 

 

 An elementary term is a variable, a Boolean-valued function, a relation 
(equality =, orders <,≤,>,≥,  etc.), or a negation of these. 

 

 This is a fairly syntactic view, e.g. 𝑥 ≤ 𝑦 is elementary, but 𝑥 < 𝑦 ∨ 𝑥 = 𝑦 is not, 
even though they are equivalent. 

 

 In formal logic, these are called literals. 

 

Elementary Boolean Terms 
An elementary Boolean term does not contain binary Boolean operators, 
and cannot be further decomposed. 
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Simple Condition Coverage 

 For each decision in the program, each elementary Boolean term (condition) 
evaluates to True and False at least once 

 Note that this does not say much about the possible value of the condition 

 Example: 

 

 

 

 

 

 

 

 

 

 

if (temperature > 90 && pressure > 120) {… } 

C1 C2 Result 

False False False 

False True False -- These two would be enough 

True False False -- for condition coverage 

True True True 
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Modified Condition Coverage 

 It is not always possible to generate all possible combinations of elementary 
terms, e.g. 3 <= x  &&  x < 5. 

 In modified (or minimal) condition coverage, all possible combinations of those 
elementary terms the value of which determines the value of the whole 
condition need to be considered. 

 Example: 3 <= x && x < 5 

 

 

 

 

 

 

 

 

 Another example: (x > 1 && ! p) || p 

 

 

3 <= x x < 5 Result 

False False False  Not possible 

False True False Needed 

True False True Needed 

True True True Needed 
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Modified Condition/Decision Coverage 

 Modified Condition/Decision Coverage (MC/DC) is required by the “aerospace 
norm”  DO-178B for Level A software. 

 

 It is a combination of the previous coverage criteria defined as follows: 

 

 Every point of entry and exit in the program has been invoked at least 
once; 

 Every decision in the program has taken all possible outcomes at least 
once; 

 Every condition (i.e. elementary Boolean terms earlier) in a decision in the 
program has taken all possible outcomes at least once; 

 Every condition in a decision has been shown to independently affect that 
decision’s outcome. 
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How to achieve MC/DC 

 Not: Here is the source code, what is the minimal set of test cases? 

 

 Rather: From requirements we get test cases, do they achieve MC/DC? 

 

 Example: 

 Test cases:                                       Source Code: 
                                                       Z = (A || B) && (C || D) 

 

 

Test case 1 2 3 4 5 

Input A F F T F  T 

Input B F T F T F 

Input C T F F T T 

Input D F T F F F 

Result Z F T F T T 

Question: do test cases achieve 
MC/DC? 

Source:  Hayhurst et al, A Practical Tutorial  
on MC/DC. NASA/TM2001-210876 
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Example: MC/DC 

Determining MC/DC: 

1. Are all decisions covered? 

2. Eliminate masked inputs (recursively) 

 False for && masks other input 

 True for || masks other input 

3. Remaining unmasked test cases must cover 
all conditions. 

 

Here: 

 Result is both F and T, so decisions covered. 

 Masking: 

 In test case 1, C and D are masked 

 In test case 3, A and B are masked 

 Recursive masking as shown 

 Remaining cases cover T, F for A, B, C, D 

 MC/DC achieved 

 In fact, test case 4 not even needed (?) 

Test 
case 

1 2 3 4 5 

Input A F F T F  T 

Input B F T F T F 

Input C T F F T T 

Input D F T F F F 

Result Z F T F T T 

Source Code                                                    
Z = (A || B) && (C || D) 
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Summary 

 (Dynamic) Testing is the controlled execution of code, and comparing the result 
against an expected outcome. 

 

 Testing is (traditionally) the main way for verification. 

 

 Depending on how the test cases are derived, we distinguish white-box and 
black-box tests. 

 

 In black-box tests, we can consider limits and equivalence classes for input 
values to obtain test cases. 

 

 In white-box tests, we have different notions of coverage: statement 
coverage, path coverage, condition coverage, etc. 

 

 Next week: Static testing aka. static program analysis 
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Where are we? 

 01: Concepts of Quality 

 02: Legal Requirements: Norms and Standards 

 03: The Software Development Process 

 04: Hazard Analysis 

 05: High-Level Design with SysML 

 06: Formal Modelling with OCL 

 07: Testing 

 08: Static Program Analysis 

 09-10: Software Verification  

 11-12: Model Checking 

 13: Conclusions 

 

    Systeme hoher Sicherheit und Qualität, WS 19/20 - 3 -  
  

Program Analysis in the Development Cycle 
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Static Program Analysis 

 Analysis of run-time behaviour of programs without executing them 
(sometimes called static testing). 

 

 Analysis is done for all possible runs of a program 
(i.e. considering all possible inputs). 

 

 Typical questions answered: 

 Does the variable x have a constant value ? 

 Is the value of the variable x always positive ? 

 Are all pointer dereferences valid (or NULL)? 

 Are all arithmetic operations well-defined (no over-/underflow)? 

 Do any unhandled exceptions occur? 

 

 These tasks can be used for verification or for optimization when 
compiling. 
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Usage of Program Analysis 

Optimizing compilers 

Detection of sub-expressions that are evaluated multiple times 

Detection of unused local variables 

 Pipeline optimizations 

 

Program verification 

 Search for runtime errors in programs (program safety): 

 Null pointer or other illegal pointer dereferences 

 Array access out of bounds 

 Division by zero 

 Runtime estimation (worst-caste executing time, wcet) 

 

In other words, specific verification aspects. 
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Runtime Errors 

 Program analysis often aims at finding errors that are independent of the 
specific functional specification, but violate the semantic rules of the 
programming language. 

 These errors are called runtime errors, such as: 

 Division by zero, or violation of other preconditions 

 Exceptions which are thrown and not caught 

 Dereferencing NULL pointers, reading or writing to illegal addresses 

 Violation of array boundaries or heap memory boundaries 

 Use of uninitialized heap or stack data 

 Unintended non-terminating loops or recursion, stack overflow   

 Illegal type cast or class cast 

 Overflows (integer or real number cannot be represented in the available 
registers) or underflows (generation of a floating point number that is to 
small to be represented) 

 Memory leaks 
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Program Analysis: The Basic Problem 

Given a property P and a program p:   𝑝 ⊨ 𝑃 iff P holds for p 
 

Wanted: a terminating algorithm 𝜙(𝑝, 𝑃) which computes 𝑝 ⊨ 𝑃  

 𝜙 is sound if 𝜙(𝑝, 𝑃)implies  𝑝 ⊨ 𝑃 

 𝜙 is complete if  ¬𝜙(𝑝, 𝑃) implies  ¬ 𝑝 ⊨ 𝑃  

 If 𝜙 is sound and complete then 𝜙 is a decision procedure 
 

 

 

 

 From the basic problem it follows that there are no sound and 
complete tools for interesting properties. 
 

 Tools for interesting properties are either  

 sound (under-approximating) or  

 complete (over-approximating). 

The basic problem of static program analysis:  virtually all interesting 

program properties are undecidable!  (cf. Gödel, Turing) 
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Program Analysis: Approximation 

Under-approximation is sound but not 
complete. It only finds correct programs 
but may miss out some. 

 Useful in optimizing compilers; 

 Optimization must preserve semantics 
of program, but is optional. 

 

Over-approximation is complete but not 
sound. It finds all errors but may find non-
errors (false positives). 

 Useful in verification; 

 Safety analysis must find all errors, 
but may report some more. 

 Too high rate of false positives may 
hinder acceptance of tool. 

 

Correct 

Errors 

Overapproximation 

Underapproximation 

Not 
computable 

Computable 

All programs 
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Program Analysis Approach 

 Provides approximate answers 

 yes / no / don’t know or  

 superset or subset of values 

 

  Uses an abstraction of program’s behavior 

 Abstract data values (e.g. sign abstraction) 

 Summarization of information from  
execution paths e.g. branches of the if-else statement 

 

 Worst-case assumptions about environment’s behavior 

 e.g. any value of a method parameter is possible. 

 

 Sufficient precision with good performance. 
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Analysis Properties: Flow Sensitivity 

Flow-insensitive analysis 

 Program is seen as an unordered collection of statements 

 Results are valid for any order of statements 
e.g.  S1 ; S2 vs. S2 ; S1 

 Example: type analysis (inference) 

 

Flow-sensitive analysis 

 Considers program's flow of control 

 Uses control-flow graph as a representation of the source 

 Example: available expressions analysis (expressions that need not be re-
computed at a certain point during compilation) 
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Analysis Properties: Context Sensitivity 

Context-sensitive analysis 

 Stack of procedure invocations and return values of method parameters 

 Results of analysis of the method M depend on the caller of M 

 

Context-insensitive analysis 

 Produces the same results for all possible invocations of M independent of 
possible callers and parameter values. 
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Intra- vs. Inter-procedural Analysis 

 

Intra-procedural analysis 

 Single function is analyzed in isolation. 

 Maximally pessimistic assumptions about parameter values and results of 
procedure calls. 

 

Inter-procedural analysis 

 Procedure calls are considered. 

 Whole program is analyzed at once. 
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Data-Flow Analysis 

Focus on questions related to values of variables and their lifetime 
 

Selected analyses: 

Available expressions (forward analysis) 

 Which expressions have been computed already without change of 
the occurring variables (optimization) ? 

Reaching definitions (forward analysis) 

 Which assignments contribute to a state in a program point? 
(verification) 

Very busy expressions (backward analysis) 

 Which expressions are executed in a block regardless which path 
the program takes (verification) ? 

 Live variables (backward analysis) 

 Is the value of a variable in a program point used in a later part of 
the program (optimization) ? 
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A Simple Programming Language 

 Arithmetic expressions: 

𝑎 ∷= 𝑥  𝑛  𝑎1 𝑜𝑝𝑎 𝑎2 

 Arithmetic operators: 𝑜𝑝𝑎 ∈ {+,−,∗,/} 

 Boolean expressions: 

𝑏 ≔ true  false not 𝑏  𝑏1𝑜𝑝𝑏 𝑏2  𝑎1𝑜𝑝𝑟  𝑎2 

 Boolean operators: 𝑜𝑝𝑏 ∈ 𝑎𝑛𝑑, 𝑜𝑟  

 Relational operators: 𝑜𝑝𝑟 ∈ =,<,≤, >, ≥, ≠  

 Statements: 

 S ::= [x := a]l | [skip]l | S1; S2 | if [b]l  S1 else S2 | while [b]l S 

 Note this abstract syntax, operator precedence and grouping statements is not 
covered.  We can use { and } to group statements, and ( and ) to group 
expressions. 

  

 
 

    Systeme hoher Sicherheit und Qualität, WS 19/20 - 15 -  
  

Computing the Control Flow Graph 

 To calculate the CFG, we define some functions on the abstract syntax 
𝑆 : 

 The initial label (entry point)  
init: 𝑆 → 𝐿𝑎𝑏  
 
 

 The final labels (exit points) 

 final: 𝑆 →  ℙ 𝐿𝑎𝑏  

 
 

 
 

 The elementary blocks   
𝑏𝑙𝑜𝑐𝑘𝑠: 𝑆 → ℙ 𝐵𝑙𝑜𝑐𝑘𝑠  where  

an elementary block is an  
assignment [x:= a], or  
[skip], or a test [b]  

𝑏𝑙𝑜𝑐𝑘𝑠 𝑥 ≔ 𝑎 𝑙 = 𝑥 ≔ 𝑎 𝑙  

𝑏𝑙𝑜𝑐𝑘𝑠 𝑠𝑘𝑖𝑝 𝑙 =  𝑠𝑘𝑖𝑝 𝑙  
𝑏𝑙𝑜𝑐𝑘𝑠 𝑆1; 𝑆2 = 𝑏𝑙𝑜𝑐𝑘𝑠 𝑆1 ∪ 𝑏𝑙𝑜𝑐𝑘𝑠 𝑆2  
𝑏𝑙𝑜𝑐𝑘𝑠 𝑖𝑓 𝑏 𝑙 𝑆1  𝑒𝑙𝑠𝑒 𝑆2

= 𝑏 𝑙 ∪ 𝑏𝑙𝑜𝑐𝑘𝑠 𝑆1 ∪ 𝑏𝑙𝑜𝑐𝑘𝑠 𝑆2  
𝑏𝑙𝑜𝑐𝑘𝑠 𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙 𝑆 = 𝑏 𝑙 ∪ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆) 

𝑖𝑛𝑖𝑡 𝑥 ≔ 𝑎 𝑙 = 𝑙 

𝑖𝑛𝑖𝑡 𝑠𝑘𝑖𝑝 𝑙 = 𝑙 
𝑖𝑛𝑖𝑡 𝑆1; 𝑆2 = 𝑖𝑛𝑖𝑡 𝑆1  
𝑖𝑛𝑖𝑡 (𝑖𝑓 𝑏 𝑙 𝑆1  𝑒𝑙𝑠𝑒 𝑆2 = 𝑙 
𝑖𝑛𝑖𝑡 (𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙  𝑆 = 𝑙  

𝑓𝑖𝑛𝑎𝑙 𝑥 ≔ 𝑎 𝑙 = 𝑙  

𝑓𝑖𝑛𝑎𝑙 𝑠𝑘𝑖𝑝 𝑙 = 𝑙  
𝑓𝑖𝑛𝑎𝑙 𝑆1; 𝑆2 = 𝑓𝑖𝑛𝑎𝑙 𝑆2  
𝑓𝑖𝑛𝑎𝑙 𝑖𝑓 𝑏 𝑙  𝑆1 𝑒𝑙𝑠𝑒 {𝑆2}  
 = 𝑓𝑖𝑛𝑎𝑙 𝑆1 ∪ 𝑓𝑖𝑛𝑎𝑙 𝑆2  
𝑓𝑖𝑛𝑎𝑙 𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙 𝑆  = {𝑙} 
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Computing the Control Flow Graph 

 The control flow         flow: 𝑆 →  ℙ 𝐿𝑎𝑏 × 𝐿𝑎𝑏   

and reverse control   flowR: 𝑆 →  ℙ 𝐿𝑎𝑏 × 𝐿𝑎𝑏   

 

 

 

 

 

 

 The control flow graph of a program S  is given by  

 elementary blocks 𝑏𝑙𝑜𝑐𝑘 𝑆  as nodes, and 

 flow(S) as vertices.  
 

 Additional useful definitions 

𝑓𝑙𝑜𝑤 𝑥 ≔ 𝑎 𝑙 = ∅ 

𝑓𝑙𝑜𝑤 𝑠𝑘𝑖𝑝 𝑙 = ∅ 
𝑓𝑙𝑜𝑤 𝑆1; 𝑆2 = 𝑓𝑙𝑜𝑤 𝑆1 ∪ 𝑓𝑙𝑜𝑤 𝑆2 ∪ 𝑙, 𝑖𝑛𝑖𝑡 𝑆2 )  𝑙 ∈ 𝑓𝑖𝑛𝑎𝑙 𝑆1  
𝑓𝑙𝑜𝑤 𝑖𝑓 𝑏 𝑙 𝑆1  𝑒𝑙𝑠𝑒 {𝑆2 } = 𝑓𝑙𝑜𝑤 𝑆1 ∪ 𝑓𝑙𝑜𝑤 𝑆2 ∪ {(𝑙, 𝑖𝑛𝑖𝑡 𝑆1 ), 𝑙, 𝑖𝑛𝑖𝑡 𝑆2 )  

𝑓𝑙𝑜𝑤 (𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙 𝑆  = 𝑓𝑙𝑜𝑤 𝑆 ∪ 𝑙, 𝑖𝑛𝑖𝑡 𝑆 ∪ { 𝑙′, 𝑙 |𝑙′ ∈ 𝑓𝑖𝑛𝑎𝑙 𝑆 } 

𝑓𝑙𝑜𝑤𝑅 𝑆 = 𝑙′, 𝑙  𝑙, 𝑙′ ∈ 𝑓𝑙𝑜𝑤(𝑆)} 

𝑙𝑎𝑏𝑒𝑙𝑠 𝑆 = 𝑙  𝐵 𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆)}  
𝐹𝑉 𝑎     = free variables in 𝑎 
𝐴𝑒𝑥𝑝 𝑆 = non-trival subexpressions in 𝑆  (variables and constants are trivial) 
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An Example Program 

init(P)  = 1 

final(P)  = {3} 
 

blocks(P) = 

     { [x := a+b]1, [y := a*b]2, [y > a+b]3, [a:=a+1]4,  
       [x:= a+b]5} 
 

flow(P)  = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 3)} 

flowR(P)  = {(2, 1), (3, 2), (4, 3), (5, 4), (3, 5)} 
 

labels(P) = {1, 2, 3, 4, 5) 

 

FV(a+b) = {a, b}                         -- Free variables 

FV(P)  = {a, b, x, y} 

Aexp(P)  = {a+b, a*b, a+1}          -- Available expressions 

  

x := a + b 

y > a + b 

a := a + 1 

x := a + b 

1 

5 

4 

3 

y := a * b 
2 

P =  [x := a+b]1; [y := a*b]2; while [y > a+b]3 { [a:=a+1]4; [x:= a+b]5 } 
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Program Analysis CFG : General Idea 

Statement  Φ 

𝑃𝑜𝑢𝑡 

𝑃𝑖𝑛 

Locally for each statement: 
 
Relationship between 𝑃𝑖𝑛 and 𝑃𝑜𝑢𝑡: 
 
• kill : part of 𝑃𝑖𝑛 that is invalidated by Φ 
• gen : additional part that is generated by Φ 

 

𝑃𝑜𝑢𝑡 = (𝑃𝑖𝑛  \ 𝑘𝑖𝑙𝑙) ∪ 𝑔𝑒𝑛 

We obtain constraints for 𝑃𝑖𝑛 and 𝑃𝑜𝑢𝑡  for all statements and links. 
 
Solve CSP by a constraint solver. 
  

kill 
 
gen 

𝑃′𝑖𝑛 

Statement  Φ′ 
Globally for each link: 
 

𝑃𝑖𝑛
′ = ⋃𝑃𝑜𝑢𝑡 or 𝑃𝑖𝑛

′ =  𝑃𝑜𝑢𝑡 
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Available Expression Analysis 

 The available expression analysis will determine for 
each program point: 

 

• which non-trivial expressions have been already 
computed in prior statements (and are still 
valid) 

 

 „Caching of expressions“  

 

 Forwards analysis  

  

x := a +b 

y > a + b 

a := a + 1 

x := a + b 

1 

5 

4 

3 

y := a * b 
2 

S : 
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Available Expression Analysis 

  

kill( [x :=a]l )  =   { exp 2 Aexp(S) | x 2 FV(exp) }  
kill( [skip]l )  =   ∅ 
kill( [b]l )   =   ∅  

gen( [x :=a]l )  =   { exp 2 Aexp(a) | x  FV(exp) } 
gen( [skip]l )  =   ∅ 
gen( [b]l )  =   Aexp(b) 

AEin( l ) =   

 ∅,  if l ∈  init(S)

   𝐴𝐸𝑜𝑢𝑡 𝑙
′   𝑙′, 𝑙 ∈ 𝑓𝑙𝑜𝑤(𝑆) ,  otherwise   

 

 

AEout ( l ) = 𝐴𝐸𝑖𝑛 𝑙   \ 𝑘𝑖𝑙𝑙 𝐵𝑙 ∪ 𝑔𝑒𝑛 𝐵𝑙 ,  where 𝐵𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆) 

 

x := a +b 

y > a + b 

a := a + 1 

x := a + b 

1 

5 

4 

3 

y := a * b 
2 

S : 

l kill(Bl) gen(Bl) 

1 ∅ {a+b} 
2 ∅ {a*b} 

3 ∅ {a+b} 
4 {a+b, a*b, a+1} ∅ 

5 ∅ {a+b} 

l AEin AEout 

1 ∅ {a+b} 
2 {a+b} {a+b, a*b} 
3 {a+b} {a+b} 
4 {a+b} ∅ 

5 ∅ {a+b} 
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Reaching Definitions Analysis 

 Reaching definitions (assignment)  
analysis determines if: 

 

 An assignment of the form [x := a]l  

reaches a program point k  
 

if there is an execution path where  
x was last assigned at l when the  
program reaches k 

 

 Forwards  analysis 

  

x := 5 

x > 1 

y := x * y 

x := x - 1 

1 

5 

4 

3 

y := 1 
2 

S : 

    Systeme hoher Sicherheit und Qualität, WS 19/20 - 22 -  
  

Reaching Definitions Analysis 

  

kill( [skip]l ) = ∅ 
kill( [b]l ) = ∅ 
kill( [x :=a]l ) =  

𝑥, ? ∪  𝑥, 𝑘  𝐵𝑘  𝑖𝑠 𝑎𝑛 𝑎𝑠𝑠𝑖𝑔𝑚𝑒𝑛𝑡 𝑖𝑛 𝑆} 

gen( [x :=a]l ) = { 𝑥, 𝑙 } 
gen( [skip]l ) = ∅ 
gen( [b]l ) = ∅ 

RDin( l ) =  

 𝑥, ?   𝑥 ∈ 𝐹𝑉 𝑆 }  if l ∈  init(S) 

 ⋃   𝑅𝐷𝑜𝑢𝑡 𝑙
′ 𝑙′, 𝑙 }  ∈ 𝑓𝑙𝑜𝑤 𝑆   otherwise 

 

 

RDout ( l ) = 𝑅𝐷𝑖𝑛 𝑙  \ 𝑘𝑖𝑙𝑙 𝐵𝑙 ∪ 𝑔𝑒𝑛 𝐵𝑙   where 𝐵𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆) 

x := 5 

x > 1 

y := x * y 

x := x - 1 

1 

5 

4 

3 

y := 1 
2 

l kill(Bl) gen(Bl) 

 
1 

 
{(x,?), (x,1),(x,5)} 

 
{(x, 1)} 

2 {(y,?), (y,2),(y,4)} {(y, 2)} 
3 ∅ ∅ 

4 {(y,?), (y,2),(y,4)} {(y, 4)} 
5 {(x,?), (x,1),(x,5)} {(x, 5)} 

 

S : 

l RDin RDout 

1 {(x,?), (y,?)} {(x,1), (y,?)} 

2 {(x,1), (y,?)} {(x,1), (y,2)} 
3 {(x,1), (x,5), 

(y,2), (y,4)} 
{(x,1), (x,5), 
(y,2), (y,4)} 

4 {(x,1), (x,5), 
(y,2), (y,4)} 

{(x,1), 
(x,5),(y,4)} 

5 {(x,1), 
(x,5),(y,4)} 

{(x,5),(y,4)} 
 

    Systeme hoher Sicherheit und Qualität, WS 19/20 - 23 -  
  

Live Variables Analysis 

 A variable x is live at some program point (label l) if 
there exists if there exists a path from l to an exit 
point that does not change the variable 

 

 Live Variables Analysis determines: 

 for each program point, which variables may be 
still live at the  
exit from that point. 

 

 Application: dead code elemination. 

 

 Backwards  analysis 

 

  

x := 2 

x := 1 

y > x 

z := y 

no yes 

1 

5 

4 

3 

y := 4 
2 

S : 

z := y*y 
6 

x := z 

7 
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Live Variables Analysis 

  

kill( [x :=a] l) = {𝑥}  
kill( [skip] l) = ∅ 
kill( [b] l) = ∅ 

gen( [x :=a] l) = 𝐹𝑉(𝑎) 
gen( [skip] l) = ∅ 
gen( [b] l) = 𝐹𝑉(𝑏)  

LVout( l ) =  

∅     if l ∈ final(S)

⋃   𝐿𝑉𝑖𝑛 𝑙′ 𝑙′, 𝑙 ∈ 𝑓𝑙𝑜𝑤𝑅 𝑆  otherwise 
  

 

LVin ( l ) = 𝐿𝑉𝑜𝑢𝑡 𝑙  \ 𝑘𝑖𝑙𝑙 𝐵
𝑙 ∪ 𝑔𝑒𝑛 𝐵𝑙    where 𝐵𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆) 

x := 2 

x := 1 

y > x 

z := y 

no yes 

1 

5 

4 

3 

y := 4 
2 

l kill(Bl) gen(Bl) 

1 {x} ∅ 

2 {y} ∅ 

3 {x} ∅ 

4 ∅ {x, y} 
5 {z} {y} 
6 {z} {y} 
7 {x} {z} 

l LVin LVout 

1 ∅ ∅ 

2 ∅ {y} 
3 {y} {x, y} 
4 {x, y} {y} 
5 {y} {z} 
6 {y} {z} 
7 {z} ∅ 

S : 

z := y*y 
6 

x := z 

7 
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First Generalized Schema 

 Analysis ( l ) =  

 
  𝐄𝐕   if 𝑙 ∈ 𝐄

□ Analysis ( l‘ ) 𝑙′, 𝑙 ∈ 𝐅𝐥𝐨𝐰 𝑆 }  otherwise
 

 

 Analysis ( l ) = 𝑓l ( Analysis ( l ) ) 

 

With: 

 𝐄𝐕  is the initial / final analysis information 

 𝐄    is either  {init(S)}  or  final(S) 
 

□    is either  or  

 𝐅𝐥𝐨𝐰 is either flow or flowR 

 𝑓𝑙     is the transfer function associated with 𝐵𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆) 
 

Forward analysis:  𝐅𝐥𝐨𝐰 = flow,   = OUT,   = IN 

Backward analysis:  𝐅𝐥𝐨𝐰 = flowR,   = IN,      = OUT 

 

fl 

Analysis ( l ) 

Analysis ( l ) 

Analysis ( l‘ ) 

fl 
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Partial Order 

 𝐿 =  𝑀,⊑  is a partial order iff 
 

 Reflexivity:  ∀𝑥 ∈ 𝑀. 𝑥 ⊑ 𝑥 

 Transitivity:  ∀𝑥, 𝑦, 𝑧 ∈ 𝑀. 𝑥 ⊑ 𝑦 ∧ 𝑦 ⊑ 𝑧 ⇒ 𝑥 ⊑ 𝑧 

 Anti-symmetry:   ∀𝑥, 𝑦 ∈ 𝑀. 𝑥 ⊑ 𝑦 ∧ 𝑦 ⊑ 𝑥 ⇒ 𝑥 = 𝑦 

 

 Let 𝐿 =  𝑀,⊑  be a partial order,  𝑆 ⊆ 𝑀 
 

 𝑦 ∈ 𝑀 is upper bound for 𝑆 𝑆 ⊑ 𝑦  iff  ∀𝑥 ∈ 𝑆. 𝑥 ⊑ 𝑦 

 𝑦 ∈ 𝑀 is lower bound  for S (𝑦 ⊑ 𝑆)  iff  ∀𝑥 ∈ 𝑆. 𝑦 ⊑ 𝑥 
 

 Least upper bound  ⨆𝑋 ∈ 𝑀 of 𝑋 ⊆ 𝑀:  

 𝑋 ⊑ ⨆𝑋 ∧ ∀𝑦 ∈ 𝑀. 𝑋 ⊑ 𝑦 ⇒  ⨆𝑋 ⊑ 𝑦 

 Greatest lower bound ⊓ 𝑋 of 𝑋 ⊆ 𝑀: 

 ⊓ 𝑋 ⊑ 𝑋 ∧ ∀𝑦 ∈ 𝑀. 𝑦 ⊑ 𝑋 ⇒ 𝑦 ⊑  ⊓ 𝑋 
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Lattice 

A lattice (“Verband”) is a partial order L = (M, ⊑) such that 

 

(1) ⊔X and ⊓X exist for all 𝑋 ⊆ 𝐿 

 

(2) Unique greatest element  ⊤ = ⨆𝐿  

(3) Unique least element        ⊥ = ⊓ 𝐿  

 

(1) Alternatively (for finite M), binary operators ⊔ and ⊓  (“meet” and “join”) 

such that  

  𝑥, 𝑦 ⊑ 𝑥 ⊔ 𝑦 and 𝑥 ⊓ 𝑦 ⊑ 𝑥, 𝑦 
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Transfer Functions 

 Transfer functions to propagate information along the execution path 
(i.e. from input to output, or vice versa) 

 

 Let 𝐿 = 𝑀, ⊑  be a lattice. Let 𝐹 be the set of transfer functions of the 

form   
 fl :  M  M with l being a label  

 

 Knowledge transfer is monotone 

 ∀ 𝑥, 𝑦.   𝑥 ⊑ 𝑦 ⟹ 𝑓𝑙 𝑥 ⊑ 𝑓𝑙 𝑦   

 

 Space F of transfer functions 

 F   contains all transfer functions       fl 

 F   contains the identity function id   ∀𝑥 ∈ 𝑀.  𝑖𝑑 𝑥 = 𝑥  

 F   is closed under composition           ∀ 𝑓, 𝑔 ∈ F.  𝑔 ∘ 𝑓 ∈ F 
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The Generalized Analysis 

 Analysis (l) = ⊔ Analysis (l‘ ) | (l′, l) ∈ F ⊔ { 𝜄𝐸
′  }    

                

     with  𝜄𝐸
′ =  

𝜄              if 𝑙 ∈ 𝐸
⊥        otherwise 

 

 Analysis (l) = 𝑓𝑙( Analysis (l)) 

With: 
 

M property space representing data flow information with 𝑀,⊑  being 
a lattice 

 A space 𝐹  of transfer functions 𝑓𝑙 
and a mapping f from labels to transfer functions in 𝐹 

 F is a finite flow  (i.e. 𝑓𝑙𝑜𝑤 or 𝑓𝑙𝑜𝑤𝑅  ) 

 𝜄  is an extremal value  
for the extremal labels 𝐸 (i.e.  𝑖𝑛𝑖𝑡 𝑆  or 𝑓𝑖𝑛𝑎𝑙(𝑆) ) 
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Instances of Framework 

Available Expr. Reaching Def. Live Vars. 

M P (AExpr) P (Var x L) P (Var) 

⊑ ¶ µ µ 

⊔ Å [ [ 

⊥ AExpr ; ; 

𝜄 ; {(x, ?) | x 2 FV(S)} ; 

E { init(S) } { init(S) } final(S) 

F flow(S) flow(S) flowR(S) 

F { f : M  M |  9 mk, mg. f(m) = (m \ mk) [ mg } 

fl fl (m) = ( m \ kill(Bl) ) [ gen(Bl)   where Bl 2 blocks(S) 

    Systeme hoher Sicherheit und Qualität, WS 19/20 - 31 -  
  

Limitations of Data Flow Analysis 

 The general framework of data flow analysis treats all outgoing edges 
uniformly. This can be a problem if conditions influence the property we want 
to analyse. 

 

 Example:  show no division by 0 can occur. 

 Property space:  

 𝑀0 =  ⊥, 0 , 1 , 0,1  (ordered by inclusion) 

 𝑀 = 𝐿𝑜𝑐 → 𝑀0  (ordered pointwise) 

 𝑎𝑝𝑝𝜎 𝑡 ∈ 𝑀0   „approximate evaluation“ of t under 𝜎 ∈ 𝑀 

 𝑐𝑜𝑛𝑑𝜎(𝑏) ∈ 𝑀  strengthening of 𝜎 ∈ 𝑀 under condition b 

 𝑔𝑒𝑛 𝑥 = 𝑎 = 𝜎 𝑥 ↦ 𝑎𝑝𝑝𝜎 𝑎  

 Kill needs to distinguish wether cond‘n holds: 

𝑘𝑖𝑙𝑙 𝑏 𝜎
𝑖𝑓
= 𝑐𝑜𝑛𝑑𝜎(𝑏)               𝑘𝑖𝑙𝑙 𝑏 𝜎

𝑡ℎ𝑒𝑛 = 𝑐𝑜𝑛𝑑𝜎(!  𝑏)     

 

 This leads us to abstract interpretation. 
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Summary 
 
 Static Program Analysis is the analysis of run-time behavior of 

programs without executing them (sometimes called static testing) 

 Approximations of program behaviors by analyzing the program‘s CFG 

 Analysis include 

 available expressions analysis 

 reaching definitions 

 live variables analysis 

 program slicing 

 These are instances of a more general framework 

 These techniques are used commercially, e.g. 

 AbsInt aiT (WCET) 

 Astrée Static Analyzer (C program safety) 
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Program Analysis for Information Flow Control 

Confidentiality as a  

property of dependencies: 

 

 

 The GPS data 53:06:23 N 8:51:08 O is confidential. 

 The information on the GPS data must not leave Bob‘s mobile phone 

 First idea: 53:06:23 N 8:51:08 O does not appear (explicitly) on the output 
line. 

 too strong, too weak  

 Instead: The output of Bob‘s smart phone does not depend on the GPS setting 

 Changing the location (e.g. to 53:06:29 N 8:51:04 O ) will not change the 
observed output of Bob‘s smart phone 

 
Note: Confidentiality is formalized as a notion of dependability. 

 

... 53:06:23... 
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Confidentiality as Dependability 

Confidential action: 
 

change location (from 53:06:23 N 8:51:08 O) to 53:06:29 N 8:51:04 O 

Insecure system:  
output 53:06:29 depends  

on GPS data 

Secure System:  
output 53:06:23 does not depend  

on GPS data 

... 53:06:23... 

... 53:06:29... 
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Program Slicing 

 Which parts of the program compute the message ? 

 Do these parts contain GPS data ? 

 If yes:  GPS data influence message (data leak) 

 If no:  message is independent of GPS data  

 

 Program Dependence Graph 

 Nodes are statements and conditions of a program 

 Links are either 

 Control dependences (similar to CFG) 

 Data flow dependences  
(connecting assignment with usage of variables) 
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Control dependences  
Data flow dependences  

Example 

 sum := 0;  
 i := 1;  
 while  i · 10 { 
     sum := sum + i;  
     i := i + 1 
 }  

entry 

exit(sum
) 

sum := 0 i := 1 while  i · 10 

sum := sum + i i := i + 1 
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Backward Slice 

 Let G be a program dependency graph and 

 S be subset of nodes in G 

 Let  n ) m :=  n       m  Ç  n        m 

 Then, the backward slice BS(G, S) is a graph G’ with 

 N(G’) = { n | n 2 N(G) Æ 9 m 2 S. n )* m } 

 E(G’) = {n       m | n       m 2 E(G) Æ n, m 2 N(G’) } [  
            {n       m | n       m 2 E(G) Æ n, m 2 N(G’) } 

 

 Backward slice BS(G, S) computes same values for variables occurring in S as 
G itself 
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Control dependences  
Data flow dependences  

Example 

 sum := 0;  
 i := 1;  
 while  i · 10 { 
     sum := sum + i;  
     i := i + 1 
 }  

entry 

exit(i) 

sum := 0 i := 1 while  i · 10 

sum := sum + i i := i + 1 

BS: 
 

i := 1;  
 while  i · 10 { 
    i := i + 1 
 }  
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Where are we?

 01: Concepts of Quality

 02: Legal Requirements: Norms and Standards

 03: The Software Development Process

 04: Hazard Analysis

 05: High-Level Design with SysML

 06: Formal Modelling with OCL

 07: Testing

 08: Static Program Analysis

 09: Software Verification with Floyd-Hoare Logic 

 10: Verification Condition Generation

 11-12: Model Checking

 13: Conclusions
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Software Verification in the Development Cycle
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Static Program Analysis

Transfer functions to propagate information along the execution path (i.e. 
from input to output, or vice versa)

 Information is encoded as a lattice 𝐿 = 𝑀, ⊑ .

 Transfer functions mapping information 

 fl :  M → M with l being a label

 Knowledge transfer is monotone  ∀ 𝑥, 𝑦. 𝑥 ⊑ 𝑦 ⟹ 𝑓𝑙 𝑥 ⊑ 𝑓𝑙 𝑦

 Restricted to a specific type of knowledge
(Reachable Definitions, Available Expressions,…)

What about a more general approach

 Maintaining arbitrary knowledge ?

 Knowledge representation ?

Transfer function fl

Pout

Pin
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General Transfer Relations

 Transfer relations:

 Knowledge P, Q is represented in logic (first-order)

 {P} c {Q} denotes

If P is known before executing c (and c terminates) 

then Q is known (P “precondition”,  Q “postcondition”)

 {P} c {Q} are called Floyd-Hoare triples

Q

P

Program  c

Charles Antony Richard Hoare: An axiomatic basis for computer programming (1969)
Robert W Floyd: Assigning Meanings to Programs (1967)

Logic

Logic
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Software Verification

 Software Verification proves properties of programs. That is, given the basic
problem of program 𝑃 satisyfing a property 𝑝 we want to show that for all 
possible inputs and runs of 𝑃 , the property 𝑝 holds.

 Software verification is far more powerful than static analysis. For the same 
reasons, it cannot be fully automatic and thus requires user interaction. Hence, 
it is complex to use.

 Software verification does not have false negatives, only failed proof attempts. 
If we can prove a property, it holds.

 Software verification is used in highly critical systems.
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The Basic Idea

 What does this program compute?

 The index of the maximal element of the array
𝑎 if it is non-empty.

 How to prove it?

(1) We need a language in which to formalise
such assertions.

(2) We need a notion of meaning (semantics) 
for the program.

(3) We need to way to deduce valid 
assertions.

 Floyd-Hoare logic provides us with (1) and (3).

i: = 0;
x: = 0;
while (i < n) {
if a i ≥ a x {
x ≔ i;
}
i ≔ i + 1;
}

Formalizing correctness:

array a, n ∧ n > 0 ⟹
a x = max a, n

∀i. 0 ≤ i < n ⟹
a[i] ≤ max(a, n)

∃j. 0 ≤ j < n ⟹
a[j] = max(a, n)
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Recall our simple programming language

 Arithmetic expressions:

𝑎 ∷= 𝑥 𝑛 𝑎1 𝑎2 | 𝑎1 𝑜𝑝𝑎 𝑎2

 Arithmetic operators: 𝑜𝑝𝑎 ∈ {+,−,∗,/}

 Boolean expressions:

𝑏 ≔ true false not 𝑏 𝑏1𝑜𝑝𝑏 𝑏2 𝑎1𝑜𝑝𝑟 𝑎2

 Boolean operators: 𝑜𝑝𝑏 ∈ 𝑎𝑛𝑑, 𝑜𝑟

 Relational operators: 𝑜𝑝𝑟 ∈ =,<,≤,>, ≥,≠

 Statements:

S ::= x := a | skip | S1; S2 | if (b)  S1 else S2 | while (b) S

 Labels from basic blocks omitted, only used in static analysis to derive cfg.

 Note this abstract syntax, operator precedence and grouping statements 
is not covered.
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Semantics of our simple language

 The semantics of an imperative language is state transition: the program has 
an ambient state, which is changed by assigning values to certain locations.

 Example: 

 Semantics in a nutshell:

x ?

y 12

z ?

x 5

y 12

z ?

x 5

y 12

z 17

x 6

y 12

z 17

z := x + yx := 5 x := x + 1

𝜎 𝜎1 = 𝜎[x/5] 𝜎2 = 𝜎1[z/17]

= 𝜎[x/5, z/17]

𝜎3 = 𝜎2[x/6]

= 𝜎[x/6, z/17]

Expressions evaluate to values 𝑉𝑎𝑙 (for our language integers).
Locations 𝐿𝑜𝑐 are variable names.
A program state maps locations to values: Σ = 𝐿𝑜𝑐 ⇀ 𝑉𝑎𝑙
A program maps an initial state to a final state, if it terminates. 
Assertions are predicates over program states.
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Semantics in a nutshell

 There are three major ways to denote semantics.

(1) As a relation between program states, described by an abstract machine
(operational semantics).

(2) As a function between program states, defined for each statement of the
programming langauge (denotational semantics).

(3) As the set of all assertions which hold for a program (axiomatic
semantics).

 Floyd-Hoare logic covers the third aspect, but it is important that all three
semantics agree. 

 We will not cover semantics in detail here, but will concentrate on how to
use Floyd-Hoare logic to prove correctness. 
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Extending our simple language

 We introduce a set 𝑉𝑎𝑟 of logical variables.

 Assertions are boolean expressions, which may not be executable, and 
arithmetic expressions containing logical variables.

 Arithmetic assertions
𝑎𝑒 ∷= 𝑥 𝑋 𝑛 𝑎𝑒1 𝑎𝑒2 | 𝑎𝑒1 𝑜𝑝𝑎 𝑎𝑒2 𝑓(𝑎𝑒1, … , 𝑎𝑒𝑛)

 where 𝑥 ∈ 𝐿𝑜𝑐, 𝑋 ∈ 𝑉𝑎𝑟, 𝑜𝑝𝑎 ∈ {+,−,∗,/}

 Boolean assertions:
𝑏𝑒 ≔ true false not 𝑏𝑒 𝑏𝑒1𝑜𝑝𝑏 𝑏𝑒2 𝑎𝑒1𝑜𝑝𝑟 𝑎𝑒2

𝑝 𝑎𝑒1, … , 𝑎𝑒𝑛 | ∀𝑋. 𝑏𝑒 ∃𝑋. 𝑏𝑒

 Boolean operators: 𝑜𝑝𝑏 ∈ ∧,∨,⟹

 Relational operators: 𝑜𝑝𝑟 ∈ =,<,≤,>, ≥,≠

Systeme hoher Sicherheit und Qualität, WS 19/20 - 12 -

Floyd-Hoare Triples

The basic build blocks of Floyd-Hoare logic are
Hoare triples of the form  𝑃 𝑐 𝑄 .

 P, Q are assertions using variables in 𝐿𝑜𝑐 and 𝑉𝑎𝑟

 e.g.  x < 5 + y,  Odd(x),  …

 A state 𝜎 satisfies P (written 𝜎 ⊨ 𝑃) iff 𝑃[ Τ𝜎 𝑥
𝑥] is true for all 𝑥 ∈ 𝐿𝑜𝑐 and all 

possible values for  X ∈ 𝑉𝑎𝑟:

 e.g.  let

 A formula P describes a set of states, i.e. all states that satisfy the formula P.

x 5

y 12

z 17

𝜎 = then 𝜎 satisfies x < 5 + y,  Odd(x) 

Systeme hoher Sicherheit und Qualität, WS 19/20 - 13 -

Partial and Total Correctness

 Partial correctness: ⊨ 𝑃 𝑐{𝑄}
 𝑐 is partial correct with precondition 𝑃 and postcondition 𝑄 iff, for all 

states 𝜎 which satisfy P and for which the execution of 𝑐 terminates in 
some state 𝜎′ then it holds that 𝜎′ satisfies 𝑄:

∀𝜎. 𝜎 ⊨ 𝑃 ∧ ∃𝜎′. 𝜎, 𝑐 → 𝜎′ ⟹ 𝜎′ ⊨ 𝑄

 Total correctness: ⊨ 𝑃 𝑐[𝑄]

 𝑐 is total correct with precondition 𝑃 and postcondition 𝑄 iff, for all states 
𝜎 which satisfy 𝑃 the execution of c terminates in some state 𝜎′ which 
satisfies 𝑄:

∀𝜎. 𝜎 ⊨ 𝑃 ⟹ ∃𝜎′. 𝜎, 𝑐 → 𝜎′ ∧ 𝜎′ ⊨ 𝑄

 Examples: ⊨ 𝑡𝑟𝑢𝑒 𝑤ℎ𝑖𝑙𝑒 𝑡𝑟𝑢𝑒 𝑠𝑘𝑖𝑝 𝑡𝑟𝑢𝑒 ,
⊭ 𝑡𝑟𝑢𝑒 𝑤ℎ𝑖𝑙𝑒 𝑡𝑟𝑢𝑒 𝑠𝑘𝑖𝑝 [𝑡𝑟𝑢𝑒]
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Reasoning with Floyd-Hoare Triples

 How do we know that ⊨ 𝑃 𝑐 𝑄 in practice ?

 Calculus to derive triples, written as ⊢ 𝑃 𝑐{𝑄}

 Rules operate along the constructs of the programming language (cf. 
operational semantics)

 Only one rule is applicable for each construct (!)

 Rules are of the form

⊢ 𝑃1 𝑐1 𝑄1 , … , ⊢ 𝑃𝑛 𝑐𝑛{𝑄𝑛}

⊢ 𝑃 𝑐 {𝑄}

meaning we can derive ⊢ 𝑃 𝑐 𝑄 if all ⊢ 𝑃𝑖 𝑐𝑖 𝑄𝑖 are derivable.
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Floyd-Hoare Rules:  Assignment

 Assignment rule:

⊢ {𝑃[ Τ𝑒 𝑥]} 𝑥 ∶= 𝑒 {𝑃}

 𝑃[ Τ𝑒 𝑥] replaces all occurrences of the program variable 𝑥 by the arithmetic 
expression 𝑒.

 Examples: 

 ⊢ {0 < 10} 𝑥 ∶= 0 {𝑥 < 10}

 ⊢ 𝑥 – 1 < 10 𝑥 ∶= 𝑥 − 1 𝑥 < 10

 ⊢ {𝑥 + 1 + 𝑥 + 1 < 10} 𝑥 ∶= 𝑥 + 1 {𝑥 + 𝑥 < 10}
𝑥 < 11

𝑥 + 𝑥 < 8
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Rules: Sequencing and Conditional

 Sequence: 
⊢ 𝑃 𝑐1 𝑄 ⊢ 𝑄 𝑐2 {𝑅}

⊢ 𝑃 𝑐1; 𝑐2 {𝑅}

 Needs an intermediate state predicate 𝑄.

 Conditional:
⊢ 𝑃 ∧ 𝑏 𝑐1 𝑄 ⊢ 𝑃 ∧ ¬𝑏 𝑐2 {𝑄}

⊢ 𝑃 if b 𝑐1else 𝑐2 {𝑄}

 Two preconditions capture both cases of 𝑏 and ¬ 𝑏.

 Both branches end in the same postcondition Q.
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Rules: Iteration and Skip

⊢ 𝑃 ∧ 𝑏 𝑐 {𝑃}

⊢ 𝑃 while (𝑏) 𝑐 {𝑃 ∧ ¬ 𝑏}

 𝑃 is called the loop invariant. It has to hold both before and after the loop 
(but not necessarily in the whole body). 

 Before the loop, we can assume the loop condition 𝑏 holds.

 After the loop, we know the loop condition 𝑏 does not hold.

 In practice, the loop invariant has to be  given– this is the creative and difficult 
part of working with the Floyd-Hoare calculus. 

⊢ 𝑃 𝐬𝐤𝐢𝐩 {𝑃}

 skip has no effect: pre- and postcondition are the same. 
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𝑃1

Final Rule: Weakening

 Weakening is crucial, because it allows us to change pre- or postconditions by
applying rules of logic.

𝑃2 ⟹ 𝑃1 ⊢ 𝑃1 𝑐 𝑄1 𝑄1 ⟹𝑄2

⊢ 𝑃2 𝑐 𝑄2

 We can weaken the precondition and strengthen the postcondition:

 𝑃 ⟹ 𝑄 means that all states in which 𝑃 holds, Q also holds.

 ⊨ 𝑃 𝑐 𝑄 means whenever 𝑐 starts in a state in which 𝑃 holds, it ends in 
a state in which 𝑄 holds. 

 So, we can reduce the starting set, and enlarge the target set.

𝑄2𝑃2 𝑄1
c
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How to derive and denote proofs

 The example shows ⊢ 𝑃 𝑐 𝑄

 We annotate the program with valid 
assertions: the precondition in the
preceding line, the postcondition in the
following line.

 The sequencing rule is applied implicitly.

 Consecutive assertions imply weaking, 
which has to be proven separately. 

 In the example:
𝑃 ⟹ 𝑃1,
𝑃2 ⟹ 𝑃3,
𝑃3 ∧ 𝑥 < 𝑛 ⟹ 𝑃4,
𝑃3 ∧ ¬ 𝑥 < 𝑛 ⟹ 𝑄

// {P}

// {𝑃1}

x:= e;

// {𝑃2}

// {𝑃3}

while (x< n) {

// {𝑃3 ∧ 𝑥 < 𝑛}

// {𝑃4}

z := a

// {𝑃3}

}

// {𝑃3 ∧ ¬(𝑥 < 𝑛)}

// {𝑄}
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More Examples

P ==
p ≔ 1;
c ≔ 1;
while c ≤ n {
p ≔ p ∗ c;
c ≔ c + 1
}

R ==
r ≔ a;
q ≔ 0;
while b ≤ r {
r ≔ r − b;
q ≔ q + 1
}

Specification:
⊢ 1 ≤ n

P
{ p = n! }

Specification:
⊢ a ≥ 0 ∧ b ≥ 0

R
{ a = b ∗ q + r ∧
0 ≤ r ∧ r < b}

Q ==
p ≔ 1;
while 0 < n {
p ≔ p ∗ n;
n ≔ n − 1
}

Specification:
⊢ 1 ≤ n ∧ 𝑛 = 𝑁
Q
{ p = N! }

Invariant:
p = c − 1 !

Invariant:

p = ෑ

i=n+1

N

i

Invariant:
a = b ∗ q + r ∧ 0 ≤ r
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How to find an Invariant

 Going backwards: try to split/weaken postcondition 𝑄 into negated loop-
condition and „something else“ which becomes the invariant.

 Many while-loops are in fact for-loops, i.e. they count uniformly:

i ≔ 0;
𝐰𝐡𝐢𝐥𝐞 𝑖 < 𝑛 {
… ;
𝑖 ≔ 𝑖 + 1
}

 In this case:

 If post-condition is 𝑃(𝑛), invariant is 𝑃 𝑖 ∧ 𝑖 ≤ 𝑛.

 If post-condition is ∀𝑗. 0 ≤ 𝑗 < 𝑛. 𝑃(𝑗) (uses indexing, typically with arrays), 
invariant is ∀𝑗. 𝑗 ≤ 0 < 𝑖. 𝑖 ≤ 𝑛 ∧ 𝑃 𝑗 .
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Summary

 Floyd-Hoare-Logic allows us to prove properties of programs.

 The proofs cover all possible inputs, all possible runs.

 There is partial and total correctness:

 Total correctness = partial correctness + termination.

 There is one rule for each construct of the programming language. 

 Proofs can in part be constructed automatically, but iteration needs an 
invariant (which cannot be derived mechanically).

 Next lecture: correctness and completeness of the rules.

Frohes Fest 
und guten Rutsch.
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Frohes Neues Jahr!
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Where are we?

 01: Concepts of Quality

 02: Legal Requirements: Norms and Standards

 03: The Software Development Process

 04: Hazard Analysis

 05: High-Level Design with SysML

 06: Formal Modelling with OCL

 07: Testing

 08: Static Program Analysis

 09: Software Verification with Floyd-Hoare Logic 

 10: Verification Condition Generation

 11-12: Model Checking

 13: Conclusions
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VCG in the Development Cycle
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Introduction

 In the last lecture, we introduced Hoare triples. They allow us to state and
prove correctness assertions about programs, written as 𝑃 𝑝 {𝑄}

 We introduced two notions, namely:

 Syntactic derivability, ⊢ 𝑃 𝑝 {𝑄} (the actual Floyd-Hoare calculus)

 Semantic satisfaction, ⊨ 𝑃 𝑝 {𝑄}

 Question: how are the two related?

 The answer to that question also offers help with a practical problem: proofs
with the Floyd-Hoare calculus are exceedingly long and tedious. Can we
automate them, and how?
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Correctness and Completeness

 In general, given a syntactic calculus with a semantic meaning, correctness
means the syntactic calculus implies the semantic meaning, and
completeness means all semantic statements can be derived syntactically.

 Cf. also Static Program Analysis

 Correctness should be a basic property of verification calculi.

 Completeness is elusive due to Gödel‘s first incompleteness theorem: 

 Any logics which is strong enough to encode the natural numbers and 
primitive recursion* is incomplete.**

* Or any other notion of computation.

** Or inconsistent, which is even worse.

Systeme hoher Sicherheit und Qualität, WS 19/20 - 7 -

Correctness of the Floyd-Hoare calculus

 Proof: by induction on the derivation of ⊢ 𝑃 𝑝 𝑄 .

 More precisely, for each rule we show that:

 If the conclusion is ⊢ 𝑃 𝑝 𝑄 , we can show ⊨ 𝑃 𝑝 𝑄

 For the premisses, this can be assumed.

 Example: for the assignment rule, we show that

Theorem (Correctness of the Floyd-Hoare calculus)

If ⊢ 𝑃 𝑝 {𝑄}, then ⊨ 𝑃 𝑝 {𝑄}.
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Completeness of the Floyd-Hoare calculus

 Predicate calculus is incomplete, so we cannot hope F/H is complete. But we
get the following:

 To show this, we construct the weakest precondition.

Theorem (Relative completeness)
If ⊨ 𝑃 𝑝 {𝑄}, then ⊢ 𝑃 𝑝 𝑄 except for the proofs occuring in 

the weakenings.

Weakest precondition
Given a program c and an assertion P, the weakest precondition
𝑤𝑝(𝑐, 𝑃) is an assertion W such that
1. 𝑊 is a valid precondition ⊨ 𝑊 𝑐 𝑃
2. And it is the weakest such: 

for any other 𝑄 such that ⊨ 𝑄 𝑐 𝑃 , we have 𝑊 → 𝑄.
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Constructing the weakest precondition

 Consider a simple program and its verification:

 Note how proof is constructed backwards systematically.

 The idea is to construct the weakest precondition inductively.

 This also gives us a methodology to automate proofs in the calculus.

𝑥 = 𝑋 ∧ 𝑦 = 𝑌
↔
𝑦 = 𝑌 ∧ 𝑥 = 𝑋

z := y;

𝑧 = 𝑌 ∧ 𝑥 = 𝑋
y := x;

𝑧 = 𝑌 ∧ 𝑦 = 𝑋
x := z;

𝑥 = 𝑌 ∧ 𝑦 = 𝑋
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Constructing the weakest precondition

 There are four straightforward cases:

(1) 𝑤𝑝 𝐬𝐤𝐢𝐩, 𝑃 = 𝑃

(2) 𝑤𝑝 𝑋 ≔ 𝑒, 𝑃 = 𝑃 [𝑒 / 𝑋]

(3) 𝑤𝑝 𝑐0; 𝑐1, 𝑃 = 𝑤𝑝(𝑐0, 𝑤𝑝 𝑐1, 𝑃 )

(4) 𝑤𝑝 𝐢𝐟 𝑏 𝑐0 𝐞𝐥𝐬𝐞 𝑐1 , 𝑃 = (𝑏 ∧ 𝑤𝑝 𝑐0, 𝑃 ) ∨ (¬ 𝑏 ∧ 𝑤𝑝 𝑐1, 𝑃 )

 The complicated one is iteration (unsurprisingly, since it is the source of the
computational power and Turing-completeness of the language). It can be given
recursively:

(5) 𝑤𝑝 𝐰𝐡𝐢𝐥𝐞 𝑏 𝑐 , 𝑃 = ¬ 𝑏 ∧ 𝑃 ∨ 𝑤𝑝 𝑐,𝑤𝑝 𝐰𝐡𝐢𝐥𝐞 𝑏 𝑐 , 𝑃

 A closed formula can be given, but it can be infinite and is not practical. It shows
the relative completeness, but does not give us an effective way to automate
proofs.

 Hence, 𝑤𝑝(𝑐, 𝑃) is not effective for proof automation, but it shows the right way: 
we just need something for iterations.
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Verification Conditions: Annotations

 The idea is that we have to give the invariants manually by annotating them.

 We need a language for this:

 Arithmetic expressions and boolean expressions stays as they are.

 Statements are augmented to annotated statements:

S ::= x := a | skip | S1; S2 | if (b)  S1 else S2
| assert P | while (b) inv P S

 Each while loop needs to its invariant annotated.

 This is for partial correctness, total correctness also needs a variant: an 
expression which is strictly decreasing in a well-founded order such as (<
, ℕ) after the loop body.

 The assert statement allows us to force a weakening.
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Preconditions and Verification Conditions

 We are given an annotated statement 𝑐, a precondition P and a postcondition
Q. 

 We want to know: when does ⊨ 𝑃 𝑐 {𝑄} hold?

 For this, we calculate a precondition 𝑝𝑟𝑒(𝑐, 𝑄) and a set of verification
conditions 𝑣𝑐 𝑐, 𝑄 .

 The idea is that if all the verification conditions hold, then the
precondition holds:

ሥ

𝑅∈𝑣𝑐(𝑐, 𝑄)

𝑅 ⇒ ⊨ 𝑝𝑟𝑒 𝑐, 𝑄 𝑐 𝑄

 For the precondition 𝑃, we get the additional weaking 𝑃 ⇒ 𝑝𝑟𝑒 𝑐, 𝑄 .
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Calculation Verification Conditions

 Intuitively, we calculate the verification conditions by stepping through the
program backwards, starting with the postcondition 𝑄.

 For each of the four simple cases (assignment, sequencing, case distinction
and 𝒔𝒌𝒊𝒑), we calculate new current postcondition 𝑄

 At each iteration, we calculate the precondition 𝑅 of the loop body working
backwards from the invariant 𝐼, and get two verification conditions:

 The invariant 𝐼 and negated loop condition implies 𝑄.

 The invariant 𝐼 and loop condition implies 𝑅.

 Asserting 𝑅 generates the verification condition 𝑅 ⇒ 𝑄.

 Let‘s try this.
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Example: deriving VCs for the factorial.

{ 0 <= n }
{ 1 == (1-1)! && (1- 1) <= n }
p := 1;
{ p == (1-1)! && (1- 1) <= n }
c := 1;
{ p == (c-1)! && (c- 1) <= n }
while (c <= n) 

inv (p == (c-1)! && c-1 <= n) {
{ p*c == ((c+1)-1)! &&

((c+1)- 1) <= n } 
p := p* c;
{ p == ((c+1)-1)! && ((c+1)- 1) <= n } 
c := c+1;
{ p == (c-1)! && (c- 1) <= n } 
}

{ p = n! }

VCs (unedited):
1. p == (c-1)! && (c- 1) <= n && ! (c 

<= n) ==> p= n!

2. p == (c-1)! && c-1 <= n && c<= n 
==> p* c= ((c+1)-1)! && ((c+1)-1) 
<= n

3. 0 <= n ==> 1= (1-1)! && 1-1 <= n

VCs (simplified):
1. p == (c-1)! && c- 1 == n  

==> p= n!
2. p == (c-1)! && c-1 <= n && c<= n 

==> p* c= c! 
3. p == (c-1)! && c-1 <= n && c<= n 

==> c <= n
4. 0 <= n ==> 1= 0!
5. 0 <= n ==> 0 <= n
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Formal Definition

 Calculating the precondition:
𝑝𝑟𝑒 𝐬𝐤𝐢𝐩,𝑄 = 𝑄
𝑝𝑟𝑒 𝑋 ≔ 𝑒,𝑄 = 𝑄 𝑒 / 𝑋
𝑝𝑟𝑒(𝑐0; 𝑐1, 𝑄 = 𝑝𝑟𝑒(𝑐0, 𝑝𝑟𝑒 𝑐1, 𝑄 )
𝑝𝑟𝑒 𝐢𝐟 𝑏 𝑐0 𝐞𝐥𝐬𝐞 𝑐1, 𝑄 = 𝑏 ∧ 𝑝𝑟𝑒 𝑐0, 𝑄 ∨ ¬ 𝑏 ∧ 𝑝𝑟𝑒 𝑐1, 𝑄

𝑝𝑟𝑒 𝐚𝐬𝐬𝐞𝐫𝐭 𝑅, 𝑄 = 𝑅
𝑝𝑟𝑒 𝐰𝐡𝐢𝐥𝐞 𝑏 𝐢𝐧𝐯 𝐼 𝑐, 𝑄 = 𝐼

 Calculating the verification conditions:
𝑣𝑐 𝑠𝑘𝑖𝑝, 𝑄 = ∅
𝑣𝑐 𝑋 ≔ 𝑒,𝑄 = ∅
𝑣𝑐 𝑐0; 𝑐1, 𝑄 = 𝑣𝑐 𝑐0, 𝑝𝑟𝑒 𝑐1, 𝑄 ∪ 𝑣𝑐 𝑐1, 𝑄

𝑣𝑐 𝐢𝐟 𝑏 𝑐0 𝐞𝐥𝐬𝐞 𝑐1, 𝑄 = 𝑣𝑐 𝑐0, 𝑄 ∪ 𝑣𝑐 𝑐1, 𝑄
𝑣𝑐 𝐰𝐡𝐢𝐥𝐞 𝑏 𝐢𝐧𝐯 𝐼 𝑐, 𝑄 = 𝑣𝑐 𝑐, 𝐼 ∪ {𝐼 ∧ 𝑏 ⇒ 𝑝𝑟𝑒 𝑐, 𝐼 , 𝐼 ∧ ¬𝑏 ⇒ 𝑄}
𝑣𝑐 𝐚𝐬𝐬𝐞𝐫𝐭 𝑅, 𝑄 = 𝑅 ⇒ 𝑄

 The main definition:
𝑣𝑐𝑔 𝑃 𝑐 𝑄 = 𝑃 ⇒ 𝑝𝑟𝑒 𝑐, 𝑄 ∪ 𝑣𝑐(𝑐, 𝑄)
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Another example: integer division

{ 0 <= a && 0 <= b }
{ 1 }
r := a;
{ 2 }
q := 0;
{ 3 }
while (b <= r) 

inv (a == b* q + r && 0 <= r) {
{ 4 } 
r := r- b;
{ 5  } 
q := q+1;
{ 6 } 
}

{ a == b* q + r && 0 <= r && r < b } 
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Correctness of VC

 The correctness calculus is correct: if we can prove all the verifcation
conditons, the program is correct w.r.t to given pre- and postconditions.

 Formally:

 Proof: by induction on 𝑐.

Theorem (Correctness of the VCG calculus)
Given assertions 𝑃 and 𝑄 (with 𝑃 the precondition and 𝑄 the

postcondition), and an annotated program, then

ሥ

𝑅∈𝑣𝑐𝑔(𝑐, 𝑄)

𝑅 ⇒ ⊨ 𝑃 𝑐 𝑄
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Using VCG in Real Life

We have just a toy language, but VCG can be used in real life. What features are 
missing?

 Modularity: the language must have modularity concepts, e.g. functions (as 
in C), or classes (as in Java), and we must be able to verify them separately. 

 Framing: in our simple calculus, we need to specify which variables stay the 
same (e.g. when entering a loop). This becomes tedious when there are a lot 
of variables involved; it is more practical to specify which variables may 
change.

 References: languages such as C and Java use references, which allow 
aliasing. This has to be modelled semantically; specifically, the assignment rule 
has to be adapted.

 Machine arithmetic: programs work with machine words and floating point 
representations, not integers and real numbers. This can be the cause of 
insidious errors.
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VCG Tools

 Often use an intermediate language for VCG and front-ends for concrete 
programming languages.

 The Why3 toolset (http://why3.lri.fr)

 A verification condition generator

 Front-ends for different languages: 
C (Frama-C), Java (defunct?)

 Boogie (Microsoft Research)

 Frontends for programming languages such C, C#, Java.

 VCC – a verifying C compiler built on top of Boogie

 Interactive demo: 
https://www.rise4fun.com/Vcc/
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VCC Example: Binary Search

 A correct (?) binary search implementation:

#include <limits.h>

unsigned int bin_search(unsigned int a [], unsigned int a_len, unsigned int key)

{    

unsigned int lo= 0;

unsigned int hi= a_len;

unsigned int mid;

while (lo <= hi) 

{

mid= (lo+ hi)/2;

if (a[mid] < key) lo= mid+1;

else hi= mid;

}

if (!(lo < a_len && a[lo] == key)) lo= UINT_MAX;

return lo;

}
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VCC: Correctness Conditions?

 We need to annotate the program.

 Precondition:

 a is an array of length a_len;

 The array a is sorted.

 Postcondition:

 Let r be the result, then:

 if r is UINT_MAX, all elements of a are unequal to key;

 if r is not UINT_MAX, then a[r] == key.

 Loop invariants:

 hi is less-equal to a_len;

 everything „left“ of lo is less then key;

 everything „right“ of hi is larger-equal to key.
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VCC Example: Binary Search

 Source code as annotated for VCC:

#include <limits.h>

#include <vcc.h>

unsigned int bin_search(unsigned int a [], unsigned int a_len, unsigned int key)

_(requires \thread_local_array(a, a_len))

_(requires \forall unsigned int i, j; i < j && j < a_len ==> a[i] <= a[j]) 

_(ensures \result != UINT_MAX ==> a[\result] == key)                

_(ensures \result == UINT_MAX ==> \forall unsigned int i; i < a_len ==> a[i] !=  key) 

{

unsigned int lo= 0;

unsigned int hi= a_len;

unsigned int mid;

while (lo <= hi) 

_(invariant hi <= a_len)

_(invariant \forall unsigned int i; i < lo ==> a[i] <  key) 

_(invariant \forall unsigned int i; hi <= i && i < a_len ==>a[i] >= key) 

{

mid= (lo+ hi)/2;

if (a[mid] < key) lo= mid+1;

else hi= mid;

}

if (!(lo < a_len && a[lo] == key)) lo= UINT_MAX;

return lo;

}
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Binary Search: the Corrected Program

 Corrected source code:

#include <limits.h>

#include <vcc.h>

unsigned int bin_search(unsigned int a [], unsigned int a_len, unsigned int key)

_(requires \thread_local_array(a, a_len))

_(requires \forall unsigned int i, j; i < j && j < a_len ==> a[i] <= a[j]) 

_(ensures \result != UINT_MAX ==> a[\result] == key)                

_(ensures \result == UINT_MAX ==> \forall unsigned int i; i < a_len ==> a[i] !=  key) 

{

unsigned int lo= 0;

unsigned int hi= a_len;

unsigned int mid;

while (lo < hi) 

_(invariant hi <= a_len)

_(invariant \forall unsigned int i; i < lo ==> a[i] <  key) 

_(invariant \forall unsigned int i; hi <= i && i < a_len ==>a[i] >= key) 

{

mid= (hi-lo)/2+ lo;

if (a[mid] < key) lo= mid+1;

else hi= mid;

}

if (!(lo < a_len && a[lo] == key)) lo= UINT_MAX;

return lo;

}
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Summary

 Starting from the relative completeness of the Floyd-Hoare calculus, we 
devised a verification condition generation (vcg) calculus which makes 
program verification viable.

 Verification condition generation reduces the question whether the given 
pre/postconditions hold for a program to the validity of a set of logical 
properties.

 We do need to annotate the while loops with invariants.

 Most of these logical properties can be discharged with automated 
theorem provers.

 To scale to real-world programs, we need to deal with framing,  modularity 
(each function/method needs to be verified independently), and machine 
arithmetic (integer word arithmetic and floating-points).
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Where are we?

 01: Concepts of Quality

 02: Legal Requirements: Norms and Standards

 03: The Software Development Process

 04: Hazard Analysis

 05: High-Level Design with SysML

 06: Formal Modelling with OCL

 07: Testing

 08: Static Program Analysis

 09: Software Verification with Floyd-Hoare Logic 

 10: Verification Condition Generation

 11: Foundations of Model Checking

 12: Tools for Model Checking

 13: Conclusions

Systeme hoher Sicherheit und Qualität, WS 19/20 - 3 -

Introduction

 In the last lectures, we were verifying program properties with the 
Floyd-Hoare calculus (or verification condition generation). Program 
verification translates the question of program correctness into a proof
in program logic (the Floyd-Hoare logic),  turning it into a deductive 
problem.

Model-checking takes a different approach: instead of directly working 
with the (source code) of the program, we work with an abstraction
of the system (the system model). Because we build an abstraction, 
this approach is also applicable at higher verification levels. (It is also 
complimentary to deductive verification.)

 The key questions are: how do these models look like? What 
properties do we want to express, and how do we express and prove 
them?
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Model Checking in the Development Cycle
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Introduction

Model checking operates on (abstract) state machines

 Does an abstract system satisfy some behavioral property
e.g. liveness (deadlock) or safety properties 

 consider traffic lights in Requirement Engineering

 Example: “green must always follow red”

 Automatic analysis if state machine is finite

 Push-button technology

 User does not need to know logic (at least not for the proof)

 Basis is satisfiability of boolean formula in a finite domain (SAT). 
However, finiteness does not imply efficiency – all interesting problems 
are at least NP-complete, and SAT is no exception (Cook’s theorem).
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The Model-Checking Problem

 What is ℳ?   

 A finite-state machine or Kripke structure.

 What is 𝜙?     

 Temporal logic

 How to prove it?

 By enumerating the states and thus construct a model

(hence the term model checking)

 The basic problem: state explosion

The Basic Question: 

Given a model ℳ and property 𝜙, we want to know if

ℳ ⊨ 𝜙
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Finite State Machine (FSM)

 Variations of this definition exists, e.g. no initial states.

 Note there is no final state, and no input or output (this is the key difference 
to automata).

 If → is a function, the FSM is deterministic, otherwise it is non-deterministic.

Definition: Finite State Machine (FSM)

A FSM is given by ℳ = Σ, 𝐼,→ where
• Σ is a finite set of states, 
• 𝐼 ⊆ Σ is a set of initial states, and
• →⊆ Σ × Σ is a transition relation, s.t. → is left-total:

∀𝑠 ∈ Σ. ∃𝑠′ ∈ Σ. 𝑠 → 𝑠′
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First Example: A Simple Drink Dispenser

1) Insert a coin.

2) Press button: tea or coffee

3) Tea or coffee dispensed

4) Back to 1)

FSM:
Σ = 𝑠0, 𝑠1, 𝑠2, 𝑠3

𝐼 = 𝑠0

→=
{ 𝑠0, 𝑠1 , 𝑠1, 𝑠2 , 𝑠2, 𝑠3 ,

𝑠1, 𝑠3 , 𝑠2, 𝑠0 , 𝑠3, 𝑠0 }

Note operation names are for decoration
purposes only.

Button #2 Button #1

s1

s3
s2

s0

Coin

D
is

p
e

n
se

 T
e

a

D
is

p
e

n
se

 C
o

ff
e

e
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Example: A Simple Oven

 The oven has more states and operations: 
open and close door, 

 turn oven on and off, 

 warm up and cook.

 How do they interact?

 FSM:

cook

start
oven

open 
door

open 
door

close 
door

start
oven

close 
door

open 
door

warmup

done

s1

s6s5

s4s3
s2
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Questions to ask

We want to answer questions about the system behaviour like

 Can the cooker heat with the door open?

 When the start button is pushed, will the cooker eventually heat up?

 When the cooker is correctly started, will the cooker eventually heat up?

 When an error occurs, will it be still possible to cook?

We are interested in questions on the development of the system over time, i.e. 
possible traces of the system given by a succession of states.

The tool to formalize and answer these questions is temporal logic.
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Temporal Logic

Expresses properties of possible succession of states

Linear Time

▪ Every moment in time has a 
unique successor

▪ Infinite sequences of moments
▪ Linear Temporal Logic  LTL

Branching Time

▪ Every moment in time has several 
successors

▪ Infinite tree
▪ Computational Tree Logic  CTL

s1

s3 s2

s1

s1s6

s3

s1

s5

s1

s3 s2

s6 s1 s5
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Kripke Structures

 In order to talk about propositions, we label the states of a FSM with 
propositions which hold there. This is called a Kripke structure.

 Equivalent formulation: for each state, set of propositions which hold in 
this state, i.e. 𝑉′: Σ → 2𝑃𝑟𝑜𝑝

Definition: Kripke structure
Given a set 𝑃𝑟𝑜𝑝 of propositions, then a Kripke structure is given by
K = 〈Σ, 𝐼,→, 𝑉〉 where
• Σ is a finite set of states, 
• 𝐼 ⊆ Σ is a set of initial states,
• →⊆ Σ × Σ is a left-total transition relation, and
• 𝑉: 𝑃𝑟𝑜𝑝 → 2Σ is a valuation function mapping propositions to the set

of states in which they hold
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Kripke Structure: Example

 Example: Cooker

 Propositions:

 Cooker is starting:  S

 Door is closed:       C

 Cooker is hot:        H

 Error occurred:       E

 Kripke structure:
 Σ = {𝑠1, … , 𝑠6}

 𝐼 = 𝑠1
 →= { 𝑠1, 𝑠2 , 𝑠2, 𝑠5 , 𝑠5, 𝑠2 , (𝑠1, 𝑠3)

𝑠3, 𝑠1 , 𝑠3, 𝑠6 , 𝑠6, 𝑠4 , 𝑠4, 𝑠4 ,
𝑠4, 𝑠3 , (𝑠4, 𝑠1)}

 V S = {𝑠2, 𝑠5, 𝑠6}, 
V C = {𝑠3, 𝑠4, 𝑠5, 𝑠6},
V H = {𝑠4}, V E = {𝑠2, 𝑠5}

cook

start
oven

open 
door

open 
door

close 
door

start
oven

close 
door

open 
door

warmup

done

:S, : C, 
: H, : E

S, C, 
: H, : E

:S, C, 
: H, : E

S, C, 
: H, E

S, : C, 
: H, E

:S, C, 
H, : E

s1

s6s5

s4s3
s2
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Semantics of Kripke Structures (Prop)

 We now want to define a logic in which we can formalize temporal statements, 
i.e. statements about the behaviour of the system and its changes over time.

 The basis is open propositional logic (PL): negation, conjunction, 
disjunction, implication*.

 With that, we define how a PL-formula 𝜙 holds in a Kripke structure 𝐾 at state 
𝑠 , written as 𝐾, 𝑠 ⊨ 𝜙.

 Let 𝐾 = 〈Σ, 𝐼,→, 𝑉〉 be a Kripke structure,  𝑠 ∈ Σ, and 
𝜙 a formula of propositional logic, then

 𝐾, 𝑠 ⊨ 𝑝 if 𝑝 ∈ 𝑃𝑟𝑜𝑝 and 𝑠 ∈ 𝑉(𝑝)

 𝐾, 𝑠 ⊨ ¬𝜙 if not 𝐾, 𝑠 ⊨ 𝜙

 𝐾, 𝑠 ⊨ 𝜙1 ∧ 𝜙2 if 𝐾, 𝑠 ⊨ 𝜙1 and 𝐾, 𝑠 ⊨ 𝜙2

 𝐾, 𝑠 ⊨ 𝜙1 ∨ 𝜙2 if 𝐾, 𝑠 ⊨ 𝜙1 or 𝐾, 𝑠 ⊨ 𝜙2

* Note implication is derived: 𝜙1 → 𝜙2= ¬𝜙1 ∨ 𝜙2
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Linear Temporal Logic

 The formulae of LTL are given as

𝜙 ∷= 𝑝 ¬ 𝜙 𝜙1 ∧ 𝜙2 | 𝜙1 ∨ 𝜙2 Propositional formulae

𝑋 𝜙 𝐺 𝜙 𝐹 𝜙 𝜙1 𝑈 𝜙2 Temporal operators

 X p:  in the next moment p holds

G p: p holds in all moments

 F p:  there is a moment in the future when p will hold

 p U q:  p holds in all moments until q holds

p

p

p p p p p p

ppp q
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Examples of LTL formulae

 If the cooker heats, then is the door 
closed?

𝐺(𝐻 → 𝐶)

 Is it always possible to recover from 
an error?

𝐺 𝐸 → 𝐹 ¬ 𝐸

 Need to add a transition.

 Is it always possible to cook (heat 
up, then cook)?

𝐹 (𝑆 → 𝑋 𝐶)

 Always possible to “avoid” 
cooking.

 Cannot express “there are 
paths in which we can always 
cook”.

cook

start
oven

open 
door

open 
door

close 
door

start
oven

close 
door

open 
door

warmup

done

:S, : C, 
: H, : E

S, C, 
: H, : E

:S, C, 
: H, : E

S, C, 
: H, E

S, : C, 
: H, E

:S, C, 
H, : E

s1

s6s5

s4s3
s2

reset
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Paths in an FSM/Kripke Structure

 A path in an FSM (or Kripke structure) is a sequence of states starting in one
of the initial states and connected by the transition relation (essentially, a run
of the system).

 Formally: for an FSM 𝑀 = Σ, 𝐼,→ or a Kripke structure 𝐾 = Σ, 𝐼, →,𝑉 , a path
is given by a sequence 𝑠1𝑠2𝑠3… ∈ Σ∗ such that 𝑠1 ∈ 𝐼 and 𝑠𝑖 → 𝑠𝑖+1.

 For a path p = 𝑠1𝑠2𝑠3…, we write

 𝑝𝑖 for selecting the 𝑖-th element 𝑠𝑖 and

 𝑝𝑖 for the suffix starting at position i, 𝑠𝑖𝑠𝑖+1𝑠𝑖+2…
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Semantics of LTL in Kripke Structures

Let 𝐾 = 〈Σ, 𝐼,→, 𝑉〉 be a Kripke Structure and 𝜙 an LTL formula, then we say 𝐾 ⊨
𝜙 (𝝓 holds in 𝑲), if 𝐾, 𝑠 ⊨ 𝜙 for all paths 𝑠 = 𝑠1𝑠2𝑠3… in 𝐾, where:

 𝐾, 𝑠 ⊨ 𝑝 if 𝑝 ∈ 𝑃𝑟𝑜𝑝, 𝑠1∈ 𝑉(𝑝)

 𝐾, 𝑠 ⊨ ¬𝜙 if not 𝐾, 𝑠 ⊨ 𝜙

 𝐾, 𝑠 ⊨ 𝜙1 ∧ 𝜙2 if 𝐾, 𝑠 ⊨ 𝜙1 and 𝐾, 𝑠 ⊨ 𝜙2

 𝐾, 𝑠 ⊨ 𝜙1 ∨ 𝜙2 if 𝐾, 𝑠 ⊨ 𝜙1 or 𝐾, 𝑠 ⊨ 𝜙2

 𝐾, 𝑠 ⊨ 𝑋 𝜙 if 𝐾, 𝑠2 ⊨ 𝜙

 𝐾, 𝑠 ⊨ 𝐺 𝜙 if 𝐾, 𝑠𝑛 ⊨ 𝜙 for all 𝑛 > 0

 𝐾, 𝑠 ⊨ 𝐹 𝜙 if 𝐾, 𝑠𝑛 ⊨ 𝜙 for some 𝑛 > 0

 𝐾, 𝑠 ⊨ 𝜙 𝑈 𝜓 if 𝐾, 𝑠𝑛 ⊨ 𝜓 for some 𝑛 > 0, 

and for all 𝑖, 0 < 𝑖 < 𝑛, we have 𝐾, 𝑠𝑖 ⊨ 𝜙
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More examples for the cooker

 Question: does the cooker work?

 Specifically, cooking means that first the door is open, then the oven heats up, 
cooks, then the door is open again, and all without an error.

 𝑐 = ¬𝐶 ∧ 𝑋 𝑆 ∧ 𝑋(𝐻 ∧ 𝐹¬𝐶) ∧ 𝐺 ¬𝐸 – not quite.

 𝑐 = ¬𝐶 ∧ ¬𝐸 ∧ 𝑋 𝑆 ∧ ¬𝐸 ∧ 𝑋(𝐻 ∧ ¬𝐸 ∧ 𝐹(¬𝐶 ∧ ¬𝐸 )) – better

 So, does the cooker work?

 There is at least one path s.t. 𝑐 holds eventually.

 This is not G 𝐹 𝑐, which says that all paths must eventually cook (which
might be too strong).

 We cannot express this in LTL; this is a principal limitation. 

Systeme hoher Sicherheit und Qualität, WS 19/20 - 20 -

Computational Tree Logic (CTL)

 LTL does not allow us the quantify over paths, e.g. assert the existence of a 
path satisfying a particular property.

 To a limited degree, we can solve this problem by negation: instead of 
asserting a property 𝜙, we check whether ¬𝜙 is satisfied; if that is not the 
case, 𝜙 holds. But this does not work for mixtures of universal and existential 
quantifiers. 

 Computational Tree Logic (CTL) is another temporal logic which allows this 
by adding universal and existential quantifiers to the modal operators.

 The name comes from considering paths in the computational tree
obtained by unwinding the transition relation of the Kripke structure.

Systeme hoher Sicherheit und Qualität, WS 19/20 - 21 -

Computational Tree Logic (CTL)

 The formulae of CTL are given as

𝜙 ∷= 𝑝 ¬ 𝜙 𝜙1 ∧ 𝜙2 | 𝜙1 ∨ 𝜙2 Propositional formulae

𝐴𝑋 𝜙 𝐸𝑋 𝜙 𝐴𝐺 𝜙 𝐸𝐺 𝜙 Temporal operators
𝐴𝐹 𝜙 𝐸𝐹 𝜙 𝜙1 𝐴𝑈 𝜙2 𝜙1𝐸𝑈 𝜙2

 Note that CTL formulae can be considered to be a LTL formulae with a 
modality (A or E) added to each temporal operator.

 Generally speaking, the A modality says the temporal operator holds for 
all paths, and the E modality says it only holds for all least one path.

 Hence, we do not define a satisfaction for a single path p, but with respect 
to a specific state in an FSM.
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Computational Tree Logic (CTL)

 Specifying possible paths by combination

 Branching behavior
All paths:  A,  exists path: E

 Succession of states in a path
Temporal operators X, G, F, U

 For example:

 AX p :  in all paths the next state satisfies p

 EX p :   there is an path in which the next state satisfies p

 p AU q :  in all paths p holds as long as q does not hold

 EF p :   there is an path in which eventually p holds 
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Semantics of CTL in Kripke Structures
For a Kripke structure 𝐾 = Σ, 𝐼,→, 𝑉 and a CTL-formula 𝜙, we say 𝐾 ⊨ 𝜙 (𝝓
holds in 𝑲) if 𝐾, 𝑠 ⊨ 𝜙 for all 𝑠 ∈ 𝐼, where 𝐾, 𝑠 ⊨ 𝜙 is defined inductively as 
follows (omitting the clauses for propositional operators 𝑝,¬, ∧, ∨):

 𝐾, 𝑠 ⊨ 𝐴𝑋 𝜙 iff for all 𝑠′ with 𝑠 → 𝑠′, we have 𝐾, 𝑠′ ⊨ 𝜙

 𝐾, 𝑠 ⊨ 𝐸𝑋 𝜙 iff for some 𝑠′ with 𝑠 → 𝑠′, we have 𝐾, 𝑠′ ⊨ 𝜙

 𝐾, 𝑠 ⊨ 𝐴𝐺 𝜙 iff for all paths 𝑝 with 𝑝1 = 𝑠, 
we have 𝐾, 𝑝𝑖 ⊨ 𝜙 for all 𝑖 ≥ 2.

 𝐾, 𝑠 ⊨ 𝐸𝐺 𝜙 iff for some path 𝑝 with 𝑝1 = 𝑠,
we have 𝐾, 𝑝𝑖 ⊨ 𝜙 for all 𝑖 ≥ 2.

 𝐾, 𝑠 ⊨ 𝐴𝐹 𝜙 iff for all paths 𝑝 with 𝑝1 = 𝑠,
we have 𝐾, 𝑝𝑖 ⊨ 𝜙 for some 𝑖

 𝐾, 𝑠 ⊨ 𝐸𝐹 𝜙 iff for some path 𝑝 with 𝑝1 = 𝑠,
we have 𝐾, 𝑝𝑖 ⊨ 𝜙 for some 𝑖

 𝐾, 𝑠 ⊨ 𝜙 𝐴𝑈 𝜓 iff for all paths 𝑝 with 𝑝1 = 𝑠,
there is i with 𝐾, 𝑝𝑖 ⊨ 𝜓 and for all 𝑗 < 𝑖, 𝐾, 𝑝𝑗 ⊨ 𝜙

 𝐾, 𝑠 ⊨ 𝜙 𝐸𝑈 𝜓 iff for some path 𝑝 with 𝑝1 = 𝑠,
there is i with 𝐾, 𝑝𝑖 ⊨ 𝜓 and for all 𝑗 < 𝑖, 𝐾, 𝑝𝑗 ⊨ 𝜙
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Examples of CTL propositions

 If the cooker is hot, then is the door closed

𝐴𝐺 (𝐻 → 𝐶)

 It is always possible to eventually cook (heat is on), and 
then eventually get the food (i.e. the door is open 
afterwards):

A𝐹 (𝐻 → 𝐴𝐹 ¬ 𝐶)

 It is always possible  that  the 
cooker will eventually warmup.

𝐴𝐺 𝐸𝐹 ¬𝐻 ∧ 𝐸𝑋 𝐻

cook

start
oven

open 
door

open 
door

close 
door

start
oven

close 
door

open 
door

warmup

done

:S, : C, 
: H, : E

S, C, 
: H, : E

:S, C, 
: H, : E

S, C, 
: H, E

S, : C, 
: H, E

:S, C, 
H, : E

s1

s6s5

s4s3
s2
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LTL, CTL and CTL* 

 CTL is more expressive than LTL, but (surprisingly) there are also properties we 
can express in LTL but not in CTL: 

 The  formula 𝐹𝜙 → 𝐹𝜓 cannot be expressed in CTL

 “When 𝜙 occurs somewhere, then 𝜓 also occurs somewhere.” 

 Not: (𝐴𝐹𝜙) → 𝐴𝐹𝜓, nor 𝐴𝐺(𝜙 → 𝐴𝐹 𝜓)

 The  formula 𝐴𝐺 𝐸𝐹𝜙 cannot be expressed in LTL

 “For all paths, it is always the case that there is some path on which 
𝜙 is eventually true.”

 CTL* - Allow for the use of temporal operators (X, G, F, U) without a directly
preceding path quantifier (A, E)

 e.g.  AGF φ is allowed

 CTL* subsumes both LTL and CTL. 
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Complexity and State Explosion

 Even our small oven example has 6 states with 4 labels each. If we add one 
integer variable with 32 bits (e.g. for the heat), we get 232 additional states.

 Theoretically, there is not much hope. The basic problem of deciding whether 
a formula holds (satisfiability problem) for the temporal logics we have 
seen has the following complexity:

 LTL without 𝑈 is NP-complete;

 LTL is PSPACE-complete;

 CTL (and CTL*) are EXPTIME-complete.

 This is known as state explosion.

 But at least it is decidable. Practically, state abstraction is the key technique, 
so e.g. for an integer variable 𝑖 we identify all states with 𝑖 ≤ 0, and those with 
0 < 𝑖.
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Safety and Liveness Properties

 Safety: nothing bad ever happens

 E.g. “x is always not equal 0”

 Safety properties are falsified by a bad (reachable) state

 Safety properties can falsified by a finite prefix of an execution 
trace

 Liveness: something good will eventually happen

 E.g. “system is always terminating”

 Need to keep looking for the good thing forever

 Liveness properties can be falsified by an infinite-suffix of an 
execution trace:  e.g. finite list of states beginning with the initial 
state followed by a cycle showing you a loop that can cause you to 
get stuck and never reach the “good thing”
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Summary

 Model-checking allows us to show to show properties of systems by 
enumerating the system’s states, by modelling systems as finite state 
machines, and expressing properties in temporal logic.

 Note difference to deductive verification (Floyd-Hoare logic): that uses the 
source code as the basis, here we need to construct a model of the system.

 The model can be wrong – on the other hand we can construct the model 
and check properties before even building the system.

 Model checking is complementary to deductive verification.

 We considered Linear Temporal Logic (LTL) and Computational Tree Logic 
(CTL). LTL allows us to express properties of single paths, CTL allows 
quantifications over all possible paths of an FSM.

 The basic problem: the system state can quickly get huge, and the basic 
complexity of the problem is horrendous, leading to so-called state 
explosion. But the use of abstraction and state compression techniques make 
model-checking bearable.

 Next week: tools for model checking.
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Lecture 12:

Tools for Model Checking
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Organisatorisches

 Prüfungstermine

 06.03.2020, 12- 18 Uhr

 02.04.2020, ganztägig

 Scheinbedingungen:

 Note aus der mündlichen Prüfung

 Benotung der Übungsblätter: A = 1.3, B = 2.3, C = 3.3

 Kann als Bonus (nicht Malus) mit 20% hinzugerechnet werden.
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Where are we?

 01: Concepts of Quality

 02: Legal Requirements: Norms and Standards

 03: The Software Development Process

 04: Hazard Analysis

 05: High-Level Design with SysML

 06: Formal Modelling with OCL

 07: Testing

 08: Static Program Analysis

 09: Software Verification with Floyd-Hoare Logic 

 10: Verification Condition Generation

 11: Foundations of Model Checking

 12: Tools for Model Checking

 13: Conclusions
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Introduction

 In the last lecture, we saw the basics of model-checking: how to 
model systems on an abstract level with FSM or Kripke structures, 
and how to specify their properties with temporal logic (LTL and 
CTL). 

 This was motivated by the promise of “efficient tool support”.

 So how does this tool support look like, and how does it work? We will 
hopefully answer these two questions in the following…

 Brief overview:

 An Example: The Railway Crossing.

 Modelchecking with NuSMV and Spin.

 Algorithms for Model Checking.
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The Railway Crossing

Quelle: Wikipedia
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First Abstraction
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The Model

States of the train:States of the car:

States of the gate:
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The Finite State Machine

 The states of the FSM is  given by mapping variables 𝑐𝑎𝑟, 𝑡𝑟𝑎𝑖𝑛, 𝑔𝑎𝑡𝑒 to the 
domains

Σ𝑐𝑎𝑟 = 𝑎𝑝𝑝𝑟, 𝑥𝑖𝑛𝑔, 𝑙𝑣𝑛𝑔, 𝑎𝑤𝑎𝑦
Σ𝑡𝑟𝑎𝑖𝑛 = 𝑎𝑝𝑝𝑟, 𝑥𝑖𝑛𝑔, 𝑙𝑣𝑛𝑔, 𝑎𝑤𝑎𝑦
Σ𝑔𝑎𝑡𝑒 = 𝑜𝑝𝑒𝑛, 𝑐𝑙𝑠𝑑

 Or alternatively, states are a 3-tuples 
𝑠 ∈ Σ = Σ𝑐𝑎𝑟 × Σ𝑡𝑟𝑎𝑖𝑛 × Σ𝑔𝑎𝑡𝑒

 The transition relation is given by 
𝑎𝑤𝑎𝑦, 𝑎𝑤𝑎𝑦, 𝑜𝑝𝑒𝑛 → 𝑎𝑝𝑝𝑟, 𝑎𝑤𝑎𝑦, 𝑜𝑝𝑒𝑛
𝑎𝑝𝑝𝑟, 𝑎𝑤𝑎𝑦, 𝑜𝑝𝑒𝑛 → 𝑥𝑖𝑛𝑔, 𝑎𝑤𝑎𝑦, 𝑜𝑝𝑒𝑛
𝑎𝑝𝑝𝑟, 𝑎𝑝𝑝𝑟, 𝑐𝑙𝑠𝑑 → 𝑎𝑝𝑝𝑟, 𝑥𝑖𝑛𝑔, 𝑐𝑙𝑠𝑑
𝑎𝑝𝑝𝑟, 𝑥𝑖𝑛𝑔, 𝑐𝑙𝑠𝑑 → 𝑎𝑝𝑝𝑟, 𝑙𝑣𝑛𝑔, 𝑐𝑙𝑠𝑑
𝑎𝑝𝑝𝑟, 𝑙𝑣𝑛𝑔, 𝑐𝑙𝑠𝑑 → 𝑎𝑝𝑝𝑟, 𝑎𝑤𝑎𝑦, 𝑜𝑝𝑒𝑛
…
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Properties of the Railway Crossing

 We want to express properties such as

 Cars and trains may never cross at the same time.

 The car can always leave the crossing.

 Approaching trains may eventually cross.

 It is possible for cars to cross the tracks.

 The first two are safety properties, the last two are liveness properties.

 To formulate these in temporal logic, we first need the basic propositions
which talk about the variables of the state.
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Basic Propositions

 The basic propositions 𝑃𝑟𝑜𝑝 are given as equalities over the state variables:

𝑐𝑎𝑟 = 𝑣 ∈ 𝑃𝑟𝑜𝑝 mit 𝑣 ∈ Σ𝑐𝑎𝑟, 
𝑡𝑟𝑎𝑖𝑛 = 𝑣 ∈ 𝑃𝑟𝑜𝑝 mit 𝑣 ∈ Σ𝑡𝑟𝑎𝑖𝑛,

𝑔𝑎𝑡𝑒 = 𝑣 ∈ 𝑃𝑟𝑜𝑝 mit 𝑣 ∈ Σ𝑔𝑎𝑡𝑒

 The Kripke structure valuation 𝑉 maps each basic proposition to all states
where this equality holds.
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The Properties

 Cars and trains never cross at the same time:
𝐺¬ 𝑐𝑎𝑟 = 𝑥𝑖𝑛𝑔 ∧ 𝑡𝑟𝑎𝑖𝑛 = 𝑥𝑖𝑛𝑔

 A car can always leave the crossing:

𝐺 𝑐𝑎𝑟 = 𝑥𝑖𝑛𝑔 → 𝐹 𝑐𝑎𝑟 = 𝑙𝑣𝑛𝑔

 Approaching trains may eventually cross:

𝐺 𝑡𝑟𝑎𝑖𝑛 = 𝑎𝑝𝑝𝑟 → 𝐹 𝑡𝑟𝑎𝑖𝑛 = 𝑥𝑖𝑛𝑔

 There are cars which are crossing the tracks:
𝐸𝐹 𝑐𝑎𝑟 = 𝑥𝑖𝑛𝑔

 Not expressible in LTL, 𝐹 𝑐𝑎𝑟 = 𝑥𝑖𝑛𝑔 means something stronger („there is
always a car which eventually crosses“)
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Model-Checking Tools: NuSMV2

 NuSMV is a reimplementation of SMV, the first model-checker to use BDDs. 
NuSMV2 also adds SAT-based model checking.

 Systems are modelled as synchronous FSMs (Mealy automata) or asynchronous 
processes*.

 Properties can be formulated  in LTL and CTL.

 Written in C, open source. Latest version 2.6.0 from Oct. 2015.

 Developed by  Fondazione Bruno Kessler, Carnegie Mellon University, the 
University of Genoa and the University of Trento.

* This is apparently depreciated now.
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Model-Checking Tools: Spin

 Spin was originally developed by Gerard Holzmann at Bell Labs in the 80s.

 Systems modelled in Promela (Process Meta Language): asynchronous 
communication, non-deterministic automata.

 Spin translates the automata into a C program, which performs the actual 
model-checking.

 Supports LTL and CTL.

 Latest version 6.4.7 from August 2017.

 Spin won the ACM System Software Award in 2001.

Systeme hoher Sicherheit und Qualität, WS 19/20 - 29 -

Conclusions

 Tools such as NuSMV2 and Spin make model-checking feasible for
moderately sized systems.

 This allows us to find errors in systems which are hard to find by testing alone.

 The key ingredient is efficient state abstraction.

 But careful: abstraction must preserve properties.
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Where are we? 

 01: Concepts of Quality 

 02: Legal Requirements: Norms and Standards 

 03: The Software Development Process 

 04: Hazard Analysis 

 05: High-Level Design with SysML 

 06: Formal Modelling with OCL 

 07: Testing 

 08: Static Program Analysis 

 09: Software Verification with Floyd-Hoare Logic  

 10: Verification Condition Generation 

 11: Foundations of Model Checking 

 12: Tools for Model Checking 

 13: Concluding Remarks 
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The Global Picture 

Notions of Quality 
Legal Requirements 

Software Development Process 

Hazard Analysis 

Program Analysis 

Testing 

UML / SysML 

Formal Modeling OCL 

Verification / VCG 

Model Checking 
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Examples of Formal Methods in Practice 

 Hardware verification: 

 Intel: formal verification of microprocessors (Pentium/i-Core) 

 Infineon: equivalence checks (Aurix Tricore) 

 

 Software verification: 

 Microsoft: Windows device drivers  

 Microsoft: Hyper-V hypervisor (VCC, VeriSoft project) 

 NICTA (Aus): L4.verified (Isabelle) 

 

 Tools used in Industry (excerpt): 

 AbsInt tools: aiT, Astree, CompCert (C) 

 SPARK tools (ADA) 

 SCADE (MatLab/Simulink) 

 UPAAL, Spin, FDR2, other model checkers 
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Safe and Secure Systems – Uni Bremen 

 AG Betriebssysteme - Verteilte Systeme / Verified Systems (Peleska) 

 Testing, abstract interpretation 

 

 AG Rechnerarchitektur / DFKI (Drechsler, Hutter, Lüth) 

 System verification, model checking, security  

 

 AG Datenbanksysteme (Gogolla) 

 UML, OCL 

 

 AG Softwaretechnik (Koschke) 

 Software engineering, reuse 
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Organisatorisches 

 Bitte nehmt an der Evaluation auf stud.ip teil! 

 

 Was war euer Eindruck vom Übungsbetrieb im Vergleich zum herkömmlichen 
Übungsbetrieb? 

 

 Man lernt mehr – weniger? 

 Es ist mehr – weniger Arbeit? 

 Kommentare in Freitextfeldern bei der stud.ip Evaluation. 

 

 Wir bieten an folgenden Terminen mündliche Prüfungen an:  

 

 05.03.2020 und 06.03.2020   

 02.04.2020  

 Anmeldung per Mail (es liegen  
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Questions* 

* Which might be asked in an exam, hypothetically speaking. 
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General Remarks 

 The exam lasts 20-30 minutes, and is taken solitary. 

 

 We are not so much interested in well-rehearsed details, but rather in 
principles. 

 

 We have covered a lot of material – an exam may well not cover all of it.  

 

 We will rather go into detail on some lectures than spend the exam with a 
couple of well-rehearsed phrases from each slide. 

 

 Emphasis will be on the later parts of the course (SysML/OCL, testing, 
static analysis, Floyd-Hoare logic, model-checking) rather than the first. 

 

 If you do not know an answer, just say so – we can move on to a 
different question. 
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Lecture 01: Concepts of Quality 

 

 

 What is quality? What are quality criteria? 

 

 What could be useful quality criteria? 

 

 What is the conceptual difference between ISO 9001 and the CMM (or Spice)? 
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Lecture 02: Legal Requirements  

 What is safety? 

 

 Norms and Standards: 

 Legal situation 

 What is the machinery directive? 

 Norm landscape: first, second, third-tier norms 

 Important norms: IEC 61508, ISO 26262, DIN EN 50128, Do-178B/C, ISO 
15408,…  

 

 Risk Analysis: 

 What is SIL, and what is for? What is a target SIL? 

 How do we obtain a SIL?  

 What does it mean for the development? 
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Lecture 03: SW Development Process 

 Which software development models did we encounter? 

 

 How do the following work, and what are their respective 
advantages/disadvantages: 

 Waterfall model, spiral model, agile development, MDD, V-model 

 

 Which models are appropriate for safety-critical systems? 

 

 Formal software development: 

 What is it, and how does it work? 

 What kind of properties are there, how are they defined? 

 Development structure: horizontal vs. vertical, layers and views  
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Lecture 04: Hazard Analysis 

 What is hazard analysis for, and what are its main results? 

 

 Where in development process is it used? 

 

 Basic approaches:  

 bottom-up vs. top-down (what does that mean?) 

 

 Which methods did we encounter? 

 How do they work, advantages/disadvantages? 
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Lecture 05: High-level design with SysML 

 What is a model (in general, in UML/SysML)? 

 

 What is UML, what is SysML, what are the differences? 

 

 Basic elements of SysML for high-level design: 

 Structural diagrams 

 Package diagram, block definition diagram, internal block diagram 

 Behavioural Diagrams: 

 Activity diagram, state machine diagram, sequence diagram 

 How do we use this diagrams to model a particular system, e.g. a coffee 
machine? 
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Lecture 06: Formal Modeling with OCL 

 What is OCL? What is used for, and why? 

 

 Characteristics of OCL (pure, not executable, typed) 

 

 What can it be used for? 

 

 OCL types: 

 Basic types 

 Collection types 

 Model types 

 

 OCL logic: four-valued Kleene logic 
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Lecture 07: Testing 

 What is testing, what are the aims? What can testing achieve, what not? 

 What are test levels (and which do we know)? 

 What are test methods? 

 What is a black-box test? How are the test cases chosen? 

 What is a white-box test? 

 What is the control-flow graph of a program? 

 What kind of coverages are there, and how are they defined? 
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Lecture 08: Static Program Analysis  

 What is that? What is the difference to testing? 

 What is the basic problem, and how is it handled? 

 What does we mean when an analysis is sound/complete? What is over/under 

approximation? 

 What analysis did we consider? How did they work? 

 What are the gen/kill sets? 

 What is forward/backward analysis? 
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Lecture 09: Floyd-Hoare-Logic 

 What is the basic idea, and what are the basic ingredients? 

 Why do we need assertions, and logical variables? 

 What do the following notations mean: 

 ⊨ 𝑃  𝑐 𝑄  

 ⊨ 𝑃 𝑐 𝑄  

 ⊢ 𝑃  𝑐 𝑄  

 

 How does Floyd-Hoare logic work? 

 What rules does it have? 

 

 How is Tony Hoare‘s last name pronounced? 
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Lecture 10: Verification Condition Generation 

 What do completeness and soundness of the Floyd-Hoare logic mean?  

 

 Which of these properties does it have? 

 

 What is the weakest precondition, and how do we calculate it? 

 

 What are program annotations, why do we need them, and how are they used? 

 

 What are verification conditions, and how are they calculated? 
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Lecture 11/12: Model Checking 

 What is model-checking, and how is it used?  

 

 What is the difference to Floyd-Hoare logic? 

 

 What is a FSM/Kripke structure (and what is the difference)? 

 

 Which models of time did we consider? 

 

 For LTL, CTL: 

 What are the basic operators, when does a formula hold, and what kind of 
properties can we formulate? 

 Which one is more powerful? 

 Are they decidable (with which complexity)? 

 

 Which tools did we see? What are their differences/communalities? 
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Thank you, and good bye. 


