U Universitat Bremen

Systeme hoher Sicherheit und Qualitat

WS 2019/2020

Lecture 12:

Tools for Model Checking

Christoph Liith, Dieter Hutter, Jan Peleska

Organisatorisches

» Priifungstermine
» 06.03.2020, 12- 18 Uhr
» 02.04.2020, ganztagig

» Scheinbedingungen:
» Note aus der miindlichen Priifung
» Benotung der Ubungsblitter: A = 1.3, B =2.3,C=3.3
> Kann als Bonus (nicht Malus) mit 20% hinzugerechnet werden.

Systeme hoher Sicherheit und Qualitit, WS 19/20 a1- DEd Systeme hoher Sicherheit und Qualitat, WS 19/20 .2 | < LY
Where are we? Introduction
> : i . .
01: Concepts OT Quality » In the last lecture, we saw the basics of model-checking: how to
> 02: Legal Requirements: Norms and Standards model systems on an abstract level with FSM or Kripke structures,
» 03: The Software Development Process and how to specify their properties with temporal logic (LTL and
» 04: Hazard Analysis ).
» 05: High-Level Desi ith SysML
igh-Level Lesign with Sys » This was motivated by the promise of “efficient tool support”.
» 06: Formal Modelling with OCL
> 07: Testing » So how does this tool support look like, and how does it work? We will
» 08: Static Program Analysis hopefully answer these two questions in the following...
» 09: Software Verification with Floyd-Hoare Logic
» 10: Verification Condition Generation > Brief overview:
» 11: Foundations of Model Checking > Ieln dETat:npkl'e: ThihR;llvvsa::“fros(sjlr;g..
) » Modelchecking wi u and Spin.
» 12: Tools for Model Checkin
g » Algorithms for Model Checking.
» 13: Conclusions
Systeme hoher Sicherheit und Qualitat, WS 19/20 -3 [ o< LY Systeme hoher Sicherheit und Qualitat, WS 19/20 -4- | < LY
The Railway Crossing First Abstraction
Train
Quelle: Wikipedia
Systeme hoher Sicherheit und Qualitit, WS 19/20 -6- [ < LY Systeme hoher Sicherheit und Qualitit, WS 19/20 .7 L < LY

The Model

States of the car:

gate= open gate # clsd

States of the gate

train# appr

Systeme hoher Sicherheit und Qualitat, WS 19/20

train = appr

train = lvng

States of the train:

gate= clsd

@pery——rg)—(irg)
T

train # lvng

DFAY

The Finite State Machine

» The states of the FSM is given by mapping variables car, train, gate to the
domains
Zcar = {appr,xing,lvng, away}
Zerain = {appr, xing, lvng, away}
Zgate = {open,clsd}
» Or alternatively, states are a 3-tuples
S €L =Zear X Zrain X Zgate

» The transition relation is given by
(away, away, open) = (appr, away, open)
(appr, away, open) — (xing, away, open)
(appr, appr, clsd) - (appr, xing, clsd)
(appr, xing, clsd) - (appr, lvng, clsd)
(appr, lvng, clsd) - (appr, away, open)

Systeme hoher Sicherheit und Qualitat, WS 19/20 _9- ;:l (@]




Properties of the Railway Crossing

» We want to express properties such as
» Cars and trains may never cross at the same time.
» The car can always leave the crossing.
» Approaching trains may eventually cross.
» It is possible for cars to cross the tracks.

» The first two are safety properties, the last two are liveness properties.

» To formulate these in temporal logic, we first need the basic propositions
which talk about the variables of the state.

Systeme hoher Sicherheit und Qualitét, WS 19/20 S10-

DFA Y

Basic Propositions

» The basic propositions Prop are given as equalities over the state variables:
(car = v) € Prop mit v € .4y,
(train = v) € Prop mit v € Zyq4in,
(gate =v) € Prop mit v € Zy4ee

» The Kripke structure valuation V maps each basic proposition to all states
where this equality holds.

Systeme hoher Sicherheit und Qualitat, WS 19/20 -

DFA Y

The Properties

» Cars and trains never cross at the same time:
G- ( car = xing Atrain = xing)

» A car can always leave the crossing:
G (car = xing - F (car = lvng))

» Approaching trains may eventually cross:
G (train = appr - F (train = xing))

» There are cars which are crossing the tracks:
EF (car = xing)

> Not expressible in LTL, F (car = xing) means something stronger (,there is
always a car which eventually crosses")

Systeme hoher Sicherheit und Qualitat, WS 19/20 -12-

DFAY

Model-Checking Tools: NuSMV2

» NuSMV is a reimplementation of SMV, the first model-checker to use BDDs.
NuSMV?2 also adds SAT-based model checking.

» Systems are modelled as synchronous FSMs (Mealy automata) or asynchronous
processes*.

» Properties can be formulated in LTL and CTL.
» Written in C, open source. Latest version 2.6.0 from Oct. 2015.

» Developed by Fondazione Bruno Kessler, Carnegie Mellon University, the
University of Genoa and the University of Trento.

* This is apparently depreciated now.

Systeme hoher Sicherheit und Qualitat, WS 19/20 -13-

| J3< 1)

Model-Checking Tools: Spin

» Spin was originally developed by Gerard Holzmann at Bell Labs in the 80s.

» Systems modelled in Promela (Process Meta Language): asynchronous
communication, non-deterministic automata.

» Spin translates the automata into a C program, which performs the actual
model-checking.

» Supports LTL and CTL.
» Latest version 6.4.7 from August 2017.
» Spin won the ACM System Software Award in 2001.

Systeme hoher Sicherheit und Qualitat, WS 19/20 S14-

| B LY

Conclusions

» Tools such as NuSMV2 and Spin make model-checking feasible for
moderately sized systems.

» This allows us to find errors in systems which are hard to find by testing alone.

» The key ingredient is efficient state abstraction.
> But careful: abstraction must preserve properties.

Systeme hoher Sicherheit und Qualitat, WS 19/20 -29-

PFAY




