w Universitat Bremen

Systeme hoher Sicherheit und Qualitat

WS 2019/2020

Lecture 09:
Software Verification
with Floyd-Hoare Logic

Christoph Liith, Dieter Hutter, Jan Peleska

Systeme hoher Sicherheit und Qualitat, WS 19/20 o1-

DFA Y

Where are we?

» 0

g

: Concepts of Quality

» 02: Legal Requirements: Norms and Standards
» 03: The Software Development Process

» 04: Hazard Analysis

> 0

[

: High-Level Design with SysML

» 06: Formal Modelling with OCL

» 07: Testing

» 08: Static Program Analysis

» 09: Software Verification with Floyd-Hoare Logic

> 1

o

: Verification Condition Generation
» 11-12: Model Checking
» 13: Conclusions

Systeme hoher Sicherheit und Qualitit, WS 19/20 -2-

DFA Y

Software Verification in the Development Cycle

Validation
testing

Integration testing

E/E/PES safety

Software safety
roquirements JIP

requirements
specification

Validation i
Validated
" software

specification

E/EIPES
and

Module
testing

Meodule
design it

Static Program Analysis

Transfer functions to propagate information along the execution path (i.e.
from input to output, or vice versa)

» Information is encoded as a lattice L = (M, ©).
» Transfer functions mapping information
> fi: M — Mwith [being a label
» Knowledge transfer is monotone Vx,y. x &y = fi(x) E fi(y)

» Restricted to a specific type of knowledge
(Reachable Definitions, Available Expressions,...) Pin

» What about a more general approach
» Maintaining arbitrary knowledge ?

Transfer function f;

» Knowledge representation ? Pout
Systeme hoher Sicherheit und Qualitat, WS 19/20 .3 [) :;l (] Systeme hoher Sicherheit und Qualitit, WS 19/20 4- .;:l (]
General Transfer Relations Software Verification
» Transfer relations: » Software Verification proves properties of programs. That is, given the basic
‘ Logic problem of program P satisyfing a property p we want to show that for all
L possible inputs and runs of P, the property p holds.
» Knowledge P, Q is represented in logic (first-order) P
» Software verification is far more powerful than static analysis. For the same
reasons, it cannot be fully automatic and thus requires user interaction. Hence,
Program c it is complex to use.
» {P} c {Q} denotes
If P is known before executing ¢ (and c terminates) . . . "
th is ki P dition”. O “postcondition” Q » Software verification does not have false negatives, only failed proof attempts.
en Q is known (P “precondition”, Q “postcondition”) ‘ If we can prove a property, it holds.
» {P}c are called Floyd-Hoare triples A Logic
P i@ 4 P » Software verification is used in highly critical systems.
Charles Antony Richard Hoare: An axiomatic basis for computer programming (1969)
Robert W Floyd: Assigning Meanings to Programs (1967)
Systeme hoher Sicherheit und Qualitat, WS 19/20 -5- DEA W Systeme honer Sicherheit und Qualitat, WS 19/20 “6- L < LY

The Basic Idea

» What does this program compute?
» The index of the maximal element of the array
a if it is non-empty.

x.: = 0;
while (i < n){
if (a[i] = a[x]) {

» How to prove it? ;(=k
(1) We need a language in which to formalise =41
such assertions.)
(2) We need a notion of meaning (ics)

for the program.
(3) We need to way to deduce valid
assertions.

Formalizing correctness:

array(a,n) An>0 =
a[x] = max(a,n)
Vi0<i<n=
afi] < max(a,n)
3j.0<j<n=
afj] = max(a,n)

» Floyd-Hoare logic provides us with (1) and (3).

Systeme hoher Sicherheit und Qualitat, WS 19/20 -7-

DFAY

Recall our simple programming language

> Arithmetic expressions:
a w=x|nlala,]|a; ops az
» Arithmetic operators: op, € {+,—*/}
» Boolean expressions:
b = true | false [not b | byopy, b,| a;0p, a,
» Boolean operators: op,, € {and, or}
» Relational operators: op, € {=,<,<,>,>,#}

» Statements:
Su=x:=a|skip|S1;S2|if (b) S1 elseS2 |while(b)S

> Labels from basic blocks omitted, only used in static analysis to derive cfg.

» Note this abstract syntax, operator precedence and grouping statements
is not covered.

Systeme hoher Sicherheit und Qualitst, WS 19/20 -8-

PFAY

Semantics of our simple language

» The semantics of an imperative language is state transition: the program has
an ambient state, which is changed by assigning values to certain locations.

» Example:

x| ? X |5 X |5 X |6
x:=5 zZi=Xx+y xi=x+1
y |12 y |12 y |12 y |12
z|? z|? z |17 z |17
o o, = o[x/5] 0, = 04[2/17] 03 = 0,[x/6]
= o[x/5, z/17] = o[x/6, z/17]

» Semantics in a nutshell:

Expressions evaluate to values Val (for our language integers).
Locations Loc are variable names.

A program state maps locations to values: £ = Loc — Val

A program maps an initial state to a final state, if it terminates.
Assertions are predicates over program states.

Semantics in a nutshell

» There are three major ways to denote semantics.

a

=

As a relation between program states, described by an abstract machine
(operational semantics).

As a function between program states, defined for each statement of the
programming langauge (denotational semantics).

As the set of all assertions which hold for a program (axiomatic
semantics).

(2

=

@3

N

» Floyd-Hoare logic covers the third aspect, but it is important that all three
semantics agree.
» We will not cover semantics in detail here, but will concentrate on how to
use Floyd-Hoare logic to prove correctness.

Systeme hoher Sicherheit und Qualitét, WS 19/20 -9- D:n @ Systeme hoher Sicherheit und Qualitét, WS 19/20 -10- 'F:I @
Extending our simple language Floyd-Hoare Triples J .
» We introduce a set Var of logical variables.
The basic build blocks of Floyd-Hoare logic are Programic
» Assertions are boolean expressions, which may not be executable, and Hoare triples of the form {P}c {Q}. Q
arithmetic expressions containing logical variables.
» P, Q are assertions using variables in Loc and Var
> Arithmetic assertions > eg. x<5+y, Odd(x), ...
ae ==x|X|n|aei[ae,] | ae; op, ae; | f(aey, ..., ae,)
> where x € Loc,X € Var, 0pq € {+,—x/} > A state o satisfies P (written o &= P) iff P[°®)/,] is true for all x € Loc and all
possible values for X € Var:
» Boolean assertions: > eg. let 5
be := true | false |not be | beyopy, be,| ae,op, ae, X
| p(aey, ..., aey)| vX.be | 3X.be o= |y |12] then o satisfiesx <5 +y, Odd(x)
» Boolean operators: op;, € {AV,=} 2|7
» Relational operators: op, € {=,<,<,>,>,#}
» A formula P describes a set of states, i.e. all states that satisfy the formula P.
Systeme hoher Sicherheit und Qualitét, WS 19/20 S11- D:n ()] Systeme hoher Sicherheit und Qualitét, WS 19/20 S12- .F:l (@]
Partial and Total Correctness Reasoning with Floyd-Hoare Triples
» Partial correctness: = {P}c{Q} » How d Kvow that & (P . fice 2
» ¢ is partial correct with precondition P and postcondition Q iff, for all ow do we know that = {P}e{Q} in practice ?
states o which satisfy P and for which the execution of ¢ terminates in » Calculus to derive triples, written as + {P}c{Q}
some state o then it hOId,S that o salt|sﬁes < » Rules operate along the constructs of the programming language (cf.
Vo.o EPA3'(o,c) > 0" = 0" EQ operational semantics)
> Only one rule is applicable for each construct (!)
> Total correctness: = [P]c[Q] > Rules are of the form
> cis total correct with precondition P and postcondition Q iff, for all states
o which satisfy P the execution of ¢ terminates in some state ¢’ which FPJa{Q) - B0
satisfies Q: F {PJe (@}
Vo.0 E P = 30¢'.(0, c)-ao ANd'EQ
meaning we can derive + {P}c{Q} if all + {P;}c;{Q;} are derivable.
» Examples: & {true}while(true) skip {true},
[true] while(true)skip [true]
Systeme hoher Sicherheit und Qualitat, WS 19/20 -13- | o< [Systeme hoher Sicherheit und Qualitat, WS 19/20 14- | < LY

Floyd-Hoare Rules: Assignment

» Assignment rule:
F{P[¢/x]} x = e {P}

> P[¢/x] replaces all occurrences of the program variable x by the arithmetic
expression e.

» Examples:
> {0 < 10}x:= 0{x < 10}
P F{x-1< 10}x:= x —1{x < 10}

x < 11
PE{x+1+x+1<10}x:=x+ 1{x +x < 10}

lﬁ—l

x+x<8

Systeme hoher Sicherheit und Qualitat, WS 19/20 S15-

DFAY

Rules: Sequencing and Conditional

» Sequence:
F{P}c, {Q} H{Q} 2 (R}
F{P}cy;c; {R}

> Needs an intermediate state predicate Q.
» Conditional:

F{PAb}ci {Q} F{PAb)c, {Q}
+ {P}if(b) c,else ¢, {Q}

» Two preconditions capture both cases of b and — b.

» Both branches end in the same postcondition Q.

Systeme hoher Sicherheit und Qualitst, WS 19/20 -16-

PFAY

Rules: Iteration and Skip

+{P Ab}c{P}
+ {P} while (b) c {P A — b}

» P is called the loop invariant. It has to hold both before and after the loop
(but not necessarily in the whole body).

» Before the loop, we can assume the loop condition b holds.

» After the loop, we know the loop condition b does not hold.

» In practice, the loop invariant has to be given- this is the creative and difficult
part of working with the Floyd-Hoare calculus.

+ {P} skip {P}

» skip has no effect: pre- and postcondition are the same.

Systeme hoher Sicherheit und Qualitat, WS 19/20 -17-

DFA Y

Final Rule: Weakening

» Weakening is crucial, because it allows us to change pre- or postconditions by
applying rules of logic.

P, = Py

F{P}cfed
F{P2} c {Q2}

AU =0Q

» We can weaken the precondition and strengthen the postcondition:
» P = (means that all states in which P holds, Qalso holds.

> {P}c{Q} means whenever c starts in a state in which P holds, it ends in
a state in which Q holds.

» So, we can reduce the starting set, and enlarge the target set.

Systeme hoher Sicherheit und Qualitit, WS 19/20 18-

DFA Y

How to derive and denote proofs

More Examples

» Going backwards: try to split/weaken postcondition Q into negated loop-
condition and ,something else" which becomes the invariant.

» Many while-loops are in fact for-loops, i.e. they count uniformly:

i:=0;
while (i <n) {

i=i+1

» In this case:
» If post-condition is P(n), invariant is P(i) Ai < n.

» If post-condition is Vj.0 < j < n. P(j) (uses indexing, typically with arrays),
invariantis vj.j < 0 <i.i <nA P(j).

Systeme hoher Sicherheit und Qualitat, WS 19/20 S21-

DFAY

// {P} » The example shows + {P}c{Q} P ==1 == R==
p=1 . = ae
//{Pl})) ¢ =1 p'_, 1; r =a;
. » We annotate the program with valid while (c < n) { while (0 < n) { q =0;
X=¢ assertions: the precondition in the pi=pre p=p*n; while (b <) {
//{P,} preceding line, the postcondition in the Cci=c+ i n:=n-1 r=r—b;
/7 {Ps} following line.) } (}1 =q+1
while (x< n) { > ; ; iod implici
/] Py Ax < The sequencing rule is applied implicitly. Specification: Specification: Specification:
s Ax <n} F{1<n) F{l<nAn=N) F{a=0Ab>0)
//{ p4} » Consecutive assertions imply weaking, P Q R
._ which has to be proven separately. {p=n!} {p=N!} {a=bxq+rA
z=a » In the example: 0<rAr<b}
// {Ps} P=P,
} 113 2 /\=> Z3' . Invariant: Invariant: Invariant:
2 Ax <n =P, =(c=1)! N =b*xq+rA0<
/] {P3 A =(x < n)} PsA-(x<n)=Q p=(c-D p= i amenant '
/7 {Q} i=n+1
Systeme hoher Sicherheit und Qualitat, WS 19/20 -19- D:ﬂ ()] Systeme hoher Sicherheit und Qualitét, WS 19/20 -20- .F:l (@]
How to find an Invariant Summary

» Floyd-Hoare-Logic allows us to prove properties of programs.
» The proofs cover all possible inputs, all possible runs.
» There is partial and total correctness:
> Total correctness = partial correctness + termination.
» There is one rule for each construct of the programming language.

» Proofs can in part be constructed automatically, but iteration needs an
invariant (which cannot be derived mechanically).

» Next lecture: correctness and completeness of the rules.

Fro| Fest
und Rutsch.

Systeme hoher Sicherheit und Qualitét, WS 19/20 -22-

| J3< 1)

