l@’ Universitat Bremen

Systeme hoher Sicherheit und Qualitét

WS 2019/2020

Lecture 3:
The Software Development Process

Christoph Lith, Dieter Hutter, Jan Peleska

Systeme hoher Sicherheit und Qualitat, WS 19/20 -1

PRI U

Organisatorisches

» Die Ubung am Donnerstag, 31.10.2019, fallt aus (Reformationstag).

» Nachste Ubung am Dienstag, 05.11.2019.

Systeme hoher Sicherheit und Qualitat, WS 19/20 .2-

FAY

Where are we?

» 01: Concepts of Quality

> 02: Legal Requirements: Norms and Standards
» 03: The Software Development Process

» 04: Hazard Analysis

» 05: High-Level Design with SysML

» 06: Formal Modelling with OCL

» 07: Testing

> 08: Static Program Analysis

> 09-10: Software Verification

» 11-12: Model Checking

» 13: Conclusions

Systeme hoher Sicherheit und Qualitat, WS 19/20 o3-

| B 1Y

Software Development Models

Systeme hoher Sicherheit und Qualitat, WS 19/20 -4-

PFAY

Software Development Process

» A software development process is the structure imposed on the development
of a software product.

» We classify processes according to models which specify
» the artefacts of the development, such as
the software product itself, specifications, test documents, reports,
reviews, proofs, plans etc;
» the different stages of the development;
» and the artefacts associated to each stage.

» Different models have a different focus:
» Correctness, development time, flexibility.

» What does quality mean in this context?
» What is the output? Just the software product, or more? (specifications,

Artefacts in the Development Process

Planning: i]
+ Document plan Possible forn‘1ats.

« Documents:
« V&V plan e
+ QMplan . WorI r<1)cuments
+ Test plan « Excel sheets

« Wiki text

» Database (Doors)
« Models:

« UML/SysML diagrams
» System specification « Formal languages: Z,
» Module specification HOL, etc.
« User documents « Matlab/Simulink or
Implementation: similar diagrams
. Source code « Source code
* Models
+ Documentation

+ Project manual
Specifications:
« Requirements

Verification & validation:

« Code review protocols
« Test cases, procedures, and

test results
test runs, documents, proofs...) . Proofs
Systeme hoher Sicherheit und Qualitat, WS 19/20 5. DEA Y Systeme hoher Sicherheit und Qualitat, WS 19/20 -6- L < Y
Waterfall Model (Royce 1970) Spiral Model (Bohm 1986)
» Classical top-down sequential workflow with strictly separated phases. » Incremental development guided by risk factors
> Four phases: Loutermive [
S resoverisks

Requirement
Design
Implementation
Verification

Maintenance

» Unpractical as an actual workflow (no feedback between phases), but even the
original paper did not really suggest this.

Systeme hoher Sicherheit und Qualitit, WS 19/20 -7-

FAY

objectives 1

» Determine objectives

> Analyse risks

» Development and test

» Review, plan next iteration

> See e.g.
» Rational Unified Process (RUP)

4.Planthe
nextiteration

» Drawbacks:
> Risk identification is the key, and can be quite difficult

Systeme hoher Sicherheit und Qualitat, WS 19/20 -8-

Fay

Model-Driven Development (MDD, MDE)

» Describe problems on abstract level using @ modeling language (often a
domain-specific language), and derive implementation by model transformation
or run-time interpretation.

» Often used with UML (or its DSLs, eg. SysML)

[cMm — PM |—>{ PsMm } [Code

» Variety of tools:
» Rational tog

Platform-
specific model
» Strictly sequential development
» Drawbacks: high initial investment, limited, reverse engineering and change

management (code changes to model changes) is complex
* Proprietary DSL — not related to UML

Agile Methods

» Prototype-driven development
» E.g. Rapid Application Development
» Development as a sequence of prototypes
» Ever-changing safety and security requirements

» Agile programming
» E.g. Scrum, extreme programming
» Development guided by functional requirements
» Process structured by rules of conduct for developers
» Rules capture best practice
> Less support for non-functional requirements

» Test-driven development

> Tests as executable specifications: write tests first
» Often used together with the other two

Systeme hoher Sicherheit und Qualitat, WS 19/20 -9- .::l @ Systeme hoher Sicherheit und Qualitat, WS 19/20 -10- '::I @
V-Model Software Development Models
» Evolution of the waterfall model: . R
» Each phase supported by corresponding verification & validation phase > Pfototype-basé\d < Agile o
EER 1 (
» Feedback between next and previous phase 5 | ‘developments’ _ Methods
. c ! 2 e >
» Standard model for public projects in Germany K% S
> ... but also a general term for models of this ,shape™
» Current: V-Modell XT (,extreme tailoring") ~ TN
. N (:)
» Shape gives depencies, not development sequence "\ Spiral model)
. Qngaing R
Validated w.r.t. //// Suppory
C . Review/Test &
veriied wrt. Requirsments | ==
consistency Y _—
\\ High Level | »| Integration (< Waterfall ™\ / ﬂl\//lodel-driven\‘
N~ Design Testing model ()
P <Tf g “developement/
5, — 2/
/%o' N Detailed |, _‘ Unit |
o:%/ . Specifications Testing Structure
2 (
\
S~ - Coding from S. Paulus: Sichere Software
Systeme hoher Sicherheit und Qualitit, WS 19/20 a1 » ::l (] Systeme hoher Sicherheit und Qualitat, WS 19/20 S12- |) E:l (]

Development Models for Safety-Critical Systems

Systeme hoher Sicherheit und Qualitét, WS 19/20 -13-

| B9

Development Models for Critical Systems

» Ensuring safety/security needs structure.

» ...but foo much structure makes developments bureaucratic, which is in
itself a safety risk.

» Cautionary tale: Ariane-5

» Standards put emphasis on process.
» Everything needs to be planned and documented.
> Key issues: auditability, accountability, traceability.

» Best suited development models are variations of the V-model or spiral model.
» A new trend? V-Model XT allows variations of original V-model, e.g.:

» V-Model for initial developments of a new product
» Agile models (e.g. Scrum) for maintenance and product extensions

Systeme hoher Sicherheit und Qualitat, WS 19/20 S14-

PFAY

Auditability and Accountability

» Version control and configuration management is mandatory in safety-critical
development (auditability).

» Keeping track of all artifacts contributing to a particular instance (build) of the
system (configuration), and their versions.

» Repository keeps all artifacts in all versions.
» Centralised: one repository vs. distributed (every developer keeps own
repository)
» General model: check out — modify — commit
» Concurrency: enforced lock, or merge after commit.

» Well-known systems:
» Commercial: ClearCase, Perforce, Bitkeeper...
» Open Source: Subversion (centralised); Git, Mercurial (distributed)

Systeme hoher Sicherheit und Qualitit, WS 19/20 -15-

DFAY

Traceability

» The idea of being able to follow requirements (in particular, safety
requirements) from requirement spec to the code (and possibly back).

» On the simplest level, an Excel sheet with (manual) links to the program.

» More sophisticated tools include DOORS:
» Decompose requirements, hierarchical requirements
» Two-way traceability: from code, test cases, test procedures, and test
results back to requirements
» E.g. DO-178B requires all code derives from requirements

» The SysML modelling language has traceability support:
» Each model element can be traced to a requirement.
> Special associations to express traceability relations.

Systeme hoher Sicherheit und Qualitat, WS 19/20 -16-

FAY

Development Model in IEC 61508

» IEC 61508 in principle allows any development model, but:
» It requires safety-directed activities in each phase of the life cycle
(safety life cycle, cf. last lecture).
» Development is one part of the life cycle.
» The only development model mentioned is a V-model:

Validation Validation

testing

Validated
software

Systeme hoher Sicherheit und Qualitat, WS 19/20 -17-

DFAY

Development Model in DO-178B/C

» DO-178B/C defines different processesin the SW life cycle:
» Planning process
» Development process, structured in turn into
Requirements process
Design process
Coding process
Integration process
Verification process
Quality assurance process
Configuration management process
Certification liaison process

vVVvyYyywy

» There is no conspicuous diagram, but the Development Process has
sub-processes suggesting the phases found in the V-model as well.
» Implicit recommendation of the V-model.

Systeme hoher Sicherheit und Qualitat, WS 19/20 -19- | < LY
Development Model for Hardware Development Model for Hardware
SC_MobuL <
Specification Seinzboals st in,ctrl sc_out<bool> out; Specification
into, s0; Property Check
void tick() {
et read) 0= 50 | inread; System Model
outwriteey som o
y System-Model: SystemC RTL Model
always @(posedge clk) Gate Level
if (rst) out <= 0;
else
if (ctrl) out<=s0 | in; ‘ .
else out<=s0∈ Equivalence Check
Register-Transfer-Ebene: Verilog 4
. Transistor Level
Gate Level
Systeme hoher Sicherheit und Qualitit, WS 19/20 220- [) ::l (] Systeme hoher Sicherheit und Qualitat, WS 19/20 221- 'E:l (]
Formal Software Development
» In a formal development, properties are stated in a rigorous way with a
precise mathematical semantics.
. i » Formal specification requirements can be proven.
Basic Notions of Formal Software Development » Advantages:
» Errors can be found early in the development process.
» High degree of confidence into the system.
» Recommend use of formal methods for high SILs/EALs.
» Drawbacks:
> Requires a lot of effort and is thus expensive.
» Requires qualified personnel (that would be you).
» There are tools which can help us by
» finding (simple) proofs for us (model checkers), or
» checking our (more complicated) proofs (theorem provers).
Systeme hoher Sicherheit und Qualitét, WS 19/20 -22- [< Y] Systeme hoher Sicherheit und Qualitat, WS 19/20 -3 | < LY
Formal Semantics Semantics of Programs and Requirements
> States and transitions between them: » Set of all possible system runs
x 5 x 7 x 7
= 4; =y-2; C
¥ Z XTY AL s v System run ; i A
z 14
z 8 z 1) e~ .
So Sy Sz (
S s s
» Operational semantics describes relation between states and transitions: (
ske—n SoFy+4—>7
SFx=e - sx/n] hence: SoFx=y+4 >, » Requirements related to safety and security:
» Requirements on single states ?
» Formal proofs; e.g. proving » Requirements on system runs ?
= cz=y—2: > Requil t: ts of syst ?
X=y+4z=y-2; - equirements on sets of system runs Alpern & Scheider
yields the same final state as Clarkson & Schne
z=y-2; x=y+4
Systeme hoher Sicherheit und Qualitat, WS 19/20 -24- [o< LY Systeme hoher Sicherheit und Qualitat, WS 19/20 -25- L < LY

Some Notions

> Let b, t be two traces then
b<t iff.3t’.t=b-t' ie. bisa finite prefix of t

> A property is a set of infinite execution traces (like a program)
» Trace t satisfies property P, written ¢t = P, iff t € P

» A hyperproperty is a set of sets of infinite execution traces (like a set of
programs)
» A system (set of traces) S satisfies H iff S € H
> An observation 0bs is a finite set of finite traces
» Obs < S (Obs is a prefix of S) iff
Obs is an observation and vm € Obs.3t € S.m <t

Systeme hoher Sicherheit und Qualitat, WS 19/20 226~

DFAY

Requirements on States: Safety Properties

» Safety property S: ,Nothing bad happens"
> i.e. the system will never enter a bad state

» E.g. “Lights of crossing streets do not go
green at the same time”

» A bad state:
» can be immediately recognized;
» cannot be sanitized by following states.

> Sis a safety property iff
VE.tgS= 3ty t; St =SVt < t, = t, €85), t, finite

\ t)
T
t;
Systeme hoher Sicherheit und Qualtat, WS 19/20 -27- | < LY

Proving Safety Properties

» In the previous specification, t, is finite. As a consequence,

> a property is a safety property if and only if its violation can be detected
on a finite trace.

» Safety properties are typically proven by induction
> Base case: initial states are good (= not bad)
» Step case: each transition transforms a good state again in a good state

» Safety properties can be enforced by run-time monitors
» Monitor checks following state in advance
and allows execution only if it is a good state

Systeme hoher Sicherheit und Qualitit, WS 19/20 -28-

DFAY

Requirements on Runs: Liveness Properties

> Liveness property L:
» ,Good things will happen eventually"
» E.g. “my traffic light will go green
eventually *”

» A good thing is always possible and possibly infinite.

» L is a liveness property iff
» V¢t finite(t) > 3¢ty t-t; EL

» i.e. all finite traces t can be extended to a trace in L.

* Achtung: “eventually” bedeutet “irgendwann” oder “schlussendlich”
aber nicht “eventuell” !

Systeme hoher Sicherheit und Qualitat, WS 19/20 -30-

| J3< 1)

Satisfying Liveness Properties

» Liveness properties cannot (!) be enforced by run-time monitors.

» Liveness properties are typically proven by the help of well-founded orderings
» Measure function /m on states s

» Each transition decreases m
» te L if wereach a state with minimal m

» E.g. measure denotes the number of transitions for the light to go green

Requirements on Sets of Runs:
Safety Hyperproperties

1888
» Safety hyperproperty: ,System never behaves bad" l I I I
» No bad thing happens in a finite set of finite traces N B8
> (the prefixes of) different system runs do not exclude each other
» E.g. “the traffic light cycle is always the same”

» A bad system can be recognized by a bad observation (set of finite runs)

» A bad observation cannot be sanitized regards less how we continue
it or add additional system runs

» E.g. two system runs having different traffic light cycles

» S is a safety hyperproperty iff (see safety property):

VT.T & S = (30bs. Obs <T = VT'.0bs<T' = T' &5)

Systeme hoher Sicherheit und Qualitat, WS 19/20 31 | o< [V Systeme hoher Sicherheit und Qualitit, WS 19/20 -32- | < LY
Requirements on Sets of Runs: Landscape of (Hyper)Properties
Liveness Hyperproperties LEEEE
» Each (hyper-) property can be represented as a combination of
» Liveness hyperproperty S: “l safety and liveness (hyper-) properties.
»The system will eventually develop to a good system™
» Considering any finite part of a system behavior, the system
B s i s 000 syt G contrure
Pprop! Y Y 9 Y Hyperproperties Hyperproperties
» E.g. “Green light for pedestrians can always be omitted”
» L is liveness hyperproperty iff Safety:
Properties Average
VT.3G.T<GAGEL Fzgremms
» T is a finite set of finite traces (observation) .
. . P Invariants
» Each observation can be explained by a system G satisfying L G
Observational Predicates
» Examples: determinism
> Average response time
» Closure operations in information flow control
» Fair scheduling
Systeme hoher Sicherheit und Qualitat, WS 19/20 -33- | Ja< (U Systeme hoher Sicherheit und Qualitit, WS 19/20 34 | < LY

The Global Picture

Informal Specification

Satisfies .
Structuring the Formal Development = e
equirements
Abstract Specification

Decomposition M Satisfies

=i

Composite Specification

Refinement /

Decomposition Satisfies

Satisfies
.. Safety/Security
"| Requirements
Systeme hoher Sicherheit und Qualitat, WS 19/20 -35- | o< Y Systeme hoher Sicherheit und Qualitat, WS 19/20 -36- | < LY
Structuring the Development Horizontal Structuring (informal)
» Horizontal structuring: » Composition of components
» Modularization into components » Dependent on the individual layer of abstraction
» Composition and Decomposition » E.g. modules, procedures, functions,...
» Example:

» Aggregation

» Vertical structuring:
> Abstraction and refinement S e—
from design specification to implementation P ot \:“J%w“-y{”

Emergency Powe Tuore

» Declarative vs. imparative specification
» Inheritance of properties

Exterml g Ak oy e

> Views:
» Addresses multiple aspects of a system

» Behavioral model, performance model, structural model, analysis
model(e.g. UML, SysML)

Systeme hoher Sicherheit und Qualitit, WS 19/20 .37 .F;l (] Systeme hoher Sicherheit und Qualitat, WS 19/20 238- .F:l (]
Modular Structuring of Requirements Mutual Dependencies: Assume/Guarantee
» Safety requirement: Queue does not loose any items.
System
Requirements Producer - Queue Consumer
i Decomposition of requirements in q out
— —
Component 1 Component n a Fixed capacity 2
Requirement Requirement 1 < <
l l Verification of requirements Loop: Loop: Loop:
if (s1 ==al){ if (s1!=al && |q| < max) { if (s2 1= a2) then {
send(x, in); s1 =notsl} enq(q, in); read(y, out);
al = notal; a2 = not a2;
} consume(y)
i if (s2 == a2 &&|q] > 0) {
deq(q, out);
Composition of guarantees ;2 1= not s2
» Components depend on each other!
» Initialization ?
Systeme hoher Sicherheit und Qualitst, WS 19/20 -394 | o< [V Systeme hoher Sicherheit und Qualitat, WS 19/20 -40- | < LY

Composition of Security Guarantees Composition of Security Guarantees

Security properties are

Only complete bicycles are allowed to pass the gate. Only complete bicycles are a
y P y P g y P y non-compositional !

Insecure!

Systeme hoher Sicherheit und Qualtat, WS 19/20 -a1- [Ja< [V Systeme hoher Sicherheit und Qualitat, WS 19/20 a2- | < LY

Concurrent shared variable programs are non-
compositional

long long x;+

Global variable

Threadl () {
x = 1;

}

// @post:
Post conditions hold in
absence of concurrent

Thread2}i) _ threads

}

// @post: x == (1 << 64)

(Threadl () || Thread2()); - >

// @post: x == 1 or x == Does composition hold?

Concurrent shared variable programs are non-
compositional

long long x;
(Threadl () || Thread2());

// @post: x == 1 or x == (1<<64) or x == (1<<64) + 1

» This post-condition cannot be derived from any logical composition of the
original post-conditions of Threadl () and Thread2 ()

» For writing a 128bit integer to memory, two writes on the memory bus are
required. As a consequence, the final value of x may also be (1<<64) + 1

Systeme hoher Sicherheit und Qualitat, WS 19/20 -S43 | o< Y Systeme hoher Sicherheit und Qualitat, WS 19/20 J44- | < Y
Vertical Structuring - Refinement Algebraic Refinement
> Idea: start at an abstract description and add details Stack empty: stack; _
: d pop(empty) = empty
step by step pop(stack):stack; _
push(int, stack):stack PoR(push(x. y)) =y
From abstract specification to an implementation
> What do we want to refine? Refinement Satisfies Toprove: safetail([l) ==]
» Algorithm: algebraic refinement safetail(y:xs) ==y
» Data: data refinement N
> Process: process refinement e o
) Implementing empty —
» Events: action refinement : i
stacks by lists push ~ (-)f : Refinement preserves
pop o safefail properties of stack by
transitivity of the logic !
st 0 @l
head :: [a]-> a
() :a->[al->[a]
tailSafe :: [a]-> [a]
tailSafe xs = if null xs then [] else tail xs
Systeme hoher Sicherheit und Qualitit, WS 19/20 45 » ::l (] Systeme hoher Sicherheit und Qualitat, WS 19/20 T46- |) ::l (]

Even More Refinements

> Data refinement

> Abstract datatype is ,implemented" in terms of the more concrete
datatype

» Simple example: define stack with lists

» Process refinement
» Process is refined by excluding certain runs

» Refinement as a reduction of underspecification by eliminating possible
behaviours

» Action refinement
» Action is refined by a sequence of actions
» E.g. astub for a procedure is refined to an executable procedure

Systeme hoher Sicherheit und Qualitét, WS 19/20 -47-

| B9

Conclusion & Summary

» Software development models: structure vs. flexibility

» Safety standards such as IEC 61508, DO-178B suggest
development according to V-model.

» Specification and implementation linked by verification and
validation.

» Variety of artefacts produced at each stage, which have to
be subjected to external review.

» Safety / Security Requirements
> Properties: sets of traces
» Hyperproperties: sets of properties
» Structuring of the development:
» Horizontal — e.g. composition
> Vertical — refinement (e.g. algebraic, data, process...)

Systeme hoher Sicherheit und Qualitat, WS 19/20 48-

PFAY

