

SSQ, WS 15/16

Systeme hoher Qualität und Sicherheit
Universität Bremen WS 2015/2016

Christoph Lüth Jan Peleska Dieter Hutter

Lecture 01 (13-10-2015)

Introduction and Notions of Quality

SSQ, WS 15/16

Organisatorisches

SSQ, WS 15/16

Generelles

Einführungsvorlesung zum Masterprofil S & Q

6 ETCS-Punkte

Vorlesung:

 Montag 12 c.t – 14 Uhr (MZH 1110)

Übungen:

 Dienstag 12 c.t. – 14 Uhr (MZH 1470)

Webseite:

http://www.informatik.uni-bremen.de/~cxl/lehre/ssq.ws15/

http://www.informatik.uni-bremen.de/~cxl/lehre/ssq.ws15/
http://www.informatik.uni-bremen.de/~cxl/lehre/ssq.ws15/
http://www.informatik.uni-bremen.de/~cxl/lehre/ssq.ws15/
http://www.informatik.uni-bremen.de/~cxl/lehre/ssq.ws15/
http://www.informatik.uni-bremen.de/~cxl/lehre/ssq.ws15/
http://www.informatik.uni-bremen.de/~cxl/lehre/ssq.ws15/

SSQ, WS 15/16

Folien, Übungsblätter, etc.

Folien

 … sind auf Englisch (Notationen!)

 … gibt es auf der Homepage

 ... sind (üblicherweise) nach der Vorlesung verfügbar

Übungen

 Übungsblätter gibt es auf dem Web

 Ausgabe Montag abend/Dienstag morgen

► Erstes Übungsblatt nächste Woche

 Abgabe vor der Vorlesung

► Persönlich hier, oder per Mail bis Montag 12:00

SSQ, WS 15/16

Literatur

Foliensätze als Kernmaterial

Ausgewählte Fachartikel als Zusatzmaterial

 Auf der Webseite verfügbar.

Es gibt (noch) keine Bücher, die den Vorlesungsinhalt
komplett erfassen.

Zum weiteren Stöbern:

 Wird im Verlauf der Vorlesung bekannt gegeben

SSQ, WS 15/16

Prozent Note Prozent Note Prozent Note Prozent Note

89.5-85 1.7 74.5-70 2.7 59.5-55 3.7

100-95 1.0 84.5-80 2.0 69.5-64 3.0 54.5-50 4.0

94.5-90 1.3 79.5-75 2.3 64.5-60 3.3 49.5-0 N/b

Prüfungen
 Fachgespräch oder Modulprüfung

 Anmeldefristen beachten!

Individuelle Termine nach Absprache Februar / März

Notenspiegel Übungsblätter:

Modulprüfung:

 Keine Abgabe der Übungsblätter nötig

 Bearbeitung dringend angeraten

SSQ, WS 15/16

Overview

SSQ, WS 15/16

Objectives

This is an introductory lecture for the topics

 Quality – Safety – Security

The aim is not an introduction into a particular formal method, or even
formal methods in general. Rather, we want to give a bird’s eye view of
everything relevant in connection with developing systems of high quality,
high safety or high security.

The lecture reflects the fundamentals of the research focus quality, safety
& security at the department of Mathematics and Computer Science (FB3)
at the University of Bremen. This is one of the three focal points of
computer science at FB3, the other two being Digital Media and Artificial
Intelligence, Robotics & Cognition.

This lecture is elaborated jointly by Dieter Hutter, Christoph Lüth, and Jan
Peleska.

The choice of material in each semester reflects personal preferences.

SSQ, WS 15/16

Ariane 5

Stuxnet

Chip & PIN

Flight AF 447

Our car

Friday October 7,2011
By Daily Express Reporter

AN accounting error yesterday forced outsourcing

specialist Mouchel into a major profits warning and
sparked the resignation of its chief executive.

Why bother with Quality and Safety?

SSQ, WS 15/16

Ariane 5

10

Ariane 5 exploded on its virgin flight (Ariane Flight 501) on
4.6.1996.

How could that happen?

SSQ, WS 15/16

What Went Wrong With Ariane Flight 501?

(1) Self-destruction due to instability;

(2) Instability due to wrong steering movements (rudder);

(3) On-board computer tried to compensate for (assumed) wrong trajectory;

(4) Trajectory was calculated wrongly because own position was wrong;

(5) Own position was wrong because positioning system had crashed;

(6) Positioning system had crashed because transmission of sensor data to
ground control failed with integer overflow;

(7) Integer overflow occurred because values were too high;

(8) Values were too high because positioning system was integrated
unchanged from predecessor model, Ariane-4;

(9) This assumption was not documented because it was satisfied tacitly with
Ariane-4.

(10)Positioning system was redundant, but both systems failed (systematic
error).

(11)Transmission of data to ground control also not necessary.

SSQ, WS 15/16

What is Safety and Security?

Safety:

 product achieves acceptable levels of risk or harm to
people, business, software, property or the environment
in a specified context of use

 Threats from “inside”

► Avoid malfunction of a system (eg. planes, cars, railways…)

Security:

 Product is protected against potential attacks from
people, environment etc.

 Threats from “outside”

► Analyze and counteract the abilities of an attacker

SSQ, WS 15/16

A safety-critical design flaw –

invented by Gary Larson

SSQ, WS 15/16

Software Development Models

Definition of software development process and
documents

Examples:

 Waterfall Model

 V-Model

 Model-Driven
Architectures

 Agile Development

SSQ, WS 15/16

mathematical notions

Informal
documents

program

formal specifications

requirements

proofs

Formal Software Development

Informal
Notions

refinement

SSQ, WS 15/16

Verification and Validation

Verification: have we built the system right?

 i.e. correct with respect to a reference artefact

► specification document

► reference system

► Model

Validation: have we built the right system

 i.e. adequate for its intended operation?

SSQ, WS 15/16

V&V Methods

Testing

 Test case generation, black- vs. white box

 Hardware-in-the-loop testing: integrated HW/SW system is tested

 Software-in-the-loop testing: only software is tested

 Program runs using symbolic values

Simulation

 An executable model is tested with respect to specific properties

 This is also called Model-in-the-Loop Test

Static/dynamic program analysis

 Dependency graphs, flow analysis

 Symbolic evaluation

Model checking

 Automatic proof by reduction to finite state problem

Formal Verification

 Symbolic proof of program properties

SSQ, WS 15/16

Overview of Lecture Series

01: Concepts of Quality

02: Concepts of Safety, Legal Requirements, Certification

03: A Safety-critical Software Development Process

04: Requirements Analysis

05: High-Level Design & Detailed Specification with SysML

06: Testing

07 and 08: Program Analysis

09: Model-Checking

10 and 11: Software Verification (Hoare-Calculus)

12: Concurrency

13: Conclusions

SSQ, WS 15/16

Concepts of Quality

SSQ, WS 15/16

What is Quality?

Quality is the collection of its characteristic properties

Quality model: decomposes the high-level definition by
associating attributes (also called characteristics, factors,
or criteria) to the quality conception

Quality indicators associate metric values with quality
criteria, expressing “how well” the criteria have been
fulfilled by the process or product.

SSQ, WS 15/16

Quality Criteria: Different „Dimensions“ of Quality

For the development of artifacts quality criteria can be
measured with respect to the

 development process (process quality)

 final product (product quality)

Another dimension for structuring quality conceptions is

 Correctness: the consistency with the product and its
associated requirements specifications

 Effectiveness: the suitability of the product for its
intended purpose

SSQ, WS 15/16

Quality Criteria (cont.)

A third dimension structures quality according to product
properties:

 Functional properties: the specified services to be
delivered to the users

 Structural properties: architecture, interfaces,
deployment, control structures

 Non-functional properties: usability, safety, reliability,
availability, security, maintainability, guaranteed worst-
case execution time (WCET), costs, absence of run-time
errors, …

SSQ, WS 15/16

Quality (ISO/IEC 25010/12)

“Systems and software engineering — Systems and
software Quality Requirements and Evaluation
(SQuaRE) — System and software quality models”

 Quality model framework (replaces the older ISO/IEC
9126)

Product quality model

 Categorizes system/software product quality properties

Quality in use model

 Defines characteristics related to outcomes of interaction
with a system

Quality of data model

 Categorizes data quality attributes

SSQ, WS 15/16

Product
Quality

Functional
suitability

Completeness
Correctness

Appropriateness

Performance
efficiency

Time behavior
Resource
utilization
Capacity

Compatibility

Co-existence
Interoperability

Usability

Appropriateness
recognizability

Learnability
Operability
User error
protection

User interface
aesthetics

Accessibility

Reliability

Maturity
Availability

Fault tolerance
Recoverability

Security

Confidentiality
Integrity

Non-repudiation
Accountability
Authenticity

Maintainability

Modularity
Reusability

Analysability
Modifiability
Testability

Portability

Adaptability
Installability

Replaceability

Source: ISO/IEC FDIS 25010

Product Quality Model

SSQ, WS 15/16

System

Quality in Use

Computer System

Quality

Software Product

Quality

System

Quality in Use
Requirements

Computer System

Quality
Requirements

Software Product

Quality
Requirements

Implementation

Quality in Use Needs

Products Requirements

Validation

Verification

Validation

Verification

Validation

System

Quality in
Use Model

System

and
Software
Product

Quality
Model

Source: ISO/IEC FDIS 25010

System Quality Life Cycle Model

SSQ, WS 15/16

Quality in Use Model

SSQ, WS 15/16

Product
Quality

Functional
suitability

Completeness
Correctness

Appropriateness

Performance
efficiency

Time behavior
Resource
utilization
Capacity

Compatibility

Co-existence
Interoperability

Usability

Appropriateness
recognizability

Learnability
Operability
User error
protection

User interface
asthetics

Accessibility

Reliability

Maturity
Availability

Fault tolerance
Recoverability

Security

Confidentiality
Integrity

Non-repudiation
Accountability
Authenticity

Maintainability

Modularity
Reusability

Analysability
Modifiability
Testability

Portability

Adaptability
Installability

Replaceability

Source: ISO/IEC FDIS 25010

How can we „guarantee“ safety and security ?

Our Focus of Interest

SSQ, WS 15/16

Other Norms and Standards

ISO 9001 (DIN ISO 9000-4):

 Standardizes definition and supporting principles
necessary for a quality system to ensure products meet
requirements

 “Meta-Standard”

CMM (Capability Maturity Model), Spice

 Standardises maturity of development process

 Level 1 (initial): Ad-hoc

 Level 2 (repeatable): process dependent on individuals

 Level 3 (defined): process defined & institutionalised

 Level 4 (managed): measured process

 Level 5 (optimizing): improvement fed back into process

SSQ, WS 15/16

Today‘s Summary

Quality:

 collection of characteristic properties

 quality indicators measuring quality criteria

Relevant aspects of quality here:

 Functional suitability

 Reliability

 Security

Next week:

 Concepts of Safety, Legal Requirements, Certification

 SSQ, WS 15/16

Systeme hoher Qualität und Sicherheit
Universität Bremen WS 2015/2016

Christoph Lüth Jan Peleska Dieter Hutter

Lecture 02 (19.10.2015)

Legal Requirements: Norms and Standards

 SSQ, WS 15/16

Where are we?

01: Concepts of Quality

02: Legal Requirements: Norms and Standards

03: The Software Development Process

04: Requirements Analysis

05 and 06: High-Level Design & Detailed Spec’n with SysML

07: Testing

08 and 09: Program Analysis

10: Model-Checking

11 and 12: Software Verification (Hoare-Calculus)

13: Concurrency

14: Conclusions

 SSQ, WS 15/16

Synopsis

If you want to write safety-criticial software,
then you need to adhere to state-of-the-art practice
as encoded by the relevant norms & standards.

Today:

 What is safety and security?

 Why do we need it? Legal background.

 How is it ensured? Norms and standards

► IEC 61508 – Functional safety – specialised norms for
special domains

► IEC 15408 – Common criteria (security)

3

 SSQ, WS 15/16

The Relevant Question

If something goes wrong:

 Whose fault is it?

 Who pays for it?

That is why most (if not all) of these standards put a lot
of emphasis on process and traceability (= auditable
evidence). Who decided to do what, why, and how?

The bad news:

 As a qualified professional, you may become personally
liable if you deliberately and intentionally (grob
vorsätzlich) disregard the state of the art or do not comply
to the rules (=norms,standards) that were to be applied.

The good news:

 Pay attention here and you will be delivered from these
evils.

4

 SSQ, WS 15/16

Safety:
IEC 61508

and other norms & standards

 SSQ, WS 15/16

What is Safety?

Absolute definition:

 „Safety is freedom from accidents or losses.“

► Nancy Leveson, „Safeware: System safety and computers“

But is there such a thing as absolute safety?

Technical definition:

 „Sicherheit: Freiheit von unvertretbaren Risiken“

► IEC 61508-4:2001, §3.1.8

Next week: a development process for safety-critical

systems

6

 SSQ, WS 15/16

Some Terminology

Fail-safe vs. Fail operational vs. Fault tolerant

 Fail-safe (or fail-stop): on error, terminate in a safe state

 Fail operational systems continue their operation, even if
their controllers fail

 Fault tolerant systems are more general than fail
operational systems: in case of faults, they continue with
a potentially degraded service

Safety-critical, safety-relevant (sicherheitskritisch)

 General term -- failure may lead to risk

 Safety function (Sicherheitsfunktion)

 Technical term, that functionality which ensures safety

Safety-related (sicherheitsgerichtet, sicherheitsbezogen)

 Technical term, directly related to the safety function

7

 SSQ, WS 15/16

Legal Grounds

The machinery directive:

The Directive 2006/42/EC of the European Parliament and of the
Council of 17 May 2006 on machinery, and amending Directive
95/16/EC (recast)

Scope:

 Machineries (with a drive system and movable parts).

Structure:

 Sequence of whereas clauses (explanatory)

 followed by 29 articles (main body)

 and 12 subsequent annexes (detailed information about
particular fields, e.g. health & safety)

Some application areas have their own regulations:

 Cars and motorcycles, railways, planes, nuclear plants …

8

http://ec.europa.eu/enterprise/sectors/mechanical/documents/legislation/machinery/

 SSQ, WS 15/16

What does that mean?

Relevant for all machinery (from tin-opener to AGV [=
automated guided vehicle])

Annex IV lists machinery where safety is a concern

Standards encode current best practice.

 Harmonised standard available?

External certification or self-certification

 Certification ensures and documents conformity to
standard.

Result:

Sope of the directive is market harmonisation, not safety
– that is more or less a byproduct.

Conformité Européenne

9

 SSQ, WS 15/16

The Norms and Standards Landscape

• First-tier standards (A-Normen):

• General, widely applicable, no specific area of application

• Example: IEC 61508

• Second-tier standards (B-Normen):

• Restriction to a particular area of application

• Example: ISO 26262 (IEC 61508 for automotive)

• Third-tier standards (C-Normen):

• Specific pieces of equipment

• Example: IEC 61496-3 (“Berührungslos wirkende
Schutzeinrichtungen”)

• Always use most specific norm.
The

standards

quagmire ?

10

 SSQ, WS 15/16

Norms for the Working Programmer

IEC 61508:

 “Functional Safety of Electrical/Electronic/Programmable Electronic Safety-
related Systems (E/E/PE, or E/E/PES)”

 Widely applicable, general, considered hard to understand

ISO 26262

 Specialisation of 61508 to cars (automotive industry)

DIN EN 50128:2011

 Specialisation of 61508 to software for railway industry

RTCA DO 178-B and C (new developments require C):

 “Software Considerations in Airborne Systems and Equipment Certification“

 Airplanes, NASA/ESA

ISO 15408:

 “Common Criteria for Information Technology Security Evaluation”

 Security, evolved from TCSEC (US), ITSEC (EU), CTCPEC (Canada)

11

 SSQ, WS 15/16

Introducing IEC 61508

Part 1: Functional safety management, competence,
 establishing SIL targets

Part 2: Organising and managing the life cycle

Part 3: Software requirements

Part 4: Definitions and abbreviations

Part 5: Examples of methods for the determination of
safety-integrity levels

Part 6: Guidelines for the application

Part 7: Overview of techniques and measures

12

 SSQ, WS 15/16

How does this work?

1. Risk analysis determines the safety integrity level (SIL)

2. A hazard analysis leads to safety requirement
specification.

3. Safety requirements must be satisfied

 Need to verify this is achieved.

 SIL determines amount of testing/proving etc.

4. Life-cycle needs to be managed and organised

 Planning: verification & validation plan

 Note: personnel needs to be qualified.

5. All of this needs to be independently assessed.

 SIL determines independence of assessment body.

13

 SSQ, WS 15/16

Safety Integrity Levels

SIL High Demand
(more than once a year)

Low Demand
(once a year or less)

4 10-9 < P/hr < 10-8 10-5 < P/yr < 10-4

3 10-8 < P/hr < 10-7 10-4 < P/yr < 10-3

2 10-7 < P/hr < 10-6 10-3 < P/yr < 10-2

1 10-6 < P/hr < 10-5 10-2 < P/yr < 10-1

• P: Probabilty of dangerous failure (per hour/year)

• Examples:

 High demand: car brakes

 Low demand: airbag control

• Which SIL to choose?  Risk analysis

• Note: SIL only meaningful for specific safety functions.

14

 SSQ, WS 15/16

Establishing target SIL I

IEC 61508 does not describe standard procedure to
establish a SIL target, it allows for alternatives:

Quantitative approach

 Start with target risk level

 Factor in fatality and
frequency

Example:

 Safety system for a chemical plant

 Max. tolerable risk exposure A=10-6

 B= 10-2 hazardous events lead to fatality

 Unprotected process fails C= 1/5 years

 Then Failure on Demand E = A/(B*C) = 5*10-3, so SIL 2

Maximum tolerable

risk of fatality

Individual risk

(per annum)

Employee 10-4

Public 10-5

Broadly acceptable

(„Neglibile“)

10-6

15

 SSQ, WS 15/16

Establishing Target SIL II

Qualitative Method: Risk Graph Analysis (e.g. DIN 13849)

DIN EN ISO 13849:1 determines the Performance Level

17

PL SIL

a -

b 1

c 2

d 3

e 4

Severity of injurity:
S1 - slight (reversible) injury
S2 – severe (irreversible) injury

Occurence:
F1 – rare occurence
F2 – frequent occurence

Possible avoidance:
P1 – possible
P2 – impossible Relation PL to SIL

Source: Peter Wratil (Wikipedia)

 SSQ, WS 15/16

What does the SIL mean for the
development process?

In general:

 „Competent“ personnel

 Independent assessment („four eyes“)

SIL 1:

 Basic quality assurance (e.g ISO 9001)

SIL 2:

 Safety-directed quality assurance, more tests

SIL 3:

 Exhaustive testing, possibly formal methods

 Assessment by separate department

SIL 4:

 State-of-the-art practices, formal methods

 Assessment by separate organisation

18

 SSQ, WS 15/16

Increasing SIL by redudancy

One can achieve a higher SIL by combining
independent systems with lower SIL
(„Mehrkanalsysteme“).

 Given two systems A, B with failure probabilities 𝑃𝐴, 𝑃𝐵,
the chance for failure of both is (with 𝑃𝐶𝐶 probablity of
common-cause failures):

𝑃𝐴𝐵 = 𝑃𝐶𝐶 + 𝑃𝐴𝑃𝐵

Hence, combining two SIL 3 systems may give you a SIL 4
system.

However, be aware of systematic errors (and note that
IEC 61508 considers all software errors to be
systematic).

Note also that for fail-operational systems you need
three (not two) systems.

19

 SSQ, WS 15/16

The Software Development Process

61508 mandates a V-model software development
process

 More next lecture

Appx A, B give normative guidance on measures to
apply:

 Error detection needs to be taken into account (e.g
runtime assertions, error detection codes, dynamic
supervision of data/control flow)

 Use of strongly typed programming languages (see table)

 Discouraged use of certain features: recursion(!), dynamic
memory, unrestricted pointers, unconditional jumps

 Certified tools and compilers must be used.

► Or `proven in use´

21

 SSQ, WS 15/16

Proven in Use

 As an alternative to systematic development, statistics

about usage may be employed. This is particularly
relevant:

 for development tools (compilers, verification tools etc),

 and for re-used software (modules, libraries).

 Note that the previous use needs to be to the same
specification as intended use (eg. compiler: same target
platform).

SIL Zero Failure One Failure

1 12 ops 12 yrs 24 ops 24 yrs

2 120 ops 120 yrs 240 ops 240 yrs

3 1200 ops 1200 yrs 2400 ops 2400 yrs

4 12000 ops 12000 yrs 24000 ops 24000 yrs

22

 SSQ, WS 15/16

Table A.2, Software Architecture

23

 SSQ, WS 15/16

Table A.4- Software Design &
Development

24

 SSQ, WS 15/16

Table A.9 – Software Verification

25

 SSQ, WS 15/16

Table B.1 – Coding Guidelines

Table C.1,
programming
languages, mentions:

 ADA, Modula-2,
Pascal, FORTRAN
77, C, PL/M,
Assembler, …

Example for a
guideline:

 MISRA-C: 2004,
Guidelines for the
use of the C
language in critical
systems.

26

 SSQ, WS 15/16

Table B.5 - Modelling

27

 SSQ, WS 15/16

Certification

Certiciation is the process of showing conformance to a standard.

Conformance to IEC 61508 can be shown in two ways:

 Either that an organisation (company) has in principle the ability to

produce a product conforming to the standard,

 Or that a specific product (or system design) conforms to the standard.

Certification can be done by the developing company (self-

certification), but is typically done by an accredited body.

 In Germany, e.g. the TÜVs or the Berufsgenossenschaften (BGs)

Also sometimes (eg. DO-178B) called `qualification‘.

31

 SSQ, WS 15/16

Security:
The Common Criteria

 SSQ, WS 15/16

Common Criteria (IEC 15408)

This multipart standard, the Common Criteria (CC), is meant
to be used as the basis for evaluation of security properties
of IT products and systems. By establishing such a common
criteria base, the results of an IT security evaluation will be
meaningful to a wider audience.

The CC is useful as a guide for the development of products
or systems with IT security functions and for the procurement
of commercial products and systems with such functions.

During evaluation, such an IT product or system is known as a
Target of Evaluation (TOE) .
 Such TOEs include, for example, operating systems, computer

networks, distributed systems, and applications.

36

 SSQ, WS 15/16

General Model

Security is concerned with the
protection of assets. Assets are
entities that someone places
value upon.

Threats give rise to risks to the
assets, based on the likelihood
of a threat being realized and its
impact on the assets

(IT and non-IT) Counter-
measures are imposed to
reduce the risks to assets.

37

 SSQ, WS 15/16

Common Criteria (CC)

The CC addresses protection of information from unauthorized
disclosure, modification, or loss of use. The categories of protection
relating to these three types of failure of security are commonly
called confidentiality, integrity, and availability, respectively.

The CC may also be applicable to aspects of IT security outside of
these three.

The CC concentrates on threats to that information arising from
human activities, whether malicious or otherwise, but may be
applicable to some non-human threats as well.

In addition, the CC may be applied in other areas of IT, but makes
no claim of competence outside the strict domain of IT security.

38

 SSQ, WS 15/16

Concept of Evaluation

39

 SSQ, WS 15/16

Requirements Analysis

• The security environment includes all the laws, organizational
security policies, customs, expertise and knowledge that are
determined to be relevant.

• It thus defines the context in which the TOE is intended to be
used.

• The security environment also includes the threats to security
that are, or are held to be, present in the environment.

A statement of applicable organizational security policies would
identify relevant policies and rules.

 For an IT system, such policies may be explicitly referenced,
whereas for a general purpose IT product or product class,
working assumptions about organizational security policy may
need to be made.

40

 SSQ, WS 15/16

Requirements Analysis

• A statement of assumptions which are to be met by the
environment of the TOE in order for the TOE to be considered
secure.

• This statement can be accepted as axiomatic for the TOE
evaluation.

A statement of threats to security of the assets would identify all
the threats perceived by the security analysis as relevant to the TOE.
 The CC characterizes a threat in terms of a threat agent, a

presumed attack method, any vulnerabilities that are the
foundation for the attack, and identification of the asset under
attack.

An assessment of risks to security would qualify each threat with an
assessment of the likelihood of such a threat developing into an
actual attack, the likelihood of such an attack proving successful,
and the consequences of any damage that may result.

41

 SSQ, WS 15/16

Requirements Analysis

The intent of determining security objectives is to address all of
the security concerns and to declare which security aspects are
either addressed directly by the TOE or by its environment.

• This categorization is based on a process incorporating
engineering judgment, security policy, economic factors and
risk acceptance decisions.

• Corresponds to (part of) requirements definition !

The results of the analysis of the security environment could then
be used to state the security objectives that counter the identified
threats and address identified organizational security policies and
assumptions.

The security objectives should be consistent with the stated
operational aim or product purpose of the TOE, and any knowledge
about its physical environment.

42

 SSQ, WS 15/16

Requirements Analysis

The security objectives for the environment would be
implemented within the IT domain, and by non-technical
or procedural means.

Only the security objectives for the TOE and its IT
environment are addressed by IT security requirements.

43

 SSQ, WS 15/16

Requirements Analysis

The IT security requirements are the refinement of the security
objectives into a set of security requirements for the TOE and
security requirements for the environment which, if met, will ensure
that the TOE can meet its security objectives.

The CC presents security requirements under the distinct categories
of functional requirements and assurance requirements.

Functional requirements

 Security behavior of IT-system

 E.g. identification & authentication, cryptography,…

Assurance Requirements

 Establishing confidence in security functions

 Correctness of implementation

 E.g. development, life cycle support, testing, …

44

 SSQ, WS 15/16

Functional Requirement

The functional requirements are levied on those
functions of the TOE that are specifically in support of IT
security, and define the desired security behavior.

Part 2 defines the CC functional requirements. Examples
of functional requirements include requirements for
identification, authentication, security audit and non-
repudiation of origin.

45

 SSQ, WS 15/16

Security Functional Components

Class FAU: Security audit

Class FCO: Communication

Class FCS: Cryptographic support

Class FDP: User data protection

Class FIA: Identification and authentication

Class FMT: Security management

Class FPR: Privacy

Class FPT: Protection of the TSF

Class FRU: Resource utilisation

Class FTA: TOE access

Class FTP: Trusted path/channels

46

 SSQ, WS 15/16

Security Functional Components

Content and presentation of the functional
requirements

47

 SSQ, WS 15/16

Decomposition of FDP

FDP : User Data Protection

48

 SSQ, WS 15/16

FDP – Information Flow Control

FDP_IFC.1 Subset information flow control

Hierarchical to: No other components.

Dependencies: FDP_IFF.1 Simple security attributes

FDP_IFC.1.1 The TSF shall enforce the [assignment: information flow control SFP] on
[assignment: list of subjects, information, and operations that cause controlled
information to flow to and from controlled subjects covered by the SFP].

FDP_IFC.2 Complete information flow control

Hierarchical to: FDP_IFC.1 Subset information flow control

Dependencies: FDP_IFF.1 Simple security attributes

FDP_IFC.2.1 The TSF shall enforce the [assignment: information flow control SFP] on
[assignment: list of subjects and information] and all operations that cause that
information to flow to and from subjects covered by the SFP.

FDP_IFC.2.2 The TSF shall ensure that all operations that cause any information in
the TOE to flow to and from any subject in the TOE are covered by an information
flow control SFP.

49

 SSQ, WS 15/16

Assurance Requirements

Assurance Approach

“The CC philosophy is to provide assurance based upon an
evaluation (active investigation) of the IT product that is to
be trusted. Evaluation has been the traditional means of
providing assurance and is the basis for prior evaluation
criteria documents. “

CC, Part 3, p.15

50

 SSQ, WS 15/16

Assurance Requirements

• The assurance requirements are levied on
actions of the developer, on evidence
produced and on the actions of the evaluator.

• Examples of assurance requirements include
constraints on the rigor of the development
process and requirements to search for and
analyze the impact of potential security
vulnerabilities.

The degree of assurance can be varied for a
given set of functional requirements; therefore
it is typically expressed in terms of increasing
levels of rigor built with assurance
components.

Part 3 defines the CC assurance requirements
and a scale of evaluation assurance levels
(EALs) constructed using these components.

51

 SSQ, WS 15/16

Assurance Components

Class APE: Protection Profile evaluation

Class ASE: Security Target evaluation

Class ADV: Development

Class AGD: Guidance documents

Class ALC: Life-cycle support

Class ATE: Tests

Class AVA: Vulnerability assessment

Class ACO: Composition

52

 SSQ, WS 15/16

Assurance Components: Example

ADV_FSP.1 Basic functional specification

EAL-1: … The functional specification shall describe the purpose and method of use for each SFR-
enforcing and SFR-supporting TSFI.

EAL-2: … The functional specification shall completely represent the TSF.

EAL-3: + … The functional specification shall summarize the SFR-supporting and SFR-non-
interfering actions associated with each TSFI.

EAL-4: + … The functional specification shall describe all direct error messages that may
result from an invocation of each TSFI.

EAL-5: … The functional specification shall describe the TSFI using a semi-formal style.

EAL-6: … The developer shall provide a formal presentation of the functional specification of
 the TSF. The formal presentation of the functional specification of the TSF shall
 describe the TSFI using a formal style, supported by informal, explanatory text
 where appropriate.

(TSFI : Interface of the TOE Security Functionality (TSF), SFR : Security Functional Requirement)

D
e
g

re
e
 o

f A
s
s
u

rra
n

c
e

53

 SSQ, WS 15/16

Evaluation Assurance Level

EALs define levels of
assurance (no guarantees)

1. functionally tested

2. structurally tested

3. methodically tested and checked

4. methodically designed, tested, and
reviewed

5. semiformally designed and tested

6. semiformally verified design and
tested

7. formally verified design and tested

54

 SSQ, WS 15/16

Assurance Requirements

EAL5 – EAL7 require formal methods.

according to CC Glossary:

Formal: Expressed in a restricted syntax language with
defined semantics based on well-established
mathematical concepts.

55

 SSQ, WS 15/16

Security Functions

The statement of TOE security functions shall cover
the IT security functions and shall specify how these
functions satisfy the TOE security functional
requirements. This statement shall include a bi-
directional mapping between functions and
requirements that clearly shows which functions satisfy
which requirements and that all requirements are met.

Starting point for design process.

56

 SSQ, WS 15/16

Summary

Norms and standards enforce the application of the
state-of-the-art when developing software which is
safety-critical or security-critical.

Wanton disregard of these norms may lead to personal
liability.

Norms typically place a lot of emphasis on process.

Key question are traceability of decisions and design,
and verification and validation.

Different application fields have different norms:

 IEC 61508 and its specialisations, DO-178B.

 IEC 15408 („Common Criteria“)

57

 SSQ, WS 15/16

Further Reading

Terminology for dependable systems:

 J. C. Laprie et al.: Dependability: Basic Concepts and
Terminology. Springer-Verlag, Berlin Heidelberg New York
(1992).

Literature on safety-critical systems:

 Storey, Neil: Safety-Critical Computer Systems. Addison
Wesley Longman (1996).

 Nancy Levenson: Safeware – System Safety and
Computers. Addison-Wesley (1995).

58

 SSQ, WS 15/16

Systeme hoher Qualität und Sicherheit
Universität Bremen WS 2015/2016

Christoph Lüth Jan Peleska Dieter Hutter

Lecture 03 (26.10.2015)

The Software Development Process

 SSQ, WS 15/16

Your Daily Menu

Models of software development

 The software development process, and its rôle in safety-
critical software development.

 What kind of development models are there?

 Which ones are useful for safety-critical software
– and why?

 What do the norms and standards say?

Basic notions of formal software development

 What is formal software development?

 How to specify: properties and hyperproperties

 Structuring of the development process

2

 SSQ, WS 15/16

Where are we?

01: Concepts of Quality

02: Legal Requirements: Norms and Standards

03: The Software Development Process

04: Hazard Analysis

05: High-Level Design with SysML

06: Formal Modelling with SysML

07: Detailed Specification with SysML

08: Testing

09 and 10: Program Analysis

11: Model-Checking

12: Software Verification (Hoare-Calculus)

13: Software Verification (VCG)

14: Conclusions

3

 SSQ, WS 15/16

Software Development Models

 SSQ, WS 15/16

Software Development Process

A software development process is the structure
imposed on the development of a software product.

We classify processes according to models which specify

 the artefacts of the development, such as

► the software product itself, specifications, test documents,
reports, reviews, proofs, plans etc

 the different stages of the development,

 and the artefacts associated to each stage.

Different models have a different focus:

 Correctness, development time, flexibility.

What does quality mean in this context?

 What is the output? Just the sofware product, or more?
(specifications, test runs, documents, proofs…)

5

 SSQ, WS 15/16

Agile Methods

Prototype-driven development

 E.g. Rapid Application Development

 Development as a sequence of prototypes

 Ever-changing safety and security requirements

Agile programming

 E.g. Scrum, extreme programming

 Development guided by functional requirements

 Process structured by rules of conduct for developers

 Less support for non-functional requirements

Test-driven development

 Tests as executable specifications: write tests first

 Often used together with the other two

6

 SSQ, WS 15/16

Waterfall Model (Royce 1970)

Classical top-down sequential workflow with strictly
separated phases.

Unpractical as actual workflow (no feedback between
phases), but even early papers did not really suggest
this.

Requirement

Implementation

Design

Maintenance

Verification

7

 SSQ, WS 15/16

Spiral Model (Böhm, 1986)

Incremental development guided by risk factors

Four phases:

 Determine objectives

 Analyse risks

 Development and test

 Review, plan next iteration

See e.g.

 Rational Unified Process (RUP)

Drawbacks:

 Risk identification is the key, and can be quite difficult

8

 SSQ, WS 15/16

Model-Driven Development (MDD, MDE)

Describe problems on abstract level using a modelling language
(often a domain-specific language), and derive implementation by
model transformation or run-time interpretation.

Often used with UML (or its DSLs, eg. SysML)

Variety of tools:

 Rational tool chain, Enterprise Architect, Rhapsody, Papyrus,
Artisan Studio, MetaEdit+, Matlab/Simulink/Stateflow*

 EMF (Eclipse Modelling Framework)

Strictly sequential development

Drawbacks: high initial investment, limited flexibility

* Proprietary DSL – not related to UML

9

 SSQ, WS 15/16

V-Model

Evolution of the waterfall model:

 Each phase is supported by a corresponding testing
phase (verification & validation)

 Feedback between next and previous phase

Standard model for public projects in Germany

 … but also a general term for models of this „shape“

10

 SSQ, WS 15/16

Software Development Models

Structure

F
le

x
ib

il
it

y

from S. Paulus: Sichere Software

Spiral model

Prototype-based
developments

Agile

Methods

Waterfall

model

V-model

Model-driven

developement

11

 SSQ, WS 15/16

Development Models for
Critical Systems

12

 SSQ, WS 15/16

Development Models for Critical Systems

Ensuring safety/security needs structure.

 …but too much structure makes developments
bureaucratic, which is in itself a safety risk.

 Cautionary tale: Ariane-5

Standards put emphasis on process.

 Everything needs to be planned and documented.

 Key issues: auditability, accountability, traceability.

Best suited development models are variations of the V-
model or spiral model.

A new trend?

 V-Model for initial developments of a new product

 Agile models (e.g. SCRUM) for maintenance and product
extensions

13

 SSQ, WS 15/16

The Safety Life Cycle (IEC 61508)

Planning

Realisation

Operation

E/E/PES: Electrical/Electronic/Programmable Electronic Safety-related Systems

14

 SSQ, WS 15/16

Development Model in IEC 61508

IEC 61508 prescribes certain activities for each phase of
the life cycle.

Development is one part of the life cycle.

IEC 61508 recommends V-model.

15

 SSQ, WS 15/16

Development Model in DO-178B

DO-178B defines different processes in the SW life cycle:

 Planning process

 Development process, structured in turn into

► Requirements process

► Design process

► Coding process

► Integration process

 Verification process

 Quality assurance process

 Configuration management process

 Certification liaison process

There is no conspicuous diagram, but the Development Process has
sub-processes suggesting the phases found in the V-model as well.

 Implicit recommendation of the V-model.

16

 SSQ, WS 15/16

Traceability

The idea of being able to follow requirements (in
particular, safety requirements) from requirement spec
to the code (and possibly back).

On the simplest level, an Excel sheet with (manual) links
to the program.

More sophisticated tools include DOORS.

 Decompose requirements, hierarchical requirements

 Two-way traceability: from code, test cases, test
procedures, and test results back to requirements

 Eg. DO-178B requires all code derives from requirements

20

 SSQ, WS 15/16

Artefacts in the Development Process

Planning:
• Document plan
• V&V plan
• QM plan
• Test plan
• Project manual

Specifications:

• Safety requirement spec.
• System specification
• Detail specification
• User document (safety

reference manual)

Implementation:

• Code

Verification & validation:

• Code review protocols
• Test cases, procedures,

and test results,
• Proofs

Possible formats:
• Word documents
• Excel sheets
• Wiki text
• Database (Doors)

• UML/SysML diagrams
• Formal languages:

• Z, HOL, etc.
• Statecharts or

similar diagrams

• Source code

Documents must be identified and
reconstructable.
• Revision control and configuration

management mandatory.

21

 SSQ, WS 15/16

Basic Notions of Formal
Software Development

 SSQ, WS 15/16

Formal Software Development

In formal development, properties are stated in a rigorous way with
a precise mathematical semantics.

These formal specifications can be proven.

Advantages:

 Errors can be found early in the development process, saving
time and effort and hence costs.

 There is a higher degree of trust in the system.

 Hence, standards recommend use of formal methods for high
SILs/EALs.

Drawback:

 Higher effort

 Requires qualified personnel (that would be you).

There are tools which can help us by

 finding (simple) proofs for us, or

 checking our (more complicated) proofs.

23

 SSQ, WS 15/16

informal specification

Formal Software Development

abstract

specification

M
a

th
e

m
a

tica
l n

o
tio

n
s

P
ro

g
ra

m
m

in
g

Verification by
• Test
• Program analysis
• Model checking
• Formal proof

Horizontal

Proofs

Implemen-
tation

24

 SSQ, WS 15/16

A General Notion of Properties

Defn: a property is a
set of infinite execution traces
(i.e. infinite sequences of states)

Trace t satisfies property P,
written 𝑡 ⊨ 𝑃, iff 𝑡 ∈ 𝑃

b ≤ t iff ∃𝑡′. 𝑡 = 𝑏 ⋅ 𝑡′

 i.e. b is a finite prefix of t

…

b:

t:

t‘ :

25

 SSQ, WS 15/16

Safety and Liveness Properties

Safety properties

 Nothing bad happens

 partial correctness, program safety, access control

Liveness properties

 Something good happens

 Termination, guaranteed service, availability

Theorem:  P . P = SafeP  LiveP

 Each property can be represented as a combination

of safety and liveness properties.

Alpen & Schneider (1985, 1987)

26

 SSQ, WS 15/16

Safety Properties

Safety property S: „Nothing bad happens“

A bad thing is finitely observable and irremediable

S is a safety property iff

 ∀𝑡. 𝑡 ∉ 𝑆 → ∃𝑏. finite 𝑏 ∧ 𝑏 ≤ 𝑡 → ∀𝑢. 𝑏 ≤ 𝑢 → 𝑢 ∉ 𝑆

 a finite prefix b always causes the bad thing

Safety is typically proven by induction.

 Safety properties may be enforced by run-time monitors.

 Safety is testable (i.e. we can test for non-safety)

b :

t :

27

 SSQ, WS 15/16

Liveness Properties

Liveness property L: „Good things will happen“

A good thing is always possible and possibly infinite:

L is a liveness property iff

 ∀ 𝑡. finite 𝑡 → ∃𝑔. 𝑡 ≤ 𝑔 ∧ 𝑔 ∈ 𝐿

 i.e. all finite traces t can be extended to a trace g in L.

Liveness is typically proven by well-foundedness.

g :

t :

28

 SSQ, WS 15/16

Underspecification and Nondeterminism

A system S is characterised by a set of traces, 𝑆⟧

A system S satisfies a property P, written

 𝑆 ⊨ 𝑃 iff 𝑆⟧ ⊆ 𝑃

Why more than one trace? Difference between:

 Underspecification or loose specification –
we specify several possible implementations, but each
implementation should be deterministic.

 Non-determinism – different program runs might result
in different traces.

Example: a simple can vending machine.

 Insert coin, chose brand, dispense drink.

 Non-determinisim due to internal or external choice.

29

 SSQ, WS 15/16

Security Policies

Many security policies are not properties!

Examples:

 Non-Interference (Goguen & Meseguer 1982)

► Commands of high users have no effect on observations of
low users

 Average response time is lower than k.

Security policies are examples of hyperproperties.

A hyperproperty H is a set of properties

 i.e. a set of set of traces.

 System S satisfies H, 𝑆 ⊨ 𝐻, iff 𝑆 ∈ 𝐻.

 31

 SSQ, WS 15/16

Structuring the Development

36

 SSQ, WS 15/16

Structure in the Development

Horizontal structuring

 Modularization into components

 Composition and Decomposition

 Aggregation

Vertical structuring

 Abstraction and refinement
from design specification to implementation

 Declarative vs. imparative specification

 Inheritence

Layers / Views

 Adresses multiple aspects of a system

 Behavioral model, performance model, structural model,
analysis model(e.g. UML, SysML)

37

 SSQ, WS 15/16

Horizontal Structuring (informal)

Composition of components

 Dependent on the individual layer of abstraction

 E.g. modules, procedures, functions,…

Example:

38

 SSQ, WS 15/16

Horizontal Structuring: Composition

Given two systems 𝑆1, 𝑆2, their sequential composition is defined as

𝑆1; 𝑆2 = 𝑠 ∙ 𝑡 𝑠 ∈ 𝑆1 , 𝑡 ∈ 𝑆2 }

 All traces from 𝑆1, followed by all traces from 𝑆2.

Given two traces 𝑠, 𝑡, their interleaving is defined (recursively) as
<> ∥ 𝑡 = 𝑡
𝑠 ∥ <> = 𝑠
𝑎 ⋅ 𝑠 ∥ 𝑏 ⋅ 𝑡 = 𝑎 ⋅ 𝑢 𝑢 ∈ 𝑠 ∥ 𝑏 ∙ 𝑡 } ∪ { 𝑏 ⋅ 𝑢 | 𝑢 ∈ 𝑎 ⋅ 𝑠 ∥ 𝑡}

Given two systems 𝑆1, 𝑆2, their parallel composition is defined as

𝑆1 ∥ 𝑆2 = { 𝑠 ∥ 𝑡 |𝑠 ∈ 𝑆1 , 𝑡 ∈ 𝑆2 }

 Traces from 𝑆1 interleaved with traces from 𝑆2.

 39

 SSQ, WS 15/16

Vertical Structure - Refinement

Data refinement

 Abstract datatype is „implemented“ in terms of the
more concrete datatype

 Simple example: define stack with lists

Process refinement

 Process is refined by excluding certain runs

 Refinement as a reduction of underspecification by
eliminating possible behaviours

Action refinement

 Action is refined by a sequence of actions

 E.g. a stub for a procedure is refined to an executable
procedure

40

 SSQ, WS 15/16

Refinement and Properties

Refinement typically preserves safety properties.

 This means if we start with an abstract specification
which we can show satisfies the desired properties, and
refine it until we arrive at an implementation, we have a
system for the properties hold by construction:

𝑆𝑃 ⇝ 𝑆𝑃1 ⇝ 𝑆𝑃2 ⇝ … ⇝ 𝐼𝑚𝑝

However, security is typically not preserved by
refinement nor by composition!

43

 SSQ, WS 15/16

Security and Composition

Only complete bicycles are allowed to pass the gate.

Secure ! Secure !

44

 SSQ, WS 15/16

Security and Composition

Insecure !

Only complete bicycles are allowed to pass the gate.

45

 SSQ, WS 15/16

A Formal Treatment of Refinement

Def: T is a refinement of S if 𝑆 ⊑ 𝑇 ⇔ 𝑇⟧ ⊆ 𝑆⟧

 Remark: a bit too general, but will do here.

Theorem: Refinement preservers properties:

 If 𝑆 ⊨ 𝑃 and 𝑆 ⊑ 𝑇, then 𝑇 ⊨ 𝑃.

 Proof: Recall 𝑆 ⊨ 𝑃 ⟺ 𝑆⟧ ⊆ P, and 𝑆 ⊑ 𝑇 ⇔ 𝑇⟧ ⊆ 𝑆⟧,

 hence 𝑇⟧ ⊆ 𝑃 ⟺ 𝑇 ⊨ 𝑃.

However, refinement does not preserve hyperproperties.

 Why? 𝑆 ⊨ 𝐻 ⟺ 𝑆⟧ ∈ 𝐻, but 𝐻 not closed under subsets.

46

 SSQ, WS 15/16

Conclusion & Summary

Software development models: structure vs. flexibility

Safety standards such as IEC 61508, DO-178B suggest
development according to V-model.

 Specification and implementation linked by verification
and validation.

 Variety of artefacts produced at each stage, which have to
be subjected to external review.

Properties: sets of traces

hyperproperties: sets of properties

Structuring of the development:

 Horizontal – e.g. composition

 Vertical – refinement (data, process and action ref.)

 Refinement preserves properties (safety), but not
hyperproperties (security).

47

 SSQ, WS 15/16

Systeme hoher Qualität und Sicherheit
Universität Bremen WS 2015/2016

Christoph Lüth Jan Peleska Dieter Hutter

Lecture 04 (02.11.2015)

Hazard Analysis

 SSQ, WS 15/16

Where are we?

01: Concepts of Quality

02: Legal Requirements: Norms and Standards

03: The Software Development Process

04: Hazard Analysis

05: High-Level Design with SysML

06: Formal Modelling with SysML

07: Detailed Specification with SysML

08: Testing

09 and 10: Program Analysis

11: Model-Checking

12: Software Verification (Hoare-Calculus)

13: Software Verification (VCG)

14: Conclusions

 SSQ, WS 15/16

Your Daily Menu

Hazard Analysis:

 What‘s that?

Different forms of hazard analysis:

 Failure Mode andEffects Analysis (FMEA)

 Failure Tree Analysis (FTA)

 Event Tree Analysis (ETA)

3

 SSQ, WS 15/16

Hazard Analysis in the Development Cycle

 SSQ, WS 15/16

The Purpose of Hazard Analysis

5

System Safety

Hazard
Analysis

Safety
Requirements

Validated
Software

Hazard Analysis
systematically
determines a list of
safety requirements.

The realisation of the
safety requirements by
the software product
must be verified.

The product must be
validated wrt. the
safety requirements.

Software Development
(V-Model)

V
a

li
d

a
ti

o
n

Verification

 SSQ, WS 15/16

Hazard Analysis…

provides the basic foundations for system safety.

is performed to identify hazards, hazard effects, and
hazard causal factors.

is used to determine system risk, to determine the
signifigance of hazards, and to etablish design measures
that will eliminate or mitigate the identified hazards.

is used to systematically examine systems,
subsystems, facilities, components, software, personnel,
and their interrelationships.

Clifton Ericson: Hazard Analysis Techniques for System Safety.

 Wiley-Interscience, 2005.

6

 SSQ, WS 15/16

Form and Output of Hazard Analysis

The output of Hazard Analysis is a list of safety
requirements, and documents detailing how these were
derived.

Because the process is informal, it can only be checked
by reviewing.

It is therefore critical that

 standard forms of analysis are used,

 documents have a standard form, and

 all assumptions are documented.

7

 SSQ, WS 15/16

Classification of Requirements

Requirements to ensure

 Safety

 Security

Requirements for

 Hardware

 Software

Characteristics / classification of requirements

 according to the type of a property

8

 SSQ, WS 15/16

Classification of Hazard Analysis

Top-down methods start with an anticipated hazard
and work back from the hazard event to potential
causes for the hazard

 Good for finding causes for hazard

 Good for avoiding the investigation of “non-relevant”
errors

 Bad for detection of missing hazards

Bottom-up methods consider “arbitrary” faults and
resulting errors of the system, and investigate whether
they may finally cause a hazard

 Properties are complementary to top-down properties

9

 SSQ, WS 15/16

Hazard Analysis Methods

Fault Tree Analysis (FTA) – top-down

Failure Modes and Effects Analysis (FMEA) – bottom up

Event Tree Analysis (ETA) – bottom-up

Cause Consequence Analysis – bottom up

HAZOP Analysis – bottom up

10

 SSQ, WS 15/16

Fault Tree Analysis (FTA)

Top-down deductive failure analysis (of undesired
states)

 Define undesired top-level event

 Analyse all causes affecting an event to construct fault
(sub)tree

 Evaluate fault tree

11

 SSQ, WS 15/16

Fault-Tree Analysis: Process Overview

1. Understand system design

2. Define top undesired event

3. Establish boundaries (scope)

4. Construct fault tree

5. Evaluate fault tree (cut sets, probabilities)

6. Validate fault tree (check if correct and complete)

7. Modify fault tree (if required)

8. Document analysis

12

 SSQ, WS 15/16

Fault Tree Analysis: Example 1

Battery

Fuse

Float switch

Lamp

Example:
A lamp warning about low
level of brake fluid.
See circuit diagram.
Top Undesired Event:
Warning lamp off despite
low level of fluid.

Source: N. Storey, Safety-Critical Computer Systems.

 SSQ, WS 15/16

FTA: Example II

Example: A laser operated from a control
computer system.

The laser is connected via a relay and
a power driver, and protected by a
cover switch.
Top Undesired Event:
Laser activated without explicit
command from computer system.

Source: N. Storey, Safety-Critical Computer Systems.

 SSQ, WS 15/16

Event Tree Analysis (ETA)

Applies to a chain of cooperating activities

Investigates the effect of activities failing while the chain
is processed

Depicted as binary tree; each node has two leaving
edges:

 Activity operates correctly

 Activity fails

Useful for calculating risks by assigning probabilities to
edges

O(2^n) complexity

16

 SSQ, WS 15/16

Event Tree Analysis Overview

17

Input:

• Design knowledge

• Accident histories

ETA Process:

1. Identify Accident Scenarios

2. Identify IEs (Initiating Events)

3. Identify pivotal events

4. Construct event tree diagrams

5. Evaluate risk paths

6. Document process

Output:
• Mishap outcomes
• Outcome risks
• Causal sources
• Safety Requirements

 SSQ, WS 15/16

Event Tree Analysis: Example 1

Cooling System for a Nuclear Power Plant

18

IE Pivotal Events Outcome
 Electricity Emergency Fission Product Containment Fission Release
 Core Cooling Removal

Pipe
Breaks

Fails

Available

Available

Available
Available

Fails

Available

Fails
Fails

Fails
Available

Fails

Very Small

Small

Small

Medium

Large

Very Large

Very Large

 SSQ, WS 15/16

Event Tree Analysis: Example 2

Fire Detection/Suppression System for Office Building

19

Fire Starts
P= 0.01

YES (P= 0.9)

NO (P= 0.1)

YES (P= 0.7)

NO (P= 0.3)

YES (P= 0.8)

NO (P= 0.2)

YES (P= 0.8)

NO (P= 0.2)

Limited damage

Extensive damage,
People escape

Limited damage,
Wet people

Death/injury,
Extensive damage

Death/injury,
Extensive damage

0.00504

0.00126

0.00216

0.00054

0.001

IE Pivotal Events Outcomes Prob.
 Fire Detection Fire Alarms Fire Sprinkler
 Works Works Works

 SSQ, WS 15/16

Failure Modes and Effects Analysis (FMEA)

Analytic approach to review potential failure modes and
their causes.

Three approaches: functional, structural or hybrid.

Typically performed on hardware, but useful for
software as well.

It analyzes

 the failure mode,

 the failure cause,

 the failure effect,

 its criticality,

 and the recommended action.

 and presents them in a standardized table.

20

 SSQ, WS 15/16

Software Failure Modes

Guide word Deviation Example Interpretation

omission The system produces no output
when it should. Applies to a
single instance of a service, but
may be repeated.

No output in response to change
in input; periodic output
missing.

commission The system produces an output,
when a perfect system would
have produced none. One must
consider cases with both, correct
and incorrect data.

Same value sent twice in series;
spurious output, when inputs
have not changed.

early Output produced before it
should be.

Really only applies to periodic
events; Output before input is
meaningless in most systems.

late Output produced after it should
be.

Excessive latency (end-to-end
delay) through the system; late
periodic events.

value
(detectable)

Value output is incorrect, but in
a way, which can be detected by
the recipient.

Out of range.

value
(undetectable)

Value output is incorrect, but in
a way, which cannot be
detected.

Correct in range; but wrong
value

21

 SSQ, WS 15/16

Criticality Classes

 Risk as given by the risk mishap index (MIL-STD-882):

Names vary, principle remains:

 Catastrophic – single failure

 Critical – two failures

 Marginal – multiple failures/may contribute

22

Severity Probability

1. Catastrophic A. Frequent

2. Critical B. Probable

3. Marginal C. Occasional

4. Negligible D. Remote

E. Improbable

 SSQ, WS 15/16

FMEA Example: Airbag Control (Struct.)

23

ID Mode Cause Effect Crit. Appraisal

1 Omission Gas cartridge
empty

Airbag not released in
emergency situation

C1 SR-56.3

2 Omission Cover does not
detach

Airbag not released fully in
emergency situation.

C1 SR-57.9

3 Omission Trigger signal
not present in
emergency.

Airbag not released in
emergency situation

C1 Ref. To SW-
FMEA

4 Comm. Trigger signal
present in non-
emergency

Airbag released during
normal vehicle operation

C2 Ref. To SW-
FMEA

 SSQ, WS 15/16

FMEA Example: Airbag Control (Funct.)

24

ID Mode Cause Effect Crit. Appraisal

5-1 Omission Software
terminates
abnormally

Airbag not
released in
emergency.

C1 See 1.1, 1.2.

5-1.1 Omission - Division by 0 See 1 C1 SR-47.3
Static Analysis

5-1.2 Omission - Memory fault See 1 C1 SR-47.4
Static Analysis

5-2 Omision Software does not
terminate

Airbag not
released in
emergency.

C1 SR-47.5
Static Analysis

5-3 Late Computation takes
too long.

Airbag not
released in
emergency.

C1 SR-47.6

5-4 Comm. Spurious signal
generated

Airbag released
in non-
emergency

C2 SR-49.3

5-5 Value (u) Software computes
wrong result

Either of 5-1 or
5-4.

C1 SR-12.1
Formal Verification

 SSQ, WS 15/16

The Seven Principles of Hazard Analysis

Ericson (2005)

1) Hazards, mishaps and risk are not chance events.

2) Hazards are created during design.

3) Hazards are comprised of three components.

4) Hazards and mishap risk is the core safety process.

5) Hazard analysis is the key element of hazard and
mishap risk management.

6) Hazard management involves seven key hazard
analysis types.

7) Hazard analysis primarily encompasses seven hazard
analysis techniques.

26

 SSQ, WS 15/16

Summary

Hazard Analysis is the start of the formal development.

Its most important output are safety requirements.

Adherence to safety requirements has to be verified
during development, and validated at the end.

We distinguish different types of analysis:

 Top-Down analysis (Fault Trees)

 Bottom-up (FMEAs, Event Trees)

It makes sense to combine different types of analyses,
as their results are complementary.

29

 SSQ, WS 15/16

Conclusions

Hazard Analysis is a creative process, as it takes an
informal input („system safety“) and produces a formal
outout (safety requirements). Its results cannot be
formally proven, merely checked and reviewed.

Review plays a key role. Therefore,

 documents must be readable, understandable, auditable;

 analysis must be in well-defined and well-documented
format;

 all assumptions must be well documented.

Next week: High-Level Specification.

30

 SSQ, WS 15/16

Systeme hoher Qualität und Sicherheit
Universität Bremen WS 2015/2016

Christoph Lüth Jan Peleska Dieter Hutter

Lecture 05 (09-11-2015)

High-Level Design with SysML

 SSQ, WS 15/16

Where are we?

01: Concepts of Quality

02: Legal Requirements: Norms and Standards

03: The Software Development Process

04: Hazard Analysis

05: High-Level Design with SysML

06: Formal Modelling with SysML

07: Detailed Specification with SysML

08: Testing

09 and 10: Program Analysis

11: Model-Checking

12: Software Verification (Hoare-Calculus)

13: Software Verification (VCG)

14: Conclusions

 SSQ, WS 15/16

Your Daily Menu

What is high-level design?

 Describing the structure of the system at an abstract level

 Should fit with formal model at lower level

In which language?

 Wide-spectrum specification languages such as Z, B, Event-
B, CASL, …

 Architectural languages

 Modeling languages such as the UML

 UML is very software-centred, hence SysML

Today:

 Introduction to SysML

 Structural modeling in SysML

3

 SSQ, WS 15/16

High-Level Design in the Development Cycle

Edit picture

 SSQ, WS 15/16

An Introduction to SysML

5

 SSQ, WS 15/16

What is a model?

„A model is a representation in a certain medium of
something in the same or another medium. The model
captures the important aspects of the thing being
modelled from a certain point of view and simplifies or
omits the rest.“ Rumbaugh, Jacobson, Booch: UML Reference Manual.

In other words: an abstract representation of reality.

Purposes of models:

 Analysing requirements

 Understanding, communicating and capturing the design

 Organizing information about a large system

 Analyse design decisions early in the development
process

 SSQ, WS 15/16

Model-Driven Development (MDD, MDE)

Recall the idea of MDD:
 Describe problems on abstract level using a modelling language

(often a domain-specific language), and derive implementation
by model transformation or run-time interpretation.

 Often used with UML (or its DSLs, eg. SysML)

However, using a modelling language like UML or SysML
does not mean one has to employ MDD; in particular,
we can still employ V-model-like approaches as required
by safety standards.

7

 SSQ, WS 15/16

The Unifed Modeling Language (UML)

The UML grew out of a wealth of modelling languages in
the 1990s, as James Rumbaugh, Grady Booch and Ivar
Jacobson all worked at Rational Software.

It was adopted by the Object Management Group (OMG)
in 1997, and approved as ISO standard in 2005.

UML 2 consists of

 the superstructure to define diagrams,

 a core meta-model,

 the object constraint language (OCL),

 an interchange format

UML 2 is not a fixed language, it can be extended and
customised using profiles.

8

 SSQ, WS 15/16

The Systems Modeling Language SysML

SysML is a modeling language for systems engineering

Standardised in 2007 by the OMG (Ver. 1.0, now at 1.3)

SysML Standard available at:
http://www.omg.org/spec/SysML/1.3/PDF

UML vs. SysML:

9

UML SysML

http://www.omg.org/spec/SysML/1.3/PDF
http://www.omg.org/spec/SysML/1.3/PDF

 SSQ, WS 15/16

What for SysML?

The aim of SysML (much like UML) is to serve as a
standardised notation allowing all stakeholders to
understand and communicate the salient aspects of the
system under development:

 the requirements,

 the structure (static aspects), and

 the behaviour (dynamic aspects).

Certain aspects (diagrams) of the SysML are formal,
others are informal.

 Important distinction when developing critical systems

All diagrams are views of one underlying model.

10

 SSQ, WS 15/16

Views in SysML

Structure:

 How is the system constructed? How does it decompose?

Behaviour:

 What can we observe? Does it have a state?

Requirements:

 What are the requirements? Are they met?

Parametrisation:

 What are the constraints (physical/design)?

… and possibly more.

11

 SSQ, WS 15/16

Example: A Cleaning Robot (HooverBot)

Structure:

 Has an engine, wheels (or tracks?), a vacuum cleaner, a
control computer, a battery…

Behaviour:

 General: Starts, then cleans until battery runs out, returns
to charging station

 Cleaning: moves in irregular pattern, avoids obstacles

Requirements:

 Must cover floor when possible, battery must last at least
six hours, should never run out of battery, …

Constraints:

 Can only clean up to 5g, can not drive faster than 1m/s,
laws concerning movement and trajectory, …

12

 SSQ, WS 15/16

SysML Diagrams

13

Structural Diagrams

Package Diagram

Internal Block Diagram Parametric Diagram

Block Definition Diagram

Behavioural Diagrams

Use Case Diagram *

State Machine Diagram Sequence Diagram

Activity Diagram

Requirement Diagram *

* Not considered further.

 SSQ, WS 15/16

Structural Diagrams in SysML

14

 SSQ, WS 15/16

Block Definition Diagram

Corresponds to class diagrams in the UML

Blocks are the basic building elements of a model

 Models are instances of blocks

Block definition diagrams model blocks and their
relations:

 Inheritance

 Association

Blocks can also model interface definitions.

15

 SSQ, WS 15/16

Example 1: Vehicles

A vehicle can be a car, or
a bicycle.

A car has an engine

A car has 4 wheels, a
bicyle has 2 wheels

Engines and wheels have
operations and values

In SysML, Engine and
Wheel are parts of Car
and Bicycle.

16

 SSQ, WS 15/16

Example 2: HooverBots

The hoover bots have a control computer, and a
vacuum cleaner.

 HooverBot 100 has one v/c, Hoover 1000 has two.

 Two ways to model this (i.e. two views)

17

 SSQ, WS 15/16

Internal Block Diagrams

Internal block diagrams decribe instances of blocks.

Here, instances for HooverBots

On this level, we can describe connections between
ports (flow specifications)

 Flow specifications have directions.

18

 SSQ, WS 15/16

HooverBot 100 and 1000

19

 SSQ, WS 15/16

Package Diagrams

20

Packages are used to group
diagrams, much like
directories in the file
system.

Not considered much in
the following

 SSQ, WS 15/16

Parametric Diagrams

Parametric diagrams describe constraints between
properties and their parameters.

It can be seen as a restricted form of an internal block
diagram, or as equational modeling as in Simulink.

21

Source:
http://astah.net/tutorials/sysml/parametric

 SSQ, WS 15/16

Modeling Tool: Astah-SysML

Astah-SysML is available at

 http://astah.net/editions/sysml

A faculty licence is available for FB3 Uni Bremen

 Non-commercial use only, do not distribute!

The tool not only helps with the drawing, it also keeps
track of the relationship between the diagrams: you edit
the model rather than the diagrams.

22

http://astah.net/editions/sysml

 SSQ, WS 15/16

Summary

High-level modelling describes the structure of the
system at an abstract level.

SysML is a standardised modelling language for systems
engineering, based on the UML.

 We disregard certain aspects of SysML in this lecture

SysML structural diagrams describe this structure.

 Block definition diagrams

 Internal block definition diagrams

 Package diagrams

We may also need to describe formal constraints, or
invariants.

For this: OCL --- next week.

23

 SSQ, WS 15/16

Systeme hoher Qualität und Sicherheit
Universität Bremen WS 2015/2016

Christoph Lüth Jan Peleska Dieter Hutter

Lecture 06 (16-11-2015)

Formal Modelling with SysML and OCL

 SSQ, WS 15/16

Where are we?

01: Concepts of Quality

02: Legal Requirements: Norms and Standards

03: The Software Development Process

04: Hazard Analysis

05: High-Level Design with SysML

06: Formal Modelling with SysML and OCL

07: Detailed Specification with SysML

08: Testing

09 and 10: Program Analysis

11: Model-Checking

12: Software Verification (Hoare-Calculus)

13: Software Verification (VCG)

14: Conclusions

 SSQ, WS 15/16

Formal Modelling in the Development Cycle

 SSQ, WS 15/16

What is OCL?

OCL is the Object Constraint Language.

What is OCL?

 „A formal language used to describe expressions on UML
models. These expressions typically specify invariant
conditions that must hold for the system being modeled or
queries over objects described in a model.” (OCL standard, §7)

Why OCL?

 „A UML diagram, such as a class diagram, is typically not
refined enough to provide all the relevant aspects of a
specification. There is, among other things, a need to
describe additional constraints about the objects in the
model. “ (OCL standard, §7.1)

4

 SSQ, WS 15/16

Characteristics of the OCL

OCL is a pure specificication language.

 OCL expressions do not have side effects.

OCL is not a programming language.

 Expressions are not executable (though some may be).

OCL is typed language

 Each expression has type; all expressions must be well-
typed.

 Types are classes, defined by class diagrams.

5

 SSQ, WS 15/16

OCL can be used for the following:

as a query language

to specify invariants on classes and types in the class

to specify type invariant for Stereotypes

to describe pre- and post conditions on Operations and
Methods

to describe Guards

to specify target (sets) for messages and actions

to specify constraints on operations

to specify derivation rules for attributes for any
expression over a UML model.

 (OCL standard, §7.1.1)

6

 SSQ, WS 15/16

Example: A Flight-Booking System

Flight destinations are given by

 an IATA id, and a string

A flight is given by

 Source and destination, arrival and departure date,
capacity and free seats

A query asks for

 a flight from/to at a given time and number of free seats

Operations:

 Query

 Book a flight

7

 SSQ, WS 15/16

Example: A Flight-Booking System

Possible constraints:

No more free seats than capacity

Source and destination must be disjoint

Query must return „correct“ flight

Destination identifiers must be unique

To book a flight:

 Possible if enough free seats

 Afterwards, number of free seats reduced

Possible extension:

Query returns a schedule --- list of connecting flights

8

 SSQ, WS 15/16

Example: The Traffic Light

9

 SSQ, WS 15/16

pedLight: False
carLight: True
request: False
counter: 0

Example: The Traffic Light

10

 SSQ, WS 15/16

pedLight: False
carLight: True
request: True
counter: 1

Example: The Traffic Light

11

 SSQ, WS 15/16

pedLight: False
carLight: False
request: True
counter: 1

Example: The Traffic Light

12

 SSQ, WS 15/16

Deadlock

pedLight: True
carLight: False
request: False
counter: 1

Example: The Traffic Light

13

 SSQ, WS 15/16

OCL Basics

The language is typed: each expression has a type.

Three-valued logic (Kleene logic)

 Actually, more like four-valued (null)

Expressions always live in a context:

 Invariants on classes, interfaces, types.

 Pre/postconditions on operations or methods

14

context Class

 inv Name: expr

context Type :: op(a1: Type) : Type

 pre Name: expr

 post Name: expr

 SSQ, WS 15/16

OCL Types

Basic types:

 Boolean, Integer, Real, String

 OclAny, OclType, OclVoid

Collection types:

 Sequences, Bag, OrderedSet, Set

Model types

15

 SSQ, WS 15/16

Basic types and operations

Integer (ℤ) OCL-Std. §11.5.2

Real (ℝ) OCL-Std. §11.5.1

 Integer is a subclass of Real

 round, floor from Real to Integer

String (Zeichenketten) OCL-Std. §11.5.3

 substring, toReal, toInteger, characters, etc.

Boolean (Wahrheitswerte) OCL-Std. §11.5.4

 or, xor, and, implies

 Relationen auf Real, Integer, String

16

 SSQ, WS 15/16

Collection Types

Sequence, Bag, OrderedSet, Set OCL-Std. §11.7

Operations on all collections:

 size, includes, count, isEmpty, flatten

 Collections are always „flattened“

Set

 union, intersection

Bag

 union, intersection, count

Sequence

 first, last, reverse, prepend, append

17

 SSQ, WS 15/16

Collection Types: Iterators

Iterators are higher-order functions

All iterators defined via iterate OCL-Std. §7.7.6

coll->iterate(elem: Type, acc: Type= expr | expr[el, acc])

iterate(e: T, acc: T= v)

{ acc= v;

 for (Enumeration e= c.elements(); e.hasMoreElements();) {

 e= e.nextElement();

 acc.add(expr[e, acc]);

 }

 return acc;

}

18

 SSQ, WS 15/16

Model types

Model types are given by

 attributes,

 operations, and

 Associations of the model

Navigation along the association

 If cardinality is 1, type is of target type T

 Otherise, it is Set(T)

User-defined operations in expressions have to be
stateless (stereotype <<query>>)

19

 SSQ, WS 15/16

Undefinedness in OCL

Undefinedness is propagated OCL-Std §7.5.11

 In other words, all operations are strict

Exceptions:

 Boolean operators (and, or non-strict on both sides)

 Case distinction

 Test on definedness: oclIsUndefined with

𝑜𝑐𝑙𝐼𝑠𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑒 =
𝑡𝑟𝑢𝑒 𝑖𝑓 𝑒 = ⊥
𝑓𝑎𝑙𝑠𝑒 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Resulting logic is three-valued (Kleene-Logic)

In fact, four-valued: there is always null

Iterators are “semi-strict”

20

 SSQ, WS 15/16

OCL Style Guide

Avoid complex navigation („Loose coupling“)

 Otherwise changes in models break OCL constraints

Always choose adequate context

„Use of allInstances()is discouraged“

Split up invariants if possible

Consider defining auxiliary operations if expressions
become too complex.

21

 SSQ, WS 15/16

Summary

OCL is a typed, state-free specification language which
allows us to denote constraints on models.

We can define or models much more precise.

 Ideally: no more natural language needed.

OCL is part of the more „academic“ side of UML/SysML.

 Tool support is not great, some tools ignore OCL, most
tools at least type-check OCL, hardly any do proofs.

However, in critical system development, the kind of
specification that OCL allows is essential.

Next week: detailed specification with SysML.

 Behavioural diagrams: state diagrams, sequence charts …

22

 SSQ, WS 15/16

Systeme hoher Qualität und Sicherheit
Universität Bremen WS 2015/2016

Christoph Lüth Jan Peleska Dieter Hutter

Lecture 07 (23-11-2015)

Detailed Specification with SysML

 SSQ, WS 15/16

Where are we?

01: Concepts of Quality

02: Legal Requirements: Norms and Standards

03: The Software Development Process

04: Hazard Analysis

05: High-Level Design with SysML

06: Formal Modelling with SysML and OCL

07: Detailed Specification with SysML

08: Testing

09 and 10: Program Analysis

11: Model-Checking

12: Software Verification (Hoare-Calculus)

13: Software Verification (VCG)

14: Conclusions

 SSQ, WS 15/16

Detailed Specification in the Development Cycle

 SSQ, WS 15/16

Why detailed Specification?

Detailed specification is the specification of single
modules making up our system.

This is the „last“ level both in abstraction and detail
before we get down to the code – in fact, some
specifications at this level can be automatically
translated into code.

Why not write code straight away?

 We want to stay platform-independent.

 We may not want to get distracted by details of our target
platform.

 At this level, we have a better chance of finding errors or
proving safety properties.

4

 SSQ, WS 15/16

Levels of Detailed Specification

We can specify the basic modules

By their (external) behaviour:

 Which operations can be called, what are their
pre/post-conditions and effects.

 This can be modelled using OCL.

 Alternatively, we can model the system‘s internal
states by a state machine, which has states and
guarded transitions between them.

By their (internal) structure:

 Modelling the control flow by flow charts aka.
activity charts.

 There are also a variety of action languages
(platform-independent programming languages) for
UML, but these are not standard for SysML.

5

 SSQ, WS 15/16

State Diagrams: Basics

State diagrams are a particular form of (hierarchical)
finite state machines.

 A finite state machine is given by 𝑀 = Σ, → where

 Σ is a finite set of states, and

 → ⊆ Σ × Σ is a transition relation which is left-total.

Example: a simple coffee machine.

We will explore FSMs in detail later.

In hierarchical state machines, a state may contain
another FSM (with initial/final states).

State Diagrams in SysML are taken unchanged from
UML.

6

 SSQ, WS 15/16

Basic Elements of State Diagrams

States

 Initial/Final

Transitions

Events (Triggers)

Guards

Actions (Effects)

7

 SSQ, WS 15/16

What is an Event?

„The specification of a noteworthy occurence which has a
location in time and space.“ (UML Reference Manual)

SysML knows:

 Signal events event name/

 Call events operation name/

 Time events after(t)/

 Change event when(e)/

 Entry events Entry/

 Exit events Exit/

8

 SSQ, WS 15/16

State Diagram Elements (SysML Ref. §13.2)

Choice pseudo state

Composite state

Entry point

Exit point

Final state

History pseudo states

Initial pseudo state

Junction pseudo state

Receive signal action

Send signal action

Action

9

Region

Simple state

State list

State machine

Terminate node

Submachine state

 SSQ, WS 15/16

Activity Charts: Foundations

The activity charts of SysML (UML) are a variation of old-
fashioned flow charts.

 Standardised as DIN 66001 (ISO 5807)

Flow charts can
describe programs
(right example) or
non-computational
activities (left exam-
ple)

SysML activity charts
are extensions of
UML activity charts.

11

Quelle: Erik Streb, via Wikipedia

Quelle: Wikipedia

 SSQ, WS 15/16

Basics of Activity Diagrams

Activities model the sequence and conditions for low-
level behaviours:
“An activity is the specification of parameterized behaviour
as the coordinated sequencing of subordinate unites whose
individual elements are actions.” (UML Ref. §12.3.4)

This is performed by means of control flow and object
flow models

Control flow allows to disable and enable (sub-)
activities using these two enumeration values.

An activity execution results in the execution of a set of
actions in some specific order.

Activity executions may comprise several logical
execution threads.

12

 SSQ, WS 15/16

What is an Action?

A terminating basic behaviour, such as

 Changing variable values [UML Ref. §11.3.6]

 Calling operations [UML Ref. §11.3.10]

 Calling activities [UML Ref. §12.3.4]

 Creating and destroying objects, links, associations

 Sending or receiving signals

 Raising exceptions .

Actions are part of a (potentially larger, more complex)
behaviour

Inputs to actions are provided by ordered sets of pins

 A pin is a typed element, associated with a multiplicity

 Input pins transport typed elements to an action

 Actions deliver outputs consisting of typed elements on
output pins

13

 SSQ, WS 15/16

Elements of Activity Diagrams (SysML Ref. §11.2.1)

Paths (arrows):

 Control flow

 Object flow

 Probability and rates

Activities in BDDs

Partitions

Interruptible Regions

Structured activities

14

Nodes:

 Action nodes

 Activities

 Decision nodes

 Final nodes

 Fork nodes

 Initial nodes

 Local pre/post-conditions

 Merge nodes

 Object nodes

 Probabilities and rates

 SSQ, WS 15/16

Behavioural Semantics

Semantics is based on token flow – similar to Petri Nets,
see [UML Ref. pp. 326]

 A token can be an input signal, timing condition,
interrupt, object node (representing data), control
command (call, enable) communicated via input pin,
…

 An executable node (action or sub-activity) in the
activity diagram begins its execution, when the
required tokens are available on their input edges.

 On termination, each executable node places tokens
on certain output edges, and this may activate the
next executable nodes linked to these edges.

16

 SSQ, WS 15/16

Activity Diagrams – Links With BDDs

Block definition diagrams may show

 Blocks representing activities

 One activity may be composed of other activities –
composition indicates parallel execution threads of the
activities at the “part end”

 One activity may contain several blocks representing
object nodes (which represent data flowing through the
activity diagram).

17

 SSQ, WS 15/16

SysML Diagrams Overview

19

Structural Diagrams

Package Diagram

Internal Block Diagram Parametric Diagram

Block Definition Diagram

Behavioural Diagrams

Use Case Diagram *

State Machine Diagram Sequence Diagram

Activity Diagram

Requirement Diagram *

* Not considered further.

 SSQ, WS 15/16

Sequence Diagrams

Sequence Diagrams describe the flow of messages
between actors.

Extremely useful, but also extremely limited.

We may consider concurrency further later on.

20

Quelle:
IBM developerWorks

 SSQ, WS 15/16

Summary

Detailed specification means we specify the internal
structure of the modules in our systems.

Detailed specification in SysML:

 State diagrams are hierarchical finite state machines
which specify states and transitions.

 Activity charts model the control flow of the program.

More behavioural diagrams in SysML:

 Sequence charts model the exchange of messages
between actors.

 Use case diagrams describe particular uses of the system.

21

 SSQ, WS 15/16

Systeme hoher Qualität und Sicherheit
Universität Bremen WS 2015/2016

Christoph Lüth Jan Peleska Dieter Hutter

Lecture 08 (30-11-2015)

Testing

 SSQ, WS 15/16

Where are we?

01: Concepts of Quality

02: Legal Requirements: Norms and Standards

03: The Software Development Process

04: Hazard Analysis

05: High-Level Design with SysML

06: Formal Modelling with SysML and OCL

07: Detailed Specification with SysML

08: Testing

09: Program Analysis

10 and 11: Software Verification (Hoare-Calculus)

12: Model-Checking

13: Concurrency

14: Conclusions

 SSQ, WS 15/16

Your Daily Menu

What is testing?

Different kinds of tests.

Different test methods: black-box vs. white-box.

The basic problem: cannot test all possible inputs.

Hence, coverage criteria: how to test enough.

3

 SSQ, WS 15/16

Testing in the Development Cycle

 SSQ, WS 15/16

What is Testing?

In our sense, testing is selected, controlled program
execution.

The aim of testing is to detect bugs, such as

 derivation of occurring characteristics of quality
properties compared to the specified ones;

 inconsistency between specification and implementation;

 or structural features of a program that cause a faulty
behavior of a program.

5

Testing is the process of executing a program or
system with the intent of finding errors.

Myers, 1979

Program testing can be used to show the presence of
bugs, but never to show their absence.

E.W. Dijkstra, 1972

 SSQ, WS 15/16

The Testing Process

Test cases, test plan, etc.

System-under-test (s.u.t.)

Warning -- test literature is quite expansive:

6

Testing is any activity aimed at evaluating an attribute
or capability of a program or system and determining
that it meets its required results.

Hetzel, 1983

 SSQ, WS 15/16

Test Levels

Component tests and unit tests: test at the interface

level of single components (modules, classes)

Integration test: testing interfaces of components fit

together

System test: functional and non-functional test of the

complete system from the user’s perspective

Acceptance test: testing if system implements contract

details

7

 SSQ, WS 15/16

Test Methods

Static vs. dynamic:

 With static tests, the code is analyzed without being run.
We cover these methods as static program analysis later.

 With dynamic tests, we run the code under controlled
conditions, and check the results against a given
specification.

The central question: where do the test cases come
from?

 Black-box: the inner structure of the s.u.t. is opaque, test
cases are derived from specification only;

 Grey-box: some inner structure of the s.u.t. is known, eg.
Module architecture;

 White-box: the inner structure of the s.u.t. is known, and
tests cases are derived from the source code;

8

 SSQ, WS 15/16

Black-Box Tests

Limit analysis:

 If the specification limits input parameters, then values
close to these limits should be chosen.

 Idea is that programs behave continuously, and errors
occur at these limits.

Equivalence classes:

 If the input parameter values can be decomposed into
classes which are treated equivalently, test cases have to
cover all classes.

Smoke test:

 “Run it, and check it does not go up in smoke.”

9

 SSQ, WS 15/16

Example: Black-Box Testing

Equivalence classes or limits?

Equivalence classes or limits?

10

Example: A Company Bonus System

The loyalty bonus shall be computed depending on the
time of employment. For employes of more than three
years, it shall be 50% of the monthly salary, for
employees of more than five years, 75%, and for
employees of more than eight years, it shall be 100%.

Example: Air Bag

The air bag shall be released if the vertical acceleration
𝑎𝑣 equals or exceeds 15 𝑚 𝑠2 . The vertical acceleration

will never be less than zero, or more than 40 𝑚 𝑠2 .

 SSQ, WS 15/16

Black-Box Tests

Quite typical for GUI tests, or functional testing.

Testing invalid input: depends on programming

language  the stronger the typing, the less testing for

invalid input is required.

 Example: consider lists in C, Java, Haskell.

 Example: consider ORM in Python, Java.

11

 SSQ, WS 15/16

Other approaches: Monte-Carlo Testing

In Monte-Carlo testing (or random testing), we generate
random input values, and check the results against a
given spec.

This requires executable specifications.

Attention needs to be paid to the distribution values.

Works better with high-level languages (Java, Scala,
Haskell) where the datatypes represent more
information on an abstract level.

 ScalaCheck, QuickCheck for Haskell

Example: consider list reversal in C, Java, Haskell

 Executable spec:

► Reversal is idempotent.

► Reversal distributes over concatenation.

 Question: how to generate random lists?

12

 SSQ, WS 15/16

White-Box Tests

In white-box tests, we derive test cases based on the
structure of the program (structural testing)

 To abstract from the source code (which is a purely
syntactic artefact), we consider the control flow graph
of the program.

Hence, paths in the cfg correspond to runs of the
program.

13

Def: Control Flow Graph (cfg)

• Nodes are elementary statements (e.g. assignments,

return, break, . . .), and control expressions (eg. in

conditionals and loops), and

• there is a vertex from n to m if the control flow can reach

node m coming from n.

 SSQ, WS 15/16

A Very Simple Programming Language

In the following, we use a very simple language with a C-
like syntax.

Arithmetic operators given by
𝑎 ∷= 𝑥 𝑛 𝑎1 𝑜𝑝𝑎 𝑎2

with 𝑥 a variable, 𝑛 a numeral, 𝑜𝑝𝑎arith. op. (e.g. +, -, *)

Boolean operators given by
𝑏 ≔ true false not 𝑏 𝑏1𝑜𝑝𝑏 𝑏2 𝑎1𝑜𝑝𝑟 𝑎2

with 𝑜𝑝𝑏 boolean operator (e.g. and, or) and 𝑜𝑝𝑟 a
relational operator (e.g. =, <)

Statements given by
𝑆 ∷=
𝑥 ≔ 𝑎 𝑙 | 𝑠𝑘𝑖𝑝 𝑙 𝑆1; 𝑆2 | 𝑖𝑓 𝑏

𝑙 𝑆1 𝑒𝑙𝑠𝑒 𝑆2 𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙 {𝑆}

We may write the labels als comments

 x:= a+ 10; /* 1 */ if (y < 3) /* 2 */ { x:= x+1; /* 3 */ } else { y:= y+1; /* 4 */ }

 SSQ, WS 15/16

Example: Control-Flow Graph

if (x < 0) /* 1 */ {

 x := – x; /* 2 */

 }

z := 1; /* 3 */

while (x > 0) /*4*/ {

 z := z * y; /* 5 */

 x := x – 1; /* 6 */

}

return z /* 7 */

1

2

3

4

5

6

7

An execution path is
a path though the
cfg.

Examples:
• [1,3,4,7, E]

• [1,2,3,4,7, E]

• [1,2,3,4,5,6,4,7, E]

• [1,3,4,5,6,4,5,6,4,7, E]

• …

E

 SSQ, WS 15/16

Coverage

Statement coverage: Each node in the cfg is visited at
least once.

Branch coverage: Each vertex in the cfg is traversed at
least once.

Decision coverage: Like branch coverage, but specifies
how often conditions (branching points) must be
evaluated.

Path coverage: Each path in the cfg is executed at least
once.

16

 SSQ, WS 15/16

Example: Statement Coverage

17

1

2

3

4

5

6

7

E

if (x < 0) /* 1 */ {

 x := – x /* 2 */

 };

z := 1; /* 3 */

while (x > 0) /*4*/ {

 z := z * y; /* 5 */

 x := x – 1 /* 6 */

};

return z /* 7 */

Which (minimal) path
covers all statements?

 p = [1,2,3,4,5,6,4,7,E]

Which state generates p?

 x = -1
 y any
 z any

 SSQ, WS 15/16

Example: Branch Coverage

18

1

2

3

4

5

6

7

E

if (x < 0) /* 1 */ {

 x := – x /* 2 */

 };

z := 1; /* 3 */

while (x > 0) /*4*/ {

 z := z * y; /* 5 */

 x := x – 1 /* 6 */

};

return z /* 7 */

Which (minimal) path
covers all vertices?

 𝑝1= 1,2,3, 4,5,6, 4,7, 𝐸
𝑝2 = [1,3, 4, 7, 𝐸]

Which states generate
𝑝1, 𝑝2?

 𝑝1 𝑝2
 x -1 0
 y any any
 z any any

Note 𝑝3 (x= 1) does not
add coverage.

 SSQ, WS 15/16

Example: Path Coverage

19

1

2

3

4

5

6

7

E

if (x < 0) /* 1 */ {

 x := – x /* 2 */

 };

z := 1; /* 3 */

while (x > 0) /*4*/ {

 z := z * y; /* 5 */

 x := x – 1 /* 6 */

};

return z /* 7 */

How many paths are
there?

Let 𝑞1 = 1,2,3
 𝑞2 = 1,3

 𝑝 = 4,5,6

 𝑟 = [4,7, 𝐸]

 then all paths are
𝑃 = 𝑞1 𝑞2) 𝑝

∗ 𝑟

Number of possible
paths:

 𝑃 = 2 ⋅ 𝑀𝑎𝑥𝐼𝑛𝑡 − 1

 SSQ, WS 15/16

Statement, Branch and Path Coverage

Statement Coverage:

 Necessary but not sufficient, not suitable as only test
approach.

 Detects dead code (code which is never executed).

 About 18% of all defects are identified.

Branch coverage:

 Least possible single approach.

 Detects dead code, but also frequently executed program
parts.

 About 34% of all defects are identified.

Path Coverage:

 Most powerful structural approach;

 Highest defect identification rate (100%);

 But no practical relevance.

20

 SSQ, WS 15/16

Decision Coverage

Decision coverage is more then branch coverage, but
less then full path coverage.

Decision coverage requires that for all decisions in the
program, each possible outcome is considered once.

Problem: cannot sufficiently distinguish boolean
expressions.

 For A || B, the following are sufficient:
 A B Result

 false false false

 true false true

 But this does not distinguish A || B from A; B is effectively
not tested.

21

 SSQ, WS 15/16

Decomposing Boolean Expressions

The binary boolean operators include conjunction 𝑥 ∧ 𝑦,
disjunction 𝑥 ∨ 𝑦, or anything expressible by these (e.g.
exclusive disjunction, implication).

An elementary term is a variable, a boolean-valued
function, a relation (equality =, orders <,≤,>,≥, etc), or
a negation of these.

This is a fairly syntactic view, e.g. 𝑥 ≤ 𝑦 is elementary, but
𝑥 < 𝑦 ∨ 𝑥 = 𝑦 is not, even though they are equivalent.

In formal logic, these are called literals.

22

Elementary Boolean Terms

An elementary boolean term does not contain binary

boolean operators, and cannot be further decomposed.

 SSQ, WS 15/16

Simple Condition Coverage

In simple condition coverage, for each condition in the
program, each elementary boolean term evaluates to
True and False at least once.

Note that this does not say much about the possible
value of the condition.

Examples and possible solutions:

23

if (temperature > 90 && pressure > 120) {…

 C1 C2 Result

 True True True

 True False False

 False True False

 False False False

 SSQ, WS 15/16

Modified Condition Coverage

It is not always possible to generate all possible combi-
nations of elementary terms, e.g. 3 <= x && x < 5.

In modified (or minimal) condition coverage, all
possible combinations of those elementary terms the
value of which determines the value of the whole
condition need to be considered.

Example:

Another example: (x > 1 && ! p) || q

24

3 <= x && x < 5

False False False ← not needed
False True False

True False False

True True True

 SSQ, WS 15/16

Modified Condition/Decision Coverage

Modified Condition/Decision Coverage (MC/DC) is
required by DO-178B for Level A software.

It is a combination of the previous coverage criteria
defined as follows:

 Every point of entry and exit in the program has been
invoked at least once;

 Every decision in the program has taken all possible
outcomes at least once;

 Every condition in a decision in the program has taken all
possible outcomes at least once;

 Every condition in a decision has been shown to
independently affect that decision’s outcome.

25

 SSQ, WS 15/16

How to achieve MC/DC

Not: Here is the source code, what is the minimal set of
test cases?

Rather: From requirements we get test cases, do they
achieve MC/DC?

Example:

 Test cases: Source Code:
 Z := (A || B) && (C || D)

26

Test case 1 2 3 4 5

Input A F F T F T

Input B F T F T F

Input C T F F T T

Input D F T F F F

Result Z F T F T T

Question: do test cases
achieve MC/DC?

Source: Hayhurst et al, A Practical Tutorial
on MC/DC. NASA/TM2001-210876

 SSQ, WS 15/16

Summary

(Dynamic) Testing is the controlled execution of code,
and comparing the result against an expected outcome.

Testing is (traditionally) the main way for verification

Depending on how the test cases are derived, we
distinguish white-box and black-box tests.

In black-box tests, we can consider limits and
equivalence classes for input values to obtain test
cases.

In white-box tests, we have different notions of
coverage: statement coverage, path coverage, condition
coverage, etc.

Next week: Static testing aka. static program analysis.

27

 SSQ, WS 15/16

Systeme hoher Qualität und Sicherheit
Universität Bremen WS 2015/2016

Christoph Lüth Jan Peleska Dieter Hutter

Lecture 09 (07-12-2015)

Static Program Analysis

 SSQ, WS 15/16

Where are we?

01: Concepts of Quality

02: Legal Requirements: Norms and Standards

03: The Software Development Process

04: Hazard Analysis

05: High-Level Design with SysML

06: Formal Modelling with SysML and OCL

07: Detailed Specification with SysML

08: Testing

09: Static Program Analysis

10 and 11: Software Verification (Hoare-Calculus)

12: Model-Checking

13: Concurrency

14: Conclusions

 SSQ, WS 15/16

Today: Static Program Analysis

Analysis of run-time behavior of programs without
executing them (sometimes called static testing)

Analysis is done for all possible runs of a program
(i.e. considering all possible inputs)

Typical tasks

 Does the variable x have a constant value ?

 Is the value of the variable x always positive ?

 Can the pointer p be null at a given program point ?

 What are the possible values of the variable y ?

These tasks can be used for verification (e.g. is there any
possible dereferencing of the null pointer), or for
optimisation when compiling.

 SSQ, WS 15/16

Program Analysis in the Development Cycle

 SSQ, WS 15/16

Usage of Program Analysis

Optimising compilers
Detection of sub-expressions that are evaluated multiple times

Detection of unused local variables

Pipeline optimisations

Program verification
Search for runtime errors in programs

Null pointer dereference

Exceptions which are thrown and not caught

Over/underflow of integers, rounding errors with floating point
numbers

Runtime estimation (worst-caste executing time, wcet)

In other words, specific verification aspects.

 SSQ, WS 15/16

Program Analysis: The Basic Problem

Basic Problem:

Given a property P and a program p, we say 𝑝 ⊨ 𝑃 if a P
holds for p. An algorithm (tool) 𝜙 which decides P is a
computable predicate 𝜙: 𝑝 → 𝐵𝑜𝑜𝑙. We say:

 𝜙 is sound if whenever 𝜙 𝑝 then 𝑝 ⊨ 𝑃.

 𝜙 is safe (or complete) if whenever 𝑝 ⊨ 𝑃 then 𝜙 𝑝 .

From the basic problem it follows that there are no
sound and safe tools for interesting properties.

 In other words, all interesting tools must either under- or
overapproximate.

All interesting program properties are undecidable.

 SSQ, WS 15/16

Program Analysis: Approximation

Correct Errors

Overapproximation

Underapproximation

Underapproximation only finds correct
programs but may miss out some

 Useful in optimising compilers

 Optimisation must respect semantics
of program, but may optimise.

Overapproximation finds all errors but
may find non-errors (false positives)

 Useful in verification.

 Safety analysis must find all errors,
but may report some more.

 Too high rate of false positives may
hinder acceptance of tool.

Not
computable

Computable

All programs

 SSQ, WS 15/16

Program Analysis Approach

Provides approximate answers

 yes / no / don’t know or

 superset or subset of values

 Uses an abstraction of program’s behavior

 Abstract data values (e.g. sign abstraction)

 Summarization of information from
execution paths e.g. branches of the if-else statement

Worst-case assumptions about environment’s behavior

 e.g. any value of a method parameter is possible

Sufficient precision with good performance

 SSQ, WS 15/16

Flow Sensitivity

Flow-sensitive analysis

Considers program's flow of control

Uses control-flow graph as a representation of the
source

Example: available expressions analysis

Flow-insensitive analysis

Program is seen as an unordered collection of
statements

Results are valid for any order of statements
e.g. S1 ; S2 vs. S2 ; S1

Example: type analysis (inference)

 SSQ, WS 15/16

Context Sensitivity

Context-sensitive analysis

Stack of procedure invocations and return values of
method parameters

Results of analysis of the method M depend on the caller
of M

Context-insensitive analysis

Produces the same results for all possible invocations of
M independent of possible callers and parameter values.

 SSQ, WS 15/16

Intra- vs. Inter-procedural Analysis

Intra-procedural analysis

Single function is analyzed in isolation

Maximally pessimistic assumptions about parameter
values and results of procedure calls

Inter-procedural analysis

Whole program is analyzed at once

Procedure calls are considered

 SSQ, WS 15/16

Data-Flow Analysis

Focus on questions related to values of variables and their lifetime

Selected analyses:

Available expressions (forward analysis)

 Which expressions have been computed already without
change of the occurring variables (optimization) ?

Reaching definitions (forward analysis)

 Which assignments contribute to a state in a program point?
(verification)

Very busy expressions (backward analysis)

 Which expressions are executed in a block regardless which
path the program takes (verification) ?

Live variables (backward analysis)

 Is the value of a variable in a program point used in a later part
of the program (optimization) ?

 SSQ, WS 15/16

Our Simple Programming Language

In the last lecture, we introduced a very simple language
with a C-like syntax.

Synposis:

Arithmetic operators given by
𝑎 ∷= 𝑥 𝑛 𝑎1 𝑜𝑝𝑎 𝑎2

Boolean operators given by
𝑏 ≔ true false not 𝑏 𝑏1𝑜𝑝𝑏 𝑏2 𝑎1𝑜𝑝𝑟 𝑎2
𝑜𝑝𝑏 ∈ 𝑎𝑛𝑑, 𝑜𝑟 , 𝑜𝑝𝑟 ∈ =,<,≤,>,≥,≠

Statements given by
𝑆 ∷=
𝑥 ≔ 𝑎 𝑙 | 𝑠𝑘𝑖𝑝 𝑙 𝑆1; 𝑆2 | 𝑖𝑓 𝑏

𝑙 𝑆1 𝑒𝑙𝑠𝑒 𝑆2 𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙 {𝑆}

 SSQ, WS 15/16

Computing the Control Flow Graph

To calculate the cfg, we define some functions on the
abstract syntax:

 The initial label (entry point) init: 𝑆 → 𝐿𝑎𝑏

 The final labels (exit points) final: 𝑆 → ℙ 𝐿𝑎𝑏

 The elementary blocks block: 𝑆 → ℙ 𝐵𝑙𝑜𝑐𝑘𝑠
where an elementary block is

► an assignment [x:= a],

► or [skip],

► or a test [b]

 The control flow flow: 𝑆 → ℙ 𝐿𝑎𝑏 × 𝐿𝑎𝑏 and reverse
control flowR: 𝑆 → ℙ 𝐿𝑎𝑏 × 𝐿𝑎𝑏 .

The control flow graph of a program S is given by

 elementary blocks block 𝑆 as nodes, and

 flow(S) as vertices.

 SSQ, WS 15/16

Labels, Blocks, Flows: Definitions

𝑓𝑖𝑛𝑎𝑙 𝑥 ≔ 𝑎 𝑙 = 𝑙

𝑓𝑖𝑛𝑎𝑙 𝑠𝑘𝑖𝑝 𝑙 = 𝑙
𝑓𝑖𝑛𝑎𝑙 𝑆1; 𝑆2 = 𝑓𝑖𝑛𝑎𝑙 𝑆2
𝑓𝑖𝑛𝑎𝑙 𝑖𝑓 𝑏 𝑙 𝑆1 𝑒𝑙𝑠𝑒 {𝑆2} = 𝑓𝑖𝑛𝑎𝑙 𝑆1 ∪ 𝑓𝑖𝑛𝑎𝑙 𝑆2

𝑓𝑖𝑛𝑎𝑙 𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙 𝑆 = {𝑙}

𝑖𝑛𝑖𝑡 𝑥 ≔ 𝑎 𝑙 = 𝑙

𝑖𝑛𝑖𝑡 𝑠𝑘𝑖𝑝 𝑙 = 𝑙
𝑖𝑛𝑖𝑡 𝑆1; 𝑆2 = 𝑖𝑛𝑖𝑡 𝑆1
𝑖𝑛𝑖𝑡 (𝑖𝑓 𝑏 𝑙 𝑆1 𝑒𝑙𝑠𝑒 𝑆2 = 𝑙
𝑖𝑛𝑖𝑡 (𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙 𝑆 = 𝑙

𝑓𝑙𝑜𝑤 𝑥 ≔ 𝑎 𝑙 = ∅

𝑓𝑙𝑜𝑤 𝑠𝑘𝑖𝑝 𝑙 = ∅
𝑓𝑙𝑜𝑤 𝑆1; 𝑆2 = 𝑓𝑙𝑜𝑤 𝑆1 ∪ 𝑓𝑙𝑜𝑤 𝑆2 ∪ 𝑙, 𝑖𝑛𝑖𝑡 𝑆2) 𝑙 ∈ 𝑓𝑖𝑛𝑎𝑙 𝑆1
𝑓𝑙𝑜𝑤 𝑖𝑓 𝑏 𝑙 𝑆1 𝑒𝑙𝑠𝑒 {𝑆2 } = 𝑓𝑙𝑜𝑤 𝑆1 ∪ 𝑓𝑙𝑜𝑤 𝑆2 ∪ {(𝑙, 𝑖𝑛𝑖𝑡 𝑆1), 𝑙, 𝑖𝑛𝑖𝑡 𝑆2)

𝑓𝑙𝑜𝑤 (𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙 𝑆 = 𝑓𝑙𝑜𝑤 𝑆 ∪ 𝑙, 𝑖𝑛𝑖𝑡 𝑆 ∪ { 𝑙′, 𝑙 |𝑙′ ∈ 𝑓𝑖𝑛𝑎𝑙 𝑆 }

𝑓𝑙𝑜𝑤𝑅 𝑆 = 𝑙′, 𝑙 𝑙, 𝑙′ ∈ 𝑓𝑙𝑜𝑤(𝑆)}

𝑏𝑙𝑜𝑐𝑘𝑠 𝑥 ≔ 𝑎 𝑙 = 𝑥 ≔ 𝑎 𝑙

𝑏𝑙𝑜𝑐𝑘𝑠 𝑠𝑘𝑖𝑝 𝑙 = 𝑠𝑘𝑖𝑝 𝑙
𝑏𝑙𝑜𝑐𝑘𝑠 𝑆1; 𝑆2 = 𝑏𝑙𝑜𝑐𝑘𝑠 𝑆1 ∪ 𝑏𝑙𝑜𝑐𝑘𝑠 𝑆2
𝑏𝑙𝑜𝑐𝑘𝑠 𝑖𝑓 𝑏 𝑙 𝑆1 𝑒𝑙𝑠𝑒 𝑆2

= 𝑏 𝑙 ∪ 𝑏𝑙𝑜𝑐𝑘𝑠 𝑆1 ∪ 𝑏𝑙𝑜𝑐𝑘𝑠 𝑆2
𝑏𝑙𝑜𝑐𝑘𝑠 𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙 𝑆 = 𝑏 𝑙 ∪ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆)

𝑙𝑎𝑏𝑒𝑙𝑠 𝑆 = 𝑙 𝐵 𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆)}
𝐹𝑉 𝑎 = free variables in 𝑎
𝐴𝑒𝑥𝑝 𝑆 = non-trival subexpressions
 in 𝑆 (variables and
 constants are trivial)

 SSQ, WS 15/16

An Example Program

init(P) = 1

final(P) = {3}

blocks(P) =

 { [x := a+b]1, [y := a*b]2, [y > a+b]3, [a:=a+1]4, [x:= a+b]5}

flow(P) = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 3)}

flowR(P) = {(2, 1), (3, 2), (4, 3), (5, 4), (3, 5)}

labels(P) = {1, 2, 3, 4, 5)

FV(a + b) = {a, b}

FV(P) = {a, b, x, y}

Aexp(P) = {a+b, a*b, a+1}

x := a +b

y > a + b

a := a + 1

x := a + b

1

5

4

3

y := a * b
2

P = [x := a+b]1; [y := a*b]2; while [y > a+b]3 { [a:=a+1]4; [x:= a+b]5 }

 SSQ, WS 15/16

Available Expression Analysis

x := a +b

y > a + b

a := a + 1

x := a + b

1

5

4

3

y := a * b
2

S :

For each program point, which
expressions must have already been
computed, and not modified, on all
paths to this program point.

The available expression analysis will
determine:

 SSQ, WS 15/16

Available Expression Analysis

kill([x :=a]l) = 𝑎′ ∈ 𝐴𝑒𝑥𝑝 𝑆 𝑥 ∈ 𝐹𝑉 ′𝑎 }
kill([skip]l) = ∅

kill([b]l) = ∅

gen([x :=a]l) = 𝑎′ ∈ 𝐴𝑒𝑥𝑝 𝑎 𝑥 ∉ 𝐹𝑉 ′𝑎 }
gen([skip]l) = ∅

gen([b]l) = 𝐴𝑒𝑥𝑝(𝑏)

AEin(l) =
∅, if l ∈ init(S)

 𝐴𝐸𝑜𝑢𝑡 𝑙′ 𝑙′, 𝑙 ∈ 𝑓𝑙𝑜𝑤(𝑆) , otherwise

AEout (l) = 𝐴𝐸𝑖𝑛 𝑙 \ 𝑘𝑖𝑙𝑙 𝐵𝑙 ∪ 𝑔𝑒𝑛 𝐵𝑙 , where 𝐵𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆)

x := a +b

y > a + b

a := a + 1

x := a + b

1

5

4

3

y := a * b
2

S :

l kill(l) gen(l)

1 ∅ {a+b}

2 ∅ {a*b}

3 ∅ {a+b}

4 {a+b, a*b, a+1} ∅

5 ∅ {a+b}

l AEin AEout

1 ∅ {a+b}

2 {a+b} {a+b, a*b}

3 {a+b} {a+b}

4 {a+b} ∅

5 ∅ {a+b}

 SSQ, WS 15/16

Reaching Definitions Analysis

Reaching definitions (assignment)
analysis determines if:

An assignment of the form [x := a]l

may reach a certain program point k
if there is an execution of the
program where x was last assigned a
value at l when the program point k
is reached

x := 5

x > 1

y := x * y

x := x - 1

1

5

4

3

y := 1
2

S :

 SSQ, WS 15/16

Reaching Definitions Analysis

kill([skip]l) = ∅

kill([b]l) = ∅

kill([x :=a]l) = 𝑥, ? ∪ 𝑥, 𝑘 𝐵𝑘 𝑖𝑠 𝑎𝑛 𝑎𝑠𝑠𝑖𝑔𝑚𝑒𝑛𝑡 𝑖𝑛 𝑆}

gen([x :=a]l) = { 𝑥, 𝑙 }
gen([skip]l) = ∅

gen([b]l) = ∅

RDin(l) =
{ 𝑥, ? |𝑥 ∈ 𝐹𝑉 𝑠 if l ∈ init(S)

 𝑅𝐷𝑜𝑢𝑡 𝑙′ 𝑙′, 𝑙 ∈ 𝑓𝑙𝑜𝑤 𝑆 otherwise

RDout (l) = 𝑅𝐷𝑖𝑛 𝑙 \ 𝑘𝑖𝑙𝑙 𝐵𝑙 ∪ 𝑔𝑒𝑛 𝐵𝑙 where 𝐵𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆)

x := 5

x > 1

y := x * y

x := x - 1

1

5

4

3

y := 1
2

l kill(Bl) gen(Bl)

1 {(x,?), (x,1),(x,5)} {(x, 1)}

2 {(y,?), (y,2),(y,4)} {(y, 2)}

3 ∅ ∅

4 {(y,?), (y,2),(y,4)} {(y, 4)}

5 {(x,?), (x,1),(x,5)} {(x, 5)}

S :

l RDin RDout

1 {(x,?), (y,?)} {(x,1), (y,?)}

2 {(x,1), (y,?)} {(x,1), (y,2)}

3 {(x,1), (x,5), (y,2), (y,4)} {(x,1), (x,5), (y,2), (y,4)}

4 {(x,1), (x,5), (y,2), (y,4)} {(x,1), (x,5),(y,4)}

5 {(x,1), (x,5),(y,4)} {(x,5),(y,4)}

 SSQ, WS 15/16

Live Variables Analysis

A variable x is live at some program
point (label l) if there exists if there
exists a path from l to an exit point that
does not change the variable.

Live Variables Analysis determines:

Application: dead code elemination.

x := 2

x := 1

y > x

z := y

no yes

1

5

4

3

y := 4
2

S :

z := y*y
6

x := z

7

For each program point, which
variables may be live at the exit
from that point.

 SSQ, WS 15/16

Live Variables Analysis

kill([x :=a]l) = {𝑥}
kill([skip]l) = ∅

kill([b]l) = ∅

gen([x :=a]l) = 𝐹𝑉(𝑎)
gen([skip]l) = ∅

gen([b]l) = 𝐹𝑉(𝑏)

LVout(l) =
∅ if l ∈ final(S)

 𝐿𝑉𝑖𝑛 𝑙′ 𝑙′, 𝑙 ∈ 𝑓𝑙𝑜𝑤𝑅 𝑆 otherwise

LVin (l) = 𝐿𝑉𝑜𝑢𝑡 𝑙 \ 𝑘𝑖𝑙𝑙 𝐵𝑙 ∪ 𝑔𝑒𝑛 𝐵𝑙 where 𝐵𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆)

x := 2

x := 1

y > x

z := y

no yes

1

5

4

3

y := 4
2

l kill(l) gen(l)

1 {x} ∅

2 {y} ∅

3 {x} ∅

4 ∅ {x, y}

5 {z} {y}

6 {z} {y}

7 {x} {z}

l LVin LVout

1 ∅ ∅

2 ∅ {y}

3 {y} {x, y}

4 {x, y} {y}

5 {y} {z}

6 {y} {z}

7 {z} ∅

S :

z := y*y
6

x := z

7

 SSQ, WS 15/16

First Generalized Schema

Analysis (l) =
 𝐄𝐕 if 𝑙 ∈ 𝐄
□ Analysis (l‘) 𝑙′, 𝑙 ∈ 𝐅𝐥𝐨𝐰 𝑆 } otherwise

Analysis (l) = 𝑓l (Analysis (l))

With:

□ is either  or 

𝐄𝐕 is the initial / final analysis information

𝐅𝐥𝐨𝐰 is either flow or flowR

𝐄 is either {init(S)} or final(S)

𝑓𝑙 is the transfer function associated with 𝐵𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆)

Backward analysis: 𝐅𝐥𝐨𝐰 = flowR,  = IN,  = OUT

Forward analysis: 𝐅𝐥𝐨𝐰 = flow,  = OUT,  = IN

 SSQ, WS 15/16

Partial Order

𝐿 = 𝑀,⊑ is a partial order iff

 Reflexivity: ∀𝑥 ∈ 𝑀. 𝑥 ⊑ 𝑥

 Transitivity: ∀𝑥, 𝑦, 𝑧 ∈ 𝑀. 𝑥 ⊑ 𝑦 ∧ 𝑦 ⊑ 𝑧 ⇒ 𝑥 ⊑ 𝑧

 Anti-symmetry: ∀𝑥, 𝑦 ∈ 𝑀. 𝑥 ⊑ 𝑦 ∧ 𝑦 ⊑ 𝑥 ⇒ 𝑥 = 𝑦

Let 𝐿 = 𝑀,⊑ be a partial order, 𝑆 ⊆ 𝑀

 𝑦 ∈ 𝑀 is upper bound for 𝑆 𝑆 ⊑ 𝑦 iff ∀𝑥 ∈ 𝑆. 𝑥 ⊑ 𝑦

 𝑦 ∈ 𝑀 is lower bound for S (𝑦 ⊑ 𝑆) iff ∀𝑥 ∈ 𝑆. 𝑦 ⊑ 𝑥

 Least upper bound ⨆𝑋 ∈ 𝑀 of 𝑋 ⊆ 𝑀:

► 𝑋 ⊑ ⨆𝑋 ∧ ∀𝑦 ∈ 𝑀.𝑋 ⊑ 𝑦 ⇒ ⨆𝑋 ⊑ 𝑦

 Greatest lower bound ⊓ 𝑋 of 𝑋 ⊆ 𝑀:

► ⊓ 𝑋 ⊑ 𝑋 ∧ ∀𝑦 ∈ 𝑀. 𝑦 ⊑ 𝑋 ⇒ 𝑦 ⊑ ⊓ 𝑋

 SSQ, WS 15/16

Lattice

A lattice (“Verbund”) is a partial order L = (M, ⊑) such that

 ⊔X and ⊓X exist for all X ⊆ M

 Unique greatest element ⊤ = ⊔M = ⊓∅

 Unique least element ⊥ = ⊓M = ⊔∅

 SSQ, WS 15/16

Transfer Functions

Transfer functions to propagate information along the execution
path (i.e. from input to output, or vice versa)

Let 𝐿 = 𝑀,⊑ be a lattice. Let 𝐹 be the set of transfer functions of
the form
 fl : L  L with l being a label

Knowledge transfer is monotone

 ∀ 𝑥, 𝑦. 𝑥 ⊑ 𝑦 ⟹ 𝑓𝑙 𝑥 ⊑ 𝑓𝑙 𝑦

Space 𝐹 of transfer functions

 𝐹 contains all transfer functions fl

 𝐹 contains the identity function id: ∀𝑥 ∈ 𝑀. 𝑖𝑑 𝑥 = 𝑥

 𝐹 is closed under composition: ∀ 𝑓, 𝑔 ∈ 𝐹. 𝑔 ∘ 𝑓 ∈ 𝐹

 SSQ, WS 15/16

The Generalized Analysis

Analysis (l) = ⊔ Analysis (l‘) | (l′, l) ∈ 𝐹𝑙𝑜𝑤 𝑆 ⊔ { 𝜄𝐸
′ }

 with 𝜄𝐸
′ =

𝐸𝑉 if 𝑙 ∈ 𝐸
⊥ otherwise

Analysis (l) = 𝑓𝑙(Analysis (l))

With:

L property space representing data flow information with
𝐿,⊑ a lattice

 𝐹𝑙𝑜𝑤 is a finite flow (i.e. 𝑓𝑙𝑜𝑤 or 𝑓𝑙𝑜𝑤𝑅)

𝐸𝑉 is an extremal value for the extremal labels 𝐸 (i.e. 𝑖𝑛𝑖𝑡 𝑆 or
𝑓𝑖𝑛𝑎𝑙(𝑆)

transfer functions 𝑓𝑙 of a space of transfer functions 𝐹

 SSQ, WS 15/16

Summary

Static Program Analysis is the analysis of run-time
behavior of programs without executing them
(sometimes called static testing).

Approximations of program behaviours by analyzing the
program‘s cfg.

Analysis include

 available expressions analysis,

 reaching definitions,

 live variables analysis.

These are instances of a more general framework.

These techniques are used commercially, e.g.

 AbsInt aiT (WCET)

 Astrée Static Analyzer (C program safety)

Systeme Hoher Sicherheit und Qualität
Universität Bremen WS 2015/2016

Lecture 10 (14.12.2015)

Foundations of Software Verification

Christoph Lüth Jan Peleska Dieter Hutter

Where are we?
I 01: Concepts of Quality
I 02: Legal Requirements: Norms and Standards
I 03: The Software Development Process
I 04: Hazard Analysis
I 05: High-Level Design with SysML
I 06: Formal Modelling with SysML and OCL
I 07: Detailed Specification with SysML
I 08: Testing
I 09: Program Analysis
I 10: Foundations of Software Verification
I 11: Verification Condition Generation
I 12: Semantics of Programming Languages
I 13: Model-Checking
I 14: Conclusions and Outlook

SSQ, WS 15/16 2 [19]

Today: Software Verification using Floyd-Hoare logic

I The Floyd-Hoare calculus proves properties of imperative programs.
I Thus, it is at home in the lower levels of the verification branch, much

like the static analysis from last week.
I It is far more powerful than static analysis — and hence, far more

complex to use (it requires user interaction, and is not automatic).
SSQ, WS 15/16 3 [19]

Idea

I What does this compute?

I How can we prove this?
I Inuitively, we argue about which

value variables have at certain
points in the program.

I Thus, to prove properties of
imperative programs like this, we
need a formalism where we can
formalise assertions of the
program properties at certain
points in the exection, and which
tells us how these assertions
change with program execution.

P := 1 ;
C := 1 ;
whi le (C ≤ N) {

P := P ∗ C ;
C := C + 1

} ;

SSQ, WS 15/16 4 [19]

Idea

I What does this compute? P = N!

I How can we prove this?

I Inuitively, we argue about which
value variables have at certain
points in the program.

I Thus, to prove properties of
imperative programs like this, we
need a formalism where we can
formalise assertions of the
program properties at certain
points in the exection, and which
tells us how these assertions
change with program execution.

P := 1 ;
C := 1 ;
whi le (C ≤ N) {

P := P ∗ C ;
C := C + 1

} ;

SSQ, WS 15/16 4 [19]

Idea

I What does this compute? P = N!

I How can we prove this?
I Inuitively, we argue about which

value variables have at certain
points in the program.

I Thus, to prove properties of
imperative programs like this, we
need a formalism where we can
formalise assertions of the
program properties at certain
points in the exection, and which
tells us how these assertions
change with program execution.

{1 ≤ N}
P := 1 ;
C := 1 ;
whi le (C ≤ N) {

P := P ∗ C ;
C := C + 1

} ;
{P = N!}

SSQ, WS 15/16 4 [19]

Floyd-Hoare-Logic
I Floyd-Hoare-Logic consists of a set of rules to derive valid assertions

about programs. The assertions are denoted in the form of
Floyd-Hoare-Triples {P} p {Q}, with P the precondition, p a program
and Q the postcondition.

I The logical language has both logical variables (which do not change),
and program variables (the value of which changes with program
execution).

I Floyd-Hoare-Logic has one basic principle and one basic trick.
I The principle is to abstract from the program state into the logical

language; in particular, assignment is mapped to substitution.
I The trick is dealing with iteration: iteration corresponds to induction in

the logic, and thus is handled with an inductive proof. The trick here is
that in most cases we need to strengthen our assertion to obtain an
invariant.

SSQ, WS 15/16 5 [19]

Recall Our Small Language

I Arithmetic Expressions (AExp)

a ::= N | Loc | a1 + a2 | a1 − a2 | a1 × a2

with variables Loc, numerals N

I Boolean Expressions (BExp)

b ::= true | false | a1 = a2 | a1 < a2 | ¬b | b1 ∧ b2 | b1 ∨ b2

I Statements (Com)

c ::= skip | Loc := AExp | skip | c1; c2
| if b {c1} else {c2} | while b {c}

SSQ, WS 15/16 6 [19]

Semantics of our Small Language
I The semantics of an imperative language is state transition: the

program has an ambient state, and changes it by assigning values to
certain locations

I Concrete example: execution starting with N = 3

P ?
C ?
N 3

P 1
C ?
N 3

P 1
C 1
N 3

P 1
C 1
N 3

 . . .

P 6
C 4
N 3

Semantics in a nutshell
I Expressions evaluate to values Val(in our case, integers)
I A program state maps locations to values: Σ = Loc⇀ Val
I A programs maps an initial state to possibly a final state (if it

terminates)
I Assertions are predicates over program states.

SSQ, WS 15/16 7 [19]

Floyd-Hoare-Triples

Partial Correctness (|= {P} c {Q})
c is partial correct with precondition P and postcondition Q if:
for all states σ which satisfy P
if the execution of c on σ terminates in σ′

then σ′ satisfies Q

Total Correctness (|= [P] c [Q])
c is total correct with precondition P and postcondition Q if:
for all states σ which satisfy P
the execution of c on σ terminates in σ′

and σ′ satisfies Q

I |= {true} while true {skip} {true} holds
I |= [true] while true {skip} [true] does not hold

SSQ, WS 15/16 8 [19]

Assertion Language

I Extension of AExp and BExp by
I logical variables Var v := n,m, p, q, k, l , u, v , x , y , z
I defined functions and predicates on Aexp n!,

∑n
i=1, . . .

I implication, quantification b1 ⇒ b2,∀v . b,∃v . b

I Aexpv

a ::= N | Loc | a1 + a2 | a1 − a2 | a1 × a2 | Var | f (e1, . . . , en)

I Bexpv

b ::= true | false | a1 = a2 | a1 ≤ a2 | ¬b | b1 ∧ b2 | b1 ∨ b2
| b1 ⇒ b2 | p(e1, . . . , en) | ∀v . b | ∃v . b

SSQ, WS 15/16 9 [19]

Rules of Floyd-Hoare-Logic

I The Floyd-Hoare logic allows us to derive assertions of the form
` {P} c {Q}

I The calculus of Floyd-Hoare logic consists of six rules of the form

` {P1} c1 {Q1} . . . ` {Pn} cn {Qn}
` {P} c {Q}

I This means we can derive ` {P} c {Q} if we can derive ` {Pi} ci {Qi}

I There is one rule for each construction of the language.

SSQ, WS 15/16 10 [19]

Rules of Floyd-Hoare Logic: Assignment

` {B[e/X]}X := e {B}

I An assigment X:=e changes the state such that at location X we now
have the value of expression e. Thus, in the state before the
assignment, instead of X we must refer to e.

I It is quite natural to think that this rule should be the other way
around.

I Examples:

X := 10 ;
{0 < 10←→ (X < 10)[X/0]}
X := 0
{X < 10}

{X < 9←→ X + 1 < 10}
X := X+ 1
{X < 10}

SSQ, WS 15/16 11 [19]

Rules of Floyd-Hoare Logic: Conditional and
Sequencing

` {A ∧ b} c0 {B} ` {A ∧ ¬b} c1 {B}
` {A} if b {c0} else {c1} {B}

I In the precondition of the positive branch, the condition b holds,
whereas in the negative branch the negation ¬b holds.

I Both branches must end in the same postcondition.

` {A} c0 {B} ` {B} c1 {C}
` {A} c0; c1 {C}

I We need an intermediate state predicate B.

SSQ, WS 15/16 12 [19]

Rules of Floyd-Hoare Logic: Iteration

` {A ∧ b} c {A}
` {A} while b {c} {A ∧ ¬b}

I Iteration corresponds to induction. Recall that in (natural) induction
we have to show the same property P holds for 0, and continues to
hold: if it holds for n, then it also holds for n + 1.

I Analogously, here we need an invariant A which has to hold both
before and after the body (but not necessarily in between).

I In the precondition of the body, we can assume the loop condition
holds.

I The precondition of the iteration is simply the invariant A, and the
postcondition of the iteration is A and the negation of the loop
condition.

SSQ, WS 15/16 13 [19]

Rules of Floyd-Hoare Logic: Weakening
A′ −→ A ` {A} c {B} B −→ B′

` {A′} c {B′}

c

All possible program states

A B

c

All possible program states

B'A'

I |= {A} c {B} means that whenever we start in a state where A holds,
c ends (if it does) in state where B holds.

I Further, for two sets of states, P ⊆ Q iff P −→ Q.

I We can restrict the set A to A′ (A′ ⊆ A or A′ −→ A) and we can
enlarge the set B to B′ (B ⊆ B′ or B −→ B′), and obtain
|= {A′} c {B′}.

SSQ, WS 15/16 14 [19]

Rules of Floyd-Hoare Logic: Weakening
A′ −→ A ` {A} c {B} B −→ B′

` {A′} c {B′}

c

All possible program states

A B

c

All possible program states

B'A'

I |= {A} c {B} means that whenever we start in a state where A holds,
c ends (if it does) in state where B holds.

I Further, for two sets of states, P ⊆ Q iff P −→ Q.
I We can restrict the set A to A′ (A′ ⊆ A or A′ −→ A) and we can

enlarge the set B to B′ (B ⊆ B′ or B −→ B′), and obtain
|= {A′} c {B′}.

SSQ, WS 15/16 14 [19]

Overview: Rules of Floyd-Hoare-Logic

` {A} skip {A} ` {B[e/X]}X := e {B}

` {A ∧ b} c0 {B} ` {A ∧ ¬b} c1 {B}
` {A} if b {c0} else {c1} {B}

` {A ∧ b} c {A}
` {A} while b {c} {A ∧ ¬b}

` {A} c0 {B} ` {B} c1 {C}
` {A} c0; c1 {C}

A′ −→ A ` {A} c {B} B −→ B′

` {A′} c {B′}

SSQ, WS 15/16 15 [19]

Properties of Hoare-Logic
Soundness
If ` {P} c {Q}, then |= {P} c {Q}

I If we derive a correctness assertion, it holds.
I This is shown by defining a formal semantics for the programming

language, and showing that all rules are correct wrt. to that semantics.

Relative Completeness
If |= {P} c {Q}, then ` {P} c {Q} except for the weakening conditions.

I Failure to derive a correctness assertion is always due to a failure to
prove some logical statements (in the weakening).

I First-order logic itself is incomplete, so this result is as good as we can
get.

SSQ, WS 15/16 16 [19]

The Need for Verification

Consider the following variations of the faculty example.
Which are correct?

{1 ≤ N}
P := 1 ;
C := 1 ;
whi le (C≤N) {

C := C+1 ;
P := P∗C

}
{P = N!}

{1 ≤ N}
P := 1 ;
C := 1 ;
whi le (C<N) {

C := C+1 ;
P := P∗C

}
{P = N!}

{1 ≤ N ∧ n = N}
P := 1 ;
whi le (70<N) {

P := P∗N ;
N := N−1

}
{P = n!}

SSQ, WS 15/16 17 [19]

A Hatful of Examples

{i = Y }
X := 1 ;
whi le (¬ (Y = 0)) {
Y := Y−1 ;
X := 2∗X

}
{X = 2i}

{A ≥ 0 ∧ B ≥ 0}
Q := 0 ;
R := A−(B∗Q) ;
whi le (B ≤ R) {
Q := Q+1 ;
R := A−(B∗Q)

}
{A = B ∗ Q + R ∧ R < B}

{0 < A}
T:= 1 ;
S:= 1 ;
I := 0 ;
whi le (S ≤ A) {

T := T+ 2 ;
S := S+ T ;
I := I+ 1
}

{I ∗ I <= A ∧ A < (I + 1) ∗ (I + 1)}

SSQ, WS 15/16 18 [19]

A Hatful of Examples

{i = Y ∧ Y ≥ 0}
X := 1 ;
whi le (¬ (Y = 0)) {
Y := Y−1 ;
X := 2∗X

}
{X = 2i}

{A ≥ 0 ∧ B ≥ 0}
Q := 0 ;
R := A−(B∗Q) ;
whi le (B ≤ R) {
Q := Q+1 ;
R := A−(B∗Q)

}
{A = B ∗ Q + R ∧ R < B}

{0 < A}
T:= 1 ;
S:= 1 ;
I := 0 ;
whi le (S ≤ A) {

T := T+ 2 ;
S := S+ T ;
I := I+ 1
}

{I ∗ I <= A ∧ A < (I + 1) ∗ (I + 1)}

SSQ, WS 15/16 18 [19]

Summary

I Floyd-Hoare logic in a nutshell:

I The logic abstracts over the concrete program state by program assertions

I Program assertions are boolean expressions, enriched by logical variables
(and more)

I We can prove partial correctness assertions of the form |= {P} c {Q} (or
total |= [P] c [Q]).

I Validity (correctness wrt a real programming language) depends very
much on capturing the exact semantics formally.

I Floyd-Hoare logic itself is rarely used directly in practice, verification
condition generation is — see next lecture.

SSQ, WS 15/16 19 [19]

Systeme Hoher Sicherheit und Qualität
Universität Bremen WS 2015/2016

Lecture 11 (11.01.2016)

Verification Condition Generation

Christoph Lüth Jan Peleska Dieter Hutter

Frohes Neues Jahr!

SSQ, WS 15/16 2 [19]

Where are we?
I 01: Concepts of Quality
I 02: Legal Requirements: Norms and Standards
I 03: The Software Development Process
I 04: Hazard Analysis
I 05: High-Level Design with SysML
I 06: Formal Modelling with SysML and OCL
I 07: Detailed Specification with SysML
I 08: Testing
I 09: Program Analysis
I 10: Foundations of Software Verification
I 11: Verification Condition Generation
I 12: Semantics of Programming Languages
I 13: Model-Checking
I 14: Conclusions and Outlook

SSQ, WS 15/16 3 [19]

Introduction

I In the last lecture, we learned about the Floyd-Hoare calculus.

I It allowed us to state and prove correctness assertions about programs,
written as {P} c {Q}.

I The problem is that proofs of ` {P} c {Q} are exceedingly tedious,
and hence not viable in practice.

I We are looking for a calculus which reduces the size (and tediousness)
of Floyd-Hoare proofs.

I The starting point is the relative completeness of the Floyd-Hoare
calculus.

SSQ, WS 15/16 4 [19]

Completeness of the Floyd-Hoare Calculus

Relative Completeness
If |= {P} c {Q}, then ` {P} c {Q} except for the weakening conditions.

I To show this, one constructs a so-called weakest precondition.

Weakest Precondition
Given a program c and an assertion P, the weakest precondition is an
assertion W which
1. is a valid precondition: |= {W } c {P}

2. and is the weakest such: if |= {Q} c {P}, then W −→ Q.

I Question: is the weakest precondition unique?

Only up to logical equivalence: if W1 and W2 are weakest
preconditions, then W1 ←→W2.

SSQ, WS 15/16 5 [19]

Completeness of the Floyd-Hoare Calculus

Relative Completeness
If |= {P} c {Q}, then ` {P} c {Q} except for the weakening conditions.

I To show this, one constructs a so-called weakest precondition.

Weakest Precondition
Given a program c and an assertion P, the weakest precondition is an
assertion W which
1. is a valid precondition: |= {W } c {P}

2. and is the weakest such: if |= {Q} c {P}, then W −→ Q.

I Question: is the weakest precondition unique?
Only up to logical equivalence: if W1 and W2 are weakest
preconditions, then W1 ←→W2.

SSQ, WS 15/16 5 [19]

Constructing the Weakest Precondition

I Consider the following simple program and its verification:
{X = x ∧ Y = y}

Z:= Y ;

Y:= X ;

X:= Z ;
{X = y ∧ Y = x}

I The idea is to construct the weakest precondition inductively.

SSQ, WS 15/16 6 [19]

Constructing the Weakest Precondition

I Consider the following simple program and its verification:
{X = x ∧ Y = y}

Z:= Y ;

Y:= X ;
{Z = y ∧ Y = x}
X:= Z ;
{X = y ∧ Y = x}

I The idea is to construct the weakest precondition inductively.

SSQ, WS 15/16 6 [19]

Constructing the Weakest Precondition

I Consider the following simple program and its verification:
{X = x ∧ Y = y}

Z:= Y ;
{Z = y ∧ X = x}
Y:= X ;
{Z = y ∧ Y = x}
X:= Z ;
{X = y ∧ Y = x}

I The idea is to construct the weakest precondition inductively.

SSQ, WS 15/16 6 [19]

Constructing the Weakest Precondition

I Consider the following simple program and its verification:
{X = x ∧ Y = y}
←→
{Y = y ∧ X = x}
Z:= Y ;
{Z = y ∧ X = x}
Y:= X ;
{Z = y ∧ Y = x}
X:= Z ;
{X = y ∧ Y = x}

I The idea is to construct the weakest precondition inductively.

SSQ, WS 15/16 6 [19]

Constructing the Weakest Precondition
I There are four straightforward cases:

wp(skip,P) def= P
wp(X := e,P) def= P[e/X]
wp(c0; c1,P) def= wp(c0,wp(c1,P))

wp(if b {c0} else {c1},P) def= (b ∧ wp(c0,P)) ∨ (¬b ∧ wp(c1,P))

I The complicated one is iteration. This is not surprising, because
iteration gives computational power (and makes our language
Turing-complete). It can be given recursively:

wp(while b {c},P) def= (¬b ∧ P) ∨ (b ∧ wp(c,wp(while b {c},P)))

A closed formula can be given using Turing’s β-predicate, but it is
unwieldy to write down.

I Hence, wp(c,P) is not an effective way to prove correctness.

SSQ, WS 15/16 7 [19]

Verfication Conditions: Annotated Programs

I Idea: invariants specified in the program by annotations.

I Arithmetic and Boolean Expressions (AExp, BExp) remain as they
are.

I Annotated Statements (ACom)

c ::= skip | Loc := AExp | assert P | if b {c1} else {c2}
| while b inv I {c} | c1; c2

SSQ, WS 15/16 8 [19]

Calculuation Verification Conditions

I For an annotated statement c ∈ ACom and an assertion P (the
postcondition), we calculuate a set of verification conditions vc(c,P)
and a precondition pre(c,P).

I The precondition is an auxiliary definition — it is mainly needed to
compute the verification conditions.

I If we can prove the verification conditions, then pre(c,P) is a proper
precondition, i.e. |= {pre(c,P)} c {P}.

SSQ, WS 15/16 9 [19]

Calculating Verification Conditions
pre(skip,P) def= P

pre(X := e,P) def= P[e/X]
pre(c0; c1,P) def= pre(c0, pre(c1,P))

pre(if b {c0} else {c1},P) def= (b ∧ pre(c0,P)) ∨ (¬b ∧ pre(c1,P))
pre(assert Q,P) def= Q

pre(while b inv I {c},P) def= I

vc(skip,P) def= ∅
vc(X := e,P) def= ∅
vc(c0; c1,P) def= vc(c0, pre(c1,P)) ∪ vc(c1,P)

vc(if b {c0} else {c1},P) def= vc(c0,P) ∪ vc(c1,P)
vc(assert Q,P) def= {Q −→ P}

vc(while b inv I {c},P) def= vc(c, I) ∪{I ∧ b −→ pre(c, I)}
∪ {I ∧ ¬b −→ P}

vc({P} c {Q}) def= {P −→ pre(c,Q)} ∪ vc(c,Q)

SSQ, WS 15/16 10 [19]

Correctness of the VC Calculus

Correctness of the VC Calculus
For a annotated program c and an assertion P:

vc(c,P) =⇒ {pre(c,P)} c {P}

I Proof: By induction on c.

SSQ, WS 15/16 11 [19]

Example: Faculty

Let Fac be the annotated faculty program:
{0 ≤ N}
P := 1 ;
C := 1 ;
whi le C ≤ N inv {P = (C − 1)! ∧ C − 1 ≤ N} {

P := P ∗ C ;
C := C + 1

}
{P = N!}

vc(Fac) =
{ 0 ≤ N −→ 1 = 0! ∧ 0 ≤ N,

P = (C − 1)! ∧ C − 1 ≤ N ∧ C ≤ N −→ P × C = C ! ∧ C ≤ N,
P = (C − 1)! ∧ C − 1 ≤ N ∧ ¬(C ≤ N) −→ P = N! }

SSQ, WS 15/16 12 [19]

Example: Faculty

Let Fac be the annotated faculty program:
{0 ≤ N}
P := 1 ;
C := 1 ;
whi le C ≤ N inv {P = (C − 1)! ∧ C − 1 ≤ N} {

P := P ∗ C ;
C := C + 1

}
{P = N!}

vc(Fac) =
{ 0 ≤ N −→ 1 = 0! ∧ 0 ≤ N,

P = (C − 1)! ∧ C − 1 ≤ N ∧ C ≤ N −→ P × C = C ! ∧ C ≤ N,
P = (C − 1)! ∧ C − 1 ≤ N ∧ ¬(C ≤ N) −→ P = N! }

SSQ, WS 15/16 12 [19]

The Framing Problem

I One problem with the simple definition from above is that we need to
specify which variables stay the same (framing problem).
I Essentially, when going into a loop we use lose all information of the

current precondition, as it is replaced by the loop invariant.
I This does not occur in the faculty example, as all program variables are

changed.

I Instead of having to write this down every time, it is more useful to
modify the logic, such that we specify which variables are modified,
and assume the rest stays untouched.

I Sketch of definition: We say |= {P,X} c {Q} is a Hoare-Triple with
modification set X if for all states σ which satisfy P if c terminates in
a state σ′, then σ′ satisfies Q, and if σ(x) 6= σ′(x) then x ∈ X .

SSQ, WS 15/16 13 [19]

Verification Condition Generation Tools

I The Why3 toolset (http://why3.lri.fr)

I The Why3 verification condition generator

I Plug-ins for different provers

I Front-ends for different languages: C (Frama-C), Java (Krakatoa)

I The Boogie VCG
(http://research.microsoft.com/en-us/projects/boogie/)

I The VCC Tool (built on top of Boogie)

I Verification of C programs

I Used in German Verisoft XT project to verify Microsoft Hyper-V hypervisor

SSQ, WS 15/16 14 [19]

http://why3.lri.fr
http://research.microsoft.com/en-us/projects/boogie/

Why3 Overview: Toolset

SSQ, WS 15/16 15 [19]

Why3 Overview: VCG

SSQ, WS 15/16 16 [19]

Why3 Example: Faculty (in WhyML)

let fac(n: int): int
requires { n >= 0 }
ensures { result = fact(n) } =
let p = ref 0 in
let c = ref 0 in
p := 1;
c := 1;
while !c <= n do

invariant { !p= fact(!c-1) /\ !c-1 <= n }
variant { n- !c }
p:= !p* !c;
c:= !c+ 1
done;

!p

SSQ, WS 15/16 17 [19]

Why3 Example: Generated VC for Faculty
goal WP_parameter_fac :
forall n:int.
n >= 0 ->
(forall p:int.

p = 1 ->
(forall c:int.

c = 1 ->
(p = fact (c - 1) /\ (c - 1) <= n) /\
(forall c1:int, p1:int.

p1 = fact (c1 - 1) /\ (c1 - 1) <= n ->
(if c1 <= n then forall p2:int.

p2 = (p1 * c1) ->
(forall c2:int.

c2 = (c1 + 1) ->
(p2 = fact (c2 - 1) /\
(c2 - 1) <= n) /\
0 <= (n - c1) /\
(n - c2) < (n - c1))

else p1 = fact n))))
SSQ, WS 15/16 18 [19]

Summary

I Starting from the relative completeness of the Floyd-Hoare calculus,
we devised a Verification Condition Generation calculus which makes
program verification viable.

I Verification Condition Generation reduces an annotated program to a
set of logical properties.

I We need to annotate preconditions, postconditions and invariants.

I Tools which support this sort of reasoning include Why3 and Boogie.
They come with front-ends for real programming languages, such as C,
Java, C#, and Ada.

I To scale to real-world programs, we need to deal with framing,
modularity (each function/method needs to be verified independently),
and machine arithmetic (integer word arithmetic and floating-points).

SSQ, WS 15/16 19 [19]

Systeme Hoher Sicherheit und Qualität
Universität Bremen WS 2015/2016

Lecture 12 (18.01.2016)

Semantics of Programming Languages

Christoph Lüth Jan Peleska Dieter Hutter

Where are we?
I 01: Concepts of Quality
I 02: Legal Requirements: Norms and Standards
I 03: The Software Development Process
I 04: Hazard Analysis
I 05: High-Level Design with SysML
I 06: Formal Modelling with SysML and OCL
I 07: Detailed Specification with SysML
I 08: Testing
I 09: Program Analysis
I 10: Foundations of Software Verification
I 11: Verification Condition Generation
I 12: Semantics of Programming Languages
I 13: Model-Checking
I 14: Conclusions and Outlook

SSQ, WS 15/16 2 [27]

Semantics in the Development Process

SSQ, WS 15/16 3 [27]

Semantics — what does that mean?

” Semantics: The meaning of words, phrases or systems. “

— Oxford Learner’s Dictionaries

I In mathematics and computer science, semantics is giving a meaning
in mathematical terms. It can be contrasted with syntax, which
specifies the notation.

I Here, we will talk about the meaning of programs. Their syntax is
described by formal grammars, and their semantics in terms of
mathematical structures.

I Why would we want to do that?

SSQ, WS 15/16 4 [27]

Why Semantics?

Semantics describes the meaning of a program (written in a
programming language) in mathematical precise and unambiguous way.
Here are three reasons why this is a good idea:

I It lets us write better compilers. In particular, it makes the language
independent of a particular compiler implementation.

I If we know the precise meaning of a program, we know when it should
produce a result and when not. In particular, we know which situations
the program should avoid.

I Finally, it lets us reason about program correctness.

Empfohlene Literatur: Glynn Winskel. The Formal Semantics of
Programming Languages: An Introduction. The MIT Press, 1993.

SSQ, WS 15/16 5 [27]

Semantics of Programming Languages

Historically, there are three ways to write down the semantics of a
programming language:

I Operational semantics describes the meaning of a program by
specifying how it executes on an abstract machine.

I Denotational semantics assigns each program to a partial function on
the system state.

I Axiomatic semantics tries to give a meaning of a programming
construct by giving proof rules. A prominent example of this is the
Floyd-Hoare logic of previous lectures.

SSQ, WS 15/16 6 [27]

A Tale of Three Semantics

P := 1;
C := 1;
while C <= N {
 P := P * C;
 C := C + 1
}

Operational

Axiomatic

Denotational

Programs

I Each semantics should be
considered a view of the
program.

I Importantly, all semantics
should be equivalent. This
means we have to put
them into relation with
each other, and show that
they agree. Doing so is an
important sanity check for
the semantics.

I In the particular case of
axiomatic semantics
(Floyd-Hoare logic), it is
the question of correctness
of the rules.

SSQ, WS 15/16 7 [27]

Operational Semantics
I Evaluation is directed by the syntax.
I We inductively define relations → between configurations (a command

or expression together with a state) to an integer, boolean or a state:

→A ⊆ (AExp,Σ)× Z
→B ⊆ (BExp,Σ)× Bool
→S ⊆ (Com,Σ)× Σ

where the system state is defined as as

Σ def= Loc⇀ Z

I (p, σ)→S σ
′ means that evaluating the program p in state σ results in

state σ′, and (a, σ)→A i means evaluating expression a in state σ
results in integer value i .

SSQ, WS 15/16 8 [27]

Structural Operational Semantics

I The evaluation relation is defined by rules of the form

〈a, σ〉 →A i
〈p a1, σ〉 →A f (i)

for each programming language construct p. This means that when the
argument a of the construct has been evaluated, we can evaluate the
whole expression.

I This is called structural operational semantics.

I Note that this does not specify an evaluation strategy.

I This evaluation is partial and can be non-deterministic.

SSQ, WS 15/16 9 [27]

IMP: Arithmetic Expressions

Numbers: 〈n, σ〉 →A n

Variables: 〈X, σ〉 →A σ(X)

Addition:
〈a0, σ〉 →A n 〈a1, σ〉 →A m
〈a0 + a1, σ〉 →A n + m

Subtraction:
〈a0, σ〉 →A n 〈a1, σ〉 →A m
〈a0 - a1, σ〉 →A n −m

Multiplication:
〈a0, σ〉 →A n 〈a1, σ〉 →A m
〈a0 * a1, σ〉 →A n ·m

SSQ, WS 15/16 10 [27]

IMP: Boolean Expressions (Constants, Relations)

〈true, σ〉 →B True 〈false, σ〉 → False

〈b, σ〉 →B False
〈not b, σ〉 →B True

〈b, σ〉 →B True
〈not b, σ〉 →B False

〈a0, σ〉 →A n 〈a1, σ〉 →A m
〈a0 = a1, σ〉 →B True

n = m 〈a0, σ〉 →A n 〈a1, σ〉 →A m
〈a0 = a1, σ〉 →B False n 6= m

〈a0, σ〉 →A n 〈a1, σ〉 →A m
〈a0 < a1, σ〉 →B True n < m

〈a0, σ〉 →A n 〈a1, σ〉 →A m
〈a0 < a1, σ〉 →B False n ≥ m

SSQ, WS 15/16 11 [27]

IMP: Boolean Expressions (Operators)

〈b0, σ〉 →B False 〈b1, σ〉 →B False
〈b0 and b1, σ〉 →B False

〈b0, σ〉 →B False 〈b1, σ〉 →B True
〈b0 and b1, σ〉 →B False

〈b0, σ〉 →B True 〈b1, σ〉 →B False
〈b0 and b1, σ〉 →B False

〈b0, σ〉 →B True 〈b1, σ〉 →B True
〈b0 and b1, σ〉 →B True

〈b0, σ〉 →B True 〈b1, σ〉 →B True
〈b0 or b1, σ〉 →B True

〈b0, σ〉 →B True 〈b1, σ〉 →B False
〈b0 or b1, σ〉 →B True

〈b0, σ〉 →B False 〈b1, σ〉 →B True
〈b0 or b1, σ〉 →B True

〈b0, σ〉 →B False 〈b1, σ〉 →B False
〈b0 or b1, σ〉 →B False

SSQ, WS 15/16 12 [27]

IMP: Boolean Expressions (Operators — Variation)

〈b0, σ〉 →B False
〈b0 and b1, σ〉 →B False

〈b0, σ〉 →B True 〈b1, σ〉 →B False
〈b0 and b1, σ〉 →B False

〈b0, σ〉 →B True 〈b1, σ〉 →B True
〈b0 and b1, σ〉 →B True

〈b0, σ〉 →B True
〈b0 or b1, σ〉 →B True

〈b0, σ〉 →B False 〈b1, σ〉 →B True
〈b0 or b1, σ〉 →B True

〈b0, σ〉 →B False 〈b1, σ〉 →B False
〈b0 or b1, σ〉 →B False

What is the difference?

SSQ, WS 15/16 13 [27]

IMP: Boolean Expressions (Operators — Variation)

〈b0, σ〉 →B False
〈b0 and b1, σ〉 →B False

〈b1, σ〉 →B False
〈b0 and b1, σ〉 →B False

〈b0, σ〉 →B True 〈b1, σ〉 →B False
〈b0 and b1, σ〉 →B False

〈b0, σ〉 →B True 〈b1, σ〉 →B True
〈b0 and b1, σ〉 →B True

〈b0, σ〉 →B True
〈b0 or b1, σ〉 →B True

〈b1, σ〉 →B True
〈b0 or b1, σ〉 →B True

〈b0, σ〉 →B False 〈b1, σ〉 →B True
〈b0 or b1, σ〉 →B True

〈b0, σ〉 →B False 〈b1, σ〉 →B False
〈b0 or b1, σ〉 →B False

What is the difference?

SSQ, WS 15/16 13 [27]

Operational Semantics of IMP: Statements

〈skip, σ〉 →S σ

〈a, σ〉 →S n
〈X := a, σ〉 →S σ[n/X]

〈c0, σ〉 →S τ 〈c1, τ〉 →S τ
′

〈c0; c1, σ〉 →S τ
′

〈b, σ〉 →B True 〈c0, σ〉 →S τ

〈if b {c0} else {c1}, σ〉 →S τ

〈b, σ〉 → False 〈c1, σ〉 →S τ

〈if b {c0} else {c1}, σ〉 →S τ

〈b, σ〉 →B False
〈while b {c}, σ〉 →S σ

〈b, σ〉 →B True 〈c, σ〉 →S τ
′ 〈while b {c}, τ ′〉 →S τ

〈while b {c}, σ〉 →S τ

SSQ, WS 15/16 14 [27]

Why Denotational Semantics?

I Denotational semantics takes an abstract view of program: if c1 ∼ c2,
they have the “same meaning”.

I This allows us, for example, to compare programs in different
programming languages.

I It also accommodates reasoning about programs far better than
operational semantics. In particular, we can prove the correctness of
the Floyd-Hoare rules.

I It gives us compositionality and referential transparency, mapping
programming language construct p to denotation φ:

D[[p(e1, . . . , en)]] = φ(D[[e1]], . . . ,D[[en]])

SSQ, WS 15/16 15 [27]

Denotational Semantics

I Programs are denoted by functions on states Σ = Loc⇀ Z.

I Semantic functions assign a meaning to statements and expressions:

Arithmetic expressions: E : AExp→ (Σ→ Z)
Boolean expressions: B : BExp→ (Σ→ Bool)
Statements: D : Com→ (Σ ⇀ Σ)

I Note the meaning of a program p is a partial function, reflecting the
fact that programs may not terminate.

I Our expressions always do, but that is because our language is quite simple.

SSQ, WS 15/16 16 [27]

Denotational Semantics of IMP: Arithmetic
Expressions

E [[n]] def= λσ ∈ Σ.n
E [[X]] def= λσ ∈ Σ.σ(X)

E [[a0 + a1]] def= λσ ∈ Σ.(E [[a0]]σ + E [[a1]]σ)
E [[a0 - a1]] def= λσ ∈ Σ.(E [[a0]]σ − E [[a1]]σ)
E [[a0 * a1]] def= λσ ∈ Σ.(E [[a0]]σ · E [[a1]]σ)

SSQ, WS 15/16 17 [27]

Denotational Semantics of IMP: Boolean
Expressions

B[[true]] def= λσ ∈ Σ.True
B[[false]] def= λσ ∈ Σ.False
B[[not b]] def= λσ ∈ Σ.¬B[[b]]σ

B[[a0 = a1]] def= λσ ∈ Σ.
{

True E [[a0]]σ = E [[a1]]σ
False E [[a0]]σ 6= E [[a1]]σ

B[[a0 < a1]] def= λσ ∈ Σ.
{

True E [[a0]]σ < E [[a1]]σ
False E [[a0]]σ ≥ E [[a1]]σ

B[[b0 and b1]] def= λσ ∈ Σ.B[[b0]]σ ∧ B[[b1]]σ
B[[b0 or b1]] def= λσ ∈ Σ.B[[b0]]σ ∨ B[[b1]]σ

SSQ, WS 15/16 18 [27]

Denotational Semantics of IMP: Statements

The simple part:

D[[skip]] def= λσ ∈ Σ. σ
D[[X := a]] def= λσ ∈ Σ. σ[E [[a]]σ/X]
D[[c0; c1]] def= D[[c1]] ◦ D[[c0]]

D[[if b {c0} else {c1}]]
def= λσ ∈ Σ.

{
D[[c0]]σ B[[b]]σ = True
D[[c1]]σ B[[b]]σ = False

The hard part:

D[[while b {c}]] = λσ ∈ Σ.
{
σ B[[b]]σ = False
(D[[while b {c}]] ◦ D[[c]])σ B[[b]]σ = True

This recursive definition is not constructive — it does not tell us how to
construct the function. Worse, it is unclear it even exists in general.

SSQ, WS 15/16 19 [27]

Denotational Semantics of IMP: Statements

The simple part:

D[[skip]] def= λσ ∈ Σ. σ
D[[X := a]] def= λσ ∈ Σ. σ[E [[a]]σ/X]
D[[c0; c1]] def= D[[c1]] ◦ D[[c0]]

D[[if b {c0} else {c1}]]
def= λσ ∈ Σ.

{
D[[c0]]σ B[[b]]σ = True
D[[c1]]σ B[[b]]σ = False

The hard part:

D[[while b {c}]] = λσ ∈ Σ.
{
σ B[[b]]σ = False
(D[[while b {c}]] ◦ D[[c]])σ B[[b]]σ = True

This recursive definition is not constructive — it does not tell us how to
construct the function. Worse, it is unclear it even exists in general.

SSQ, WS 15/16 19 [27]

Denotational Semantics of IMP: Statements

The simple part:

D[[skip]] def= λσ ∈ Σ. σ
D[[X := a]] def= λσ ∈ Σ. σ[E [[a]]σ/X]
D[[c0; c1]] def= D[[c1]] ◦ D[[c0]]

D[[if b {c0} else {c1}]]
def= λσ ∈ Σ.

{
D[[c0]]σ B[[b]]σ = True
D[[c1]]σ B[[b]]σ = False

The hard part:

D[[while b {c}]] = λσ ∈ Σ.
{
σ B[[b]]σ = False
(D[[while b {c}]] ◦ D[[c]])σ B[[b]]σ = True

This recursive definition is not constructive — it does not tell us how to
construct the function. Worse, it is unclear it even exists in general.

SSQ, WS 15/16 19 [27]

Partial Orders and Least Upper Bounds

To construct fixpoints of the form x = f (x), we need the theory of
complete partial orders (cpo’s).

Definition (Partial Order)
Given a set X , a partial order v ⊆ X × X is
(i) transitive: if x v y , y v z , then x v z
(ii) reflexive: x v x
(iii) anti-symmetric: if x v y , y v x then x = y

Definition (Least Upper Bound)
For Y ⊆ X , the least upper bound

⊔
Y ∈ X is:

(i) ∀y ∈ Y . y v
⊔
Y

(ii) for any z ∈ X such that ∀y ∈ Y . y v z , we have
⊔
Y v z

SSQ, WS 15/16 20 [27]

Complete Partial Orders

Definition (Complete Partial Order)
A partial order v is complete (a cpo) if any ω-chain
x1 v x2 v x3 v x4 . . . = {xi | i ∈ ω} has a least upper bound⊔

i∈ω xi ∈ X .

A cpo is called pointed (pcpo), if there is a smallest element ⊥ ∈ X .
(Note some authors assume all cpos to be pointed.)

Definition (Continuous Function)
Given cpos (X ,v) and (Y ,≤). A function f : X → Y is
(i) monotone, if x v y then f (x) ≤ f (y)
(ii) continuous, if monotone and f (

⊔
i∈ω xi) =

⊔
i∈ω f (xi)

SSQ, WS 15/16 21 [27]

Complete Partial Orders

Definition (Complete Partial Order)
A partial order v is complete (a cpo) if any ω-chain
x1 v x2 v x3 v x4 . . . = {xi | i ∈ ω} has a least upper bound⊔

i∈ω xi ∈ X .

A cpo is called pointed (pcpo), if there is a smallest element ⊥ ∈ X .
(Note some authors assume all cpos to be pointed.)

Definition (Continuous Function)
Given cpos (X ,v) and (Y ,≤). A function f : X → Y is
(i) monotone, if x v y then f (x) ≤ f (y)
(ii) continuous, if monotone and f (

⊔
i∈ω xi) =

⊔
i∈ω f (xi)

SSQ, WS 15/16 21 [27]

Fixpoints

Theorem (Each continuous function has a least fixpoint)
Let (X ,v) be a pcpo, and f : X → X continuous, then f has a least
fixpoint fix(f),given as

fix(f) =
⊔

n∈ω

f n(⊥)

I In our case, the state Σ is made into a pcpo Σ⊥ by ’adjoining’ a new
element ⊥, ordered as ⊥ v σ.

I This models partial functions: Σ ⇀ Σ ∼= Σ→ Σ⊥

I Σ→ Σ⊥ ist a pcpo, ordered as

f v g ←→ ∀x .f (x) v g(x)

Concretely, f v g means that f is defined on fewer states than g .

SSQ, WS 15/16 22 [27]

Denotational Semantics of IMP: Statements

D[[skip]] def= λσ ∈ Σ. σ
D[[X := a]] def= λσ ∈ Σ. σ[E [[a]]σ/X]
D[[c0; c1]] def= D[[c1]] ◦ D[[c0]]

D[[if b {c0} else {c1}]]
def= λσ ∈ Σ.

{
D[[c0]]σ B[[b]]σ = True
D[[c1]]σ B[[b]]σ = False

D[[while b {c}]] def= fix(Γ)

where Γ(φ) def= λσ ∈ Σ.
{
φ ◦ D[[c]]σ B[[b]]σ = True
σ B[[b]]σ = False

SSQ, WS 15/16 23 [27]

Equivalence of Semantics
Lemma
(i) For a ∈ Aexp, n ∈ N, E [[a]]σ = n iff 〈a, σ〉 →A n
(ii) For b ∈ BExp, t ∈ Bool, B[[b]]σ = t iff 〈b, σ〉 →B t

Proof: Structural Induction on a and b.
Lemma
For c ∈ Com, if 〈c, σ〉 →S σ

′ then D[[c]]σ = σ′

Proof: Induction over deriviation of 〈c, σ〉 →S σ
′.

Theorem (Equivalence of Semantics)
For c ∈ Com, and σ, σ′ ∈ Σ,

〈c, σ〉 →S σ
′ iff D[[c]]σ = σ′

The proof of this theorem requires a technique called fixpoint induction
which we will not go into detail about here.

SSQ, WS 15/16 24 [27]

Correctness of Floyd-Hoare Rules

Denotational semantics allows us to prove the correctness of the
Floyd-Hoare rules.
I We extend the boolean semantic functions E and B to AExpv and
BExpv, respectively.

I We can then define the validity of a Hoare triple in terms of
denotations:

|= {P} c {Q} iff ∀σ.B[[P]]σ ∧ D[[c]]σ 6= ⊥ −→ B[[Q]](D[[c]]σ)

I We can now show the rules preserve validity, i.e. if the preconditions
are valid Hoare triples, then so is the conclusion.

SSQ, WS 15/16 25 [27]

Remarks

I Our language and semantics is quite simple-minded. We have not take
into account:
I undefined expressions (such as division by 0 or accessing an undefined

variable),
I side effects in expressions,
I declaration of variables,
I pointers, references, pointer arithmetic,
I input/output (what is the semantic model?), or
I concurrency.

I However, there are formal semantics for languages such as
StandardML, C, or Java, although most of them concentrate on some
aspect of the language (e.g. Java concurrency is not very well defined
in the standard). Only StandardML has a language standard which is
written as an operational semantics.

SSQ, WS 15/16 26 [27]

Conclusion

I Programming semantics come in three flavours: operational,
denotational, axiomatic.

I Each of these has their own use case:

I Operational semantics gives details about evaluation of programs, and is
good for implementing the programming language.

I Denotational semantics is abstract and good for high-level reasoning (e.g.
correctness of program logics or tools).

I Axiomatic semantics is about program logics, and reasoning about
programs.

I Denotational semantics needs the mathematical toolkit of cpos to
construct fixpoints.

SSQ, WS 15/16 27 [27]

Systeme Hoher Sicherheit und Qualität
Universität Bremen WS 2015/2016

Lecture 13 (25.01.2016)

Modelchecking with LTL and CTL

Christoph Lüth Jan Peleska Dieter Hutter

Organisatorisches

I Evaluation: auf der stud.ip-Seite (unter Lehrevaluation)

I Prüfungen & Fachgespräche:

I KW 7 (15./16. Februar), oder

I 02. Februar (letzte Semesterwoche, zum Übungstermin).

SSQ, WS 15/16 2 [25]

Where are we?
I 01: Concepts of Quality
I 02: Legal Requirements: Norms and Standards
I 03: The Software Development Process
I 04: Hazard Analysis
I 05: High-Level Design with SysML
I 06: Formal Modelling with SysML and OCL
I 07: Detailed Specification with SysML
I 08: Testing
I 09: Program Analysis
I 10: Foundations of Software Verification
I 11: Verification Condition Generation
I 12: Semantics of Programming Languages
I 13: Model-Checking
I 14: Conclusions and Outlook

SSQ, WS 15/16 3 [25]

Modelchecking in the Development Process

I Model-checking proves properties of abstractions of the system.

I Thus, it scales also to higher levels of the development process

SSQ, WS 15/16 4 [25]

Introduction

I In the last lectures, we were verifying program properties with the
Floyd-Hoare calculus and related approaches. Program verification was
reduced to a deductive problem by translating the program into logic
(specifically, state change becomes substitution).

I Model-checking takes a different approach: instead of directly working
with the program, we work with an abstraction of the system (a
model). Because we build abstractions, this approach is also applicable
in the higher verification levels.

I But what are the properties we want to express? How do we express
them, and how do we prove them?

SSQ, WS 15/16 5 [25]

The Model-Checking Problem

The Basic Question
Given a modelM, and a property φ, we want to know whether

M |= φ

I What isM?

I What is φ?

I How to prove it?

I The basic problem: state explosion

SSQ, WS 15/16 6 [25]

The Model-Checking Problem

The Basic Question
Given a modelM, and a property φ, we want to know whether

M |= φ

I What isM? Finite state machines

I What is φ?

I How to prove it?

I The basic problem: state explosion

SSQ, WS 15/16 6 [25]

The Model-Checking Problem

The Basic Question
Given a modelM, and a property φ, we want to know whether

M |= φ

I What isM? Finite state machines

I What is φ? Temporal logic

I How to prove it?

I The basic problem: state explosion

SSQ, WS 15/16 6 [25]

The Model-Checking Problem

The Basic Question
Given a modelM, and a property φ, we want to know whether

M |= φ

I What isM? Finite state machines

I What is φ? Temporal logic

I How to prove it? Enumerating states — model checking

I The basic problem: state explosion

SSQ, WS 15/16 6 [25]

The Model-Checking Problem

The Basic Question
Given a modelM, and a property φ, we want to know whether

M |= φ

I What isM? Finite state machines

I What is φ? Temporal logic

I How to prove it? Enumerating states — model checking

I The basic problem: state explosion

SSQ, WS 15/16 6 [25]

Finite State Machines

Finite State Machine (FSM)
A FSM is given byM = 〈Σ,→〉 where
I Σ is a finite set of states, and
I → ⊆ Σ× Σ is a transition relation, such that → is left-total:

∀s ∈ Σ.∃s ′ ∈ Σ. s → s ′

I Many variations of this definition exists, e.g. sometimes we have state
variables or labelled transitions.

I Note there is no final state, and no input or output (this is the key
difference to automata).

I If → is a function, the FSM is deterministic, otherwise it is
non-deterministic.

SSQ, WS 15/16 7 [25]

The Railway Crossing

Source: Wikipedia

SSQ, WS 15/16 8 [25]

The Railway Crossing — Abstraction

Train

Car

Gates

SSQ, WS 15/16 9 [25]

The Railway Crossing — Model

States of the train:

xing

away

lvngappr

gate= closd

States of the car:

xing

away

lvngappr

gate= open gate = closed

States of the gate:

closdopen

train = appr

train = lvng
train = lvngtrain= appr

SSQ, WS 15/16 10 [25]

The FSM

I The states here are a map from variables Car, Train, Gate to the
domains

ΣCar = {appr, xing, lvng, away}
ΣTrain = {appr, xing, lvng, away}
ΣGate = {open, clsd}

or alternatively, a three-tuple S ∈ Σ = ΣCar × ΣTrain × ΣGate.

I The transition relation is given by e.g.

〈away, open, away〉 → 〈appr, open, away〉
〈appr, open, away〉 → 〈xing, open, away〉
. . .

SSQ, WS 15/16 11 [25]

Railway Crossing — Safety Properties

I Now we want to express safety (or security) properties, such as the
following:
I Cars and trains never cross at the same time.
I The car can always leave the crossing
I Approaching trains may eventually cross.
I There are cars crossing the tracks.

I We distinguish safety properties from liveness properties:
I Safety: something bad never happens.
I Liveness: something good will (eventually) happen.

I To express these properties, we need to talk about sequences of states
in an FSM.

SSQ, WS 15/16 12 [25]

Linear Temporal Logic (LTL) and Paths

I LTL allows us to talk about paths in a FSM, where a path is a
sequence of states connected by the transition relation.

I We first define the syntax of formula,

I then what it means for a path to satisfy the formula, and

I from that we derive the notion of a model for an LTL formula.

Paths
Given a FSMM = 〈Σ,→〉, a path inM is an (infinite) sequence
〈s1, s2, s3, . . .〉 such that si ∈ Σ and si → si+1 for all i .

I For a path p = 〈s1, s2, s3, . . .〉, we write pi for si (selection) and pi for
〈si , si+1, . . .〉 (the suffix starting at i).

SSQ, WS 15/16 13 [25]

Linear Temporal Logic (LTL)

φ ::= > | ⊥ | p — True, false, atomic
| ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 −→ φ2 — Propositional formulae
| X φ — Next state
| ♦φ — Some Future State
| �φ — All future states (Globally)
| φ1 U φ2 — Until

I Operator precedence: Unary operators; then U; then ∧, ∨; then −→.
I An atomic formula p above denotes a state predicate. Note that

different FSMs have different states, so the notion of whether an
atomic formula is satisfied depends on the FSM in question. A different
(but equivalent) approach is to label states with atomic propositions.

I From these, we can define other operators, such as φ R ψ (release) or
φW ψ (weak until).

SSQ, WS 15/16 14 [25]

Satifsaction and Models of LTL
Given a path p and an LTL formula φ, the satisfaction relation p |= φ is
defined inductively as follows:

p |= True
p 6|= False
p |= p iff p(p1)
p |= ¬φ iff p 6|= φ

p |= φ ∧ ψ iff p |= φ and p |= ψ
p |= φ ∨ ψ iff p |= φ or p |= ψ
p |= φ −→ ψ iff whenever p |= φ then p |= ψ

p |= X φ iff p2 |= φ
p |= �φ iff for all i , we have pi |= φ
p |= ♦φ iff there is i such that pi |= φ
p |= φ U ψ iff there is i pi |= ψ and for all j = 1, . . . , i − 1, pj |= φ

Models of LTL formulae
A FSMM satisfies an LTL formula φ,M |= φ, iff every path p inM
satisfies φ.

SSQ, WS 15/16 15 [25]

The Railway Crossing
I Cars and trains never cross at the same time.

�¬(car = xing ∧ train = xing)

I A car can always leave the crossing:

�(car = xing −→ ♦(car = lvng))

I Approaching trains may eventually cross:

�(train = appr −→ ♦(train = xing))

I There are cars crossing the tracks:

♦(car = xing) means something else!

I Can not express this in LTL!

SSQ, WS 15/16 16 [25]

The Railway Crossing
I Cars and trains never cross at the same time.

�¬(car = xing ∧ train = xing)

I A car can always leave the crossing:

�(car = xing −→ ♦(car = lvng))

I Approaching trains may eventually cross:

�(train = appr −→ ♦(train = xing))

I There are cars crossing the tracks:

♦(car = xing) means something else!

I Can not express this in LTL!

SSQ, WS 15/16 16 [25]

The Railway Crossing
I Cars and trains never cross at the same time.

�¬(car = xing ∧ train = xing)

I A car can always leave the crossing:

�(car = xing −→ ♦(car = lvng))

I Approaching trains may eventually cross:

�(train = appr −→ ♦(train = xing))

I There are cars crossing the tracks:

♦(car = xing) means something else!

I Can not express this in LTL!

SSQ, WS 15/16 16 [25]

The Railway Crossing
I Cars and trains never cross at the same time.

�¬(car = xing ∧ train = xing)

I A car can always leave the crossing:

�(car = xing −→ ♦(car = lvng))

I Approaching trains may eventually cross:

�(train = appr −→ ♦(train = xing))

I There are cars crossing the tracks:

♦(car = xing) means something else!

I Can not express this in LTL!

SSQ, WS 15/16 16 [25]

The Railway Crossing
I Cars and trains never cross at the same time.

�¬(car = xing ∧ train = xing)

I A car can always leave the crossing:

�(car = xing −→ ♦(car = lvng))

I Approaching trains may eventually cross:

�(train = appr −→ ♦(train = xing))

I There are cars crossing the tracks:

♦(car = xing) means something else!

I Can not express this in LTL!
SSQ, WS 15/16 16 [25]

Computational Tree Logic (CTL)

I LTL does not allow us the quantify over paths, e.g. assert the
existance of a path satisfying a particular property.

I To a limited degree, we can solve this problem by negation: instead of
asserting a property φ, we check wether ¬φ is satisfied; if that is not
the case, φ holds. But this does not work for mixtures of universal and
existential quantifiers.

I Computational Tree Logic (CTL) is an extension of LTL which allows
this by adding universal and existential quantifiers to the modal
operators.

I The name comes from considering paths in the computational tree
obtained by unwinding the FSM.

SSQ, WS 15/16 17 [25]

CTL Formulae

φ ::= > | ⊥ | p — True, false, atomic
| ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 −→ φ2 — Propositional formulae
| AX φ | EX φ — All or some next state
| AFφ | EFφ — All or some future states
| AGφ | EGφ — All or some global future
| A[φ1 U φ2] | E[φ1 U φ2] — Until all or some

SSQ, WS 15/16 18 [25]

Satifsfaction

I Note that CTL formulae can be considered to be a LTL formulae with
a ’modality’ (A or E) added on top of each temporal operator.

I Generally speaking, the A modality says the temporal operator holds
for all paths, and the E modality says the temporal operator only holds
for all least one path.

I Of course, that strictly speaking is not true, because the arguments of the
temporal operators are in turn CTL forumulae, so we need recursion.

I This all explains why we do not define a satisfaction for a single path
p, but satisfaction with respect to a specific state in an FSM.

SSQ, WS 15/16 19 [25]

Satisfaction for CTL

Given an FSMM = 〈Σ,→〉, s ∈ Σ and a CTL formula φ, then
M, s |= φ is defined inductively as follows:

M, s |= True
M, s 6|= False
M, s |= p iff p(s)
M, s |= φ ∧ ψ iffM, s |= φ andM, s |= ψ
M, s |= φ ∨ ψ iffM, s |= φ orM, s |= ψ
M, s |= φ −→ ψ iff wheneverM, s |= φ thenM, s |= ψ
. . .

SSQ, WS 15/16 20 [25]

Satisfaction for CTL (c’ed)
Given an FSMM = 〈Σ,→〉, s ∈ Σ and a CTL formula φ, then
M, s |= φ is defined inductively as follows:

. . .
M, s |= AX φ iff for all s1 with s → s1, we have M, s1 |= φ
M, s |= EX φ iff for some s1 with s → s1, we haveM, s1 |= φ
M, s |= AGφ iff for all paths p with p1 = s,

we haveM, pi |= φ for all i ≥ 2
M, s |= EGφ iff there is a path p with p1 = s and

we haveM, pi |= φ for all i ≥ 2
M, s |= AFφ iff for all paths p with p1 = s

we haveM, pi |= φ for some i
M, s |= EFφ iff there is a path p with p1 = s and

we have;M, pi |= φ for some i
M, s |= A[φ U ψ] iff for all paths p with p1 = s, there is i

withM, pi |= ψ and for all j < i ,M, pj |= φ
M, s |= E[φ U ψ] iff there is a path p with p1 = s and there is i

withM, pi |= ψ and for all j < i ,M, pj |= φ
SSQ, WS 15/16 21 [25]

Patterns of Specification

I Something bad (p) cannot happen: AG¬p

I p occurs infinitly often: AG(AF p)

I p occurs eventually: AF p

I In the future, p will hold eventually forever: AFAG p

I Whenever p will hold in the future, q will hold eventually:
AG(p −→ AF q)

I In all states, p is always possible: AG(EF p)

SSQ, WS 15/16 22 [25]

LTL and CTL

I We have seen that CTL is more expressive than LTL, but (surprisingly),
there are properties which we can formalise in LTL but not in CTL!

I Example: all paths which have a p along them also have a q along
them.

I LTL: ♦p −→ ♦q

I CTL: Not AF p −→ AF q (would mean: if all paths have p, then all
paths have q), neither AG(p −→ AF q) (which means: if there is a p,
it will be followed by a q).

I The logic CTL∗ combines both LTL and CTL (but we will not consider
it further here).

SSQ, WS 15/16 23 [25]

State Explosion and Complexity

I The basic problem of model checking is state explosion.
I Even our small railway crossing has
|Σ| = |ΣCar × ΣTrain × ΣGate| = |ΣCar| · |ΣTrain| · |ΣGate| = 4 · 4 · 2 = 32
states. Add one integer variable with 232 states, and this gets
intractable.

I Theoretically, there is not much hope. The basic problem of deciding
wether a particular formula holds is known as the satisfiability problem,
and for the temporal logics we have seen, its complexity is as follows:
I LTL without U is NP-complete.
I LTL is PSPACE -complete.
I CTL is EXPTIME -complete.

I The good news is that at least it is decidable. Practically, state
abstraction is the key technique. E.g. instead of considering all possible
integer values, consider only wether i is zero or larger than zero.

SSQ, WS 15/16 24 [25]

Summary

I Model-checking allows us to show to show properties of systems by
enumerating the system’s states, by modelling systems as finite state
machines, and expressing properties in temporal logic.

I We considered Linear Temporal Logic (LTL) and Computational Tree
Logic (CTL). LTL allows us to express properties of single paths, CTL
allows quantifications over all possible paths of an FSM.

I The basic problem: the system state can quickly get huge, and the
basic complexity of the problem is horrendous. Use of abstraction and
state compression techniques make model-checking bearable.

I Tomorrow: practical experiments with model-checkers (NuSMV and/or
Spin)

SSQ, WS 15/16 25 [25]

Systeme Hoher Sicherheit und Qualität
Universität Bremen WS 2015/2016

Lecture 14 (01.02.2016)

Concluding Remarks

Christoph Lüth Jan Peleska Dieter Hutter

Where are we?
I 01: Concepts of Quality
I 02: Legal Requirements: Norms and Standards
I 03: The Software Development Process
I 04: Hazard Analysis
I 05: High-Level Design with SysML
I 06: Formal Modelling with SysML and OCL
I 07: Detailed Specification with SysML
I 08: Testing
I 09: Program Analysis
I 10: Foundations of Software Verification
I 11: Verification Condition Generation
I 12: Semantics of Programming Languages
I 13: Model-Checking
I 14: Conclusions and Outlook

SSQ, WS 15/16 2 [23]

Introductive Summary

I This lecture series was about developing systems of high quality and
high safety.

I Quality is measured by quality criteria, which guide improvement of
the development process. It is basically an economic criterion.

I Safety is “freedom from unacceptable risks”. It is a technical criterion.

I Both high quality and safety can be achieved by the means described
in this lecture series.

I Moreover, there is the legal situation: the machinery directive and
other laws require (indirectly) you use these techniques where
appropriate. This is why these lectures are so important: disregarding
this state of the art may make you personally liable.

SSQ, WS 15/16 3 [23]

Quality in the Software Development Process

I Hazard analysis

I High-level design
I SysML, structural diagrams

I Formal Modelling
I SysML and OCL

I Detailed Specification
I SysML, behavioural diagrams

I Testing
I Static Program Analysis
I Floyd-Hoare Logic
I Semantics of Programming

Languages
I Model-Checking

SSQ, WS 15/16 4 [23]

Quality in the Software Development Process

I Hazard analysis
I High-level design

I SysML, structural diagrams

I Formal Modelling
I SysML and OCL

I Detailed Specification
I SysML, behavioural diagrams

I Testing
I Static Program Analysis
I Floyd-Hoare Logic
I Semantics of Programming

Languages
I Model-Checking

SSQ, WS 15/16 4 [23]

Quality in the Software Development Process

I Hazard analysis
I High-level design

I SysML, structural diagrams
I Formal Modelling

I SysML and OCL

I Detailed Specification
I SysML, behavioural diagrams

I Testing
I Static Program Analysis
I Floyd-Hoare Logic
I Semantics of Programming

Languages
I Model-Checking

SSQ, WS 15/16 4 [23]

Quality in the Software Development Process

I Hazard analysis
I High-level design

I SysML, structural diagrams
I Formal Modelling

I SysML and OCL
I Detailed Specification

I SysML, behavioural diagrams

I Testing
I Static Program Analysis
I Floyd-Hoare Logic
I Semantics of Programming

Languages
I Model-Checking

SSQ, WS 15/16 4 [23]

Quality in the Software Development Process

I Hazard analysis
I High-level design

I SysML, structural diagrams
I Formal Modelling

I SysML and OCL
I Detailed Specification

I SysML, behavioural diagrams

I Testing
I Static Program Analysis
I Floyd-Hoare Logic

I Semantics of Programming
Languages

I Model-Checking

SSQ, WS 15/16 4 [23]

Quality in the Software Development Process

I Hazard analysis
I High-level design

I SysML, structural diagrams
I Formal Modelling

I SysML and OCL
I Detailed Specification

I SysML, behavioural diagrams

I Testing

I Static Program Analysis
I Floyd-Hoare Logic

I Semantics of Programming
Languages

I Model-Checking

SSQ, WS 15/16 4 [23]

Quality in the Software Development Process

I Hazard analysis
I High-level design

I SysML, structural diagrams
I Formal Modelling

I SysML and OCL
I Detailed Specification

I SysML, behavioural diagrams

I Testing
I Static Program Analysis

I Floyd-Hoare Logic

I Semantics of Programming
Languages

I Model-Checking

SSQ, WS 15/16 4 [23]

Quality in the Software Development Process

I Hazard analysis
I High-level design

I SysML, structural diagrams
I Formal Modelling

I SysML and OCL
I Detailed Specification

I SysML, behavioural diagrams

I Testing
I Static Program Analysis
I Floyd-Hoare Logic
I Semantics of Programming

Languages

I Model-Checking

SSQ, WS 15/16 4 [23]

Quality in the Software Development Process

I Hazard analysis
I High-level design

I SysML, structural diagrams
I Formal Modelling

I SysML and OCL
I Detailed Specification

I SysML, behavioural diagrams

I Testing
I Static Program Analysis
I Floyd-Hoare Logic
I Semantics of Programming

Languages
I Model-Checking

SSQ, WS 15/16 4 [23]

Examples of Formal Methods in Practice

I Hardware verification:
I Intel: formal verification of microprocessors
I Infineon: equivalence checks

I Software verification (research projects):
I Verisoft — Microsoft Hyper-V (VCC)
I L4.verified — NICTA, Australia (Isabelle)

I Tools used in industry (excerpt):
I AbsInt tools: aiT, Astrée, CompCert (C)
I SPARK tools (Ada)
I SCADE (MatLab/Simulink)
I UPAALL, Spin, FDR2, other model checkers

SSQ, WS 15/16 5 [23]

SSQ at University of Bremen

I AG BS (Prof. Jan Peleska): Testing, abstract interpretation.
I Strong industrial links to aerospace and railway industry, spin-off (Verified

Systems)

I DFKI CPS and AG RA (Profs. Rolf Drechsler, Dieter Hutter, Christoph
Lüth):
I Strong industrial links: Infineon, Intel, NXP
I Hardware and system verification
I Software verification
I Security
I Further application areas: robotics and AAL

I SyDe Graduate College (University of Bremen, DFKI, DLR)
I Includes more application areas: Space, robotics, real-time image processing

SSQ, WS 15/16 6 [23]

Questions

SSQ, WS 15/16 7 [23]

Lecture 01: Concepts of quality

I What is quality? What are quality criteria?

I What could be useful quality criteria?

I What is the conceptual difference between ISO 9001 and CMM?

SSQ, WS 15/16 8 [23]

Lecture 02: Concepts of Safety and Security

I What is safety?

I Norms and Standards:

I Legal situation
I What is the machinery directive?
I Norm landscape: First, second, third-tier norms
I Important norms: IEC 61508, ISO 26262, DIN EN 50128, DO-178B, ISO

15408

I Risk analysis:

I What is a SIL? Target SIL?
I How do we obtain a SIL? What does it mean for the development?

SSQ, WS 15/16 9 [23]

Lecture 03: Quality of the Software Development
Process

I Which software development models did we encounter?

I Waterfall, spiral, agile, MDD, V-model:
I How does it work?
I What are the advantages and disadvantages?

I Which models are appropriate for safety-critical developments?
I What are the typical artefacts (and where do they occur)?
I Formal software development:

I What is it, and how does it work?
I How can we define properties, what kind of properties are there, how are

they defined?
I Development structure: horizontal vs. vertical, layers and views

SSQ, WS 15/16 10 [23]

Lecture 03: Quality of the Software Development
Process

I Which software development models did we encounter?
I Waterfall, spiral, agile, MDD, V-model:

I How does it work?
I What are the advantages and disadvantages?

I Which models are appropriate for safety-critical developments?
I What are the typical artefacts (and where do they occur)?
I Formal software development:

I What is it, and how does it work?
I How can we define properties, what kind of properties are there, how are

they defined?
I Development structure: horizontal vs. vertical, layers and views

SSQ, WS 15/16 10 [23]

Lecture 04: Hazard Analysis

I What is hazard analysis?

I Where (in the development process) is it used?

I Basic approaches: bottom-up vs. top-down, and what do they mean?

I Which methods did we encounter?

I FMEA, FTA, Event traces — how do they work,
advantages/disadvantages?

I What are the prime verification techniques?

SSQ, WS 15/16 11 [23]

Lecture 04: Hazard Analysis

I What is hazard analysis?

I Where (in the development process) is it used?

I Basic approaches: bottom-up vs. top-down, and what do they mean?

I Which methods did we encounter?

I FMEA, FTA, Event traces — how do they work,
advantages/disadvantages?

I What are the prime verification techniques?

SSQ, WS 15/16 11 [23]

Lecture 05: High-level Design

I High-level specification and modelling:

I What is it, where in the development process does it take place, what
formalisms are useful?

I What is SysML? How does it relate to UML?

I Basic elements of SysML used for high-level design:

I Structural diagrams:
I Package diagram
I Block definition diagram (describes classes, class diagram)
I Internal block diagrams (describes instances of blocks, flow specifications)
I Parametric diagram (equational modelling)

SSQ, WS 15/16 12 [23]

Lecture 05: High-level Design

I High-level specification and modelling:

I What is it, where in the development process does it take place, what
formalisms are useful?

I What is SysML? How does it relate to UML?

I Basic elements of SysML used for high-level design:

I Structural diagrams:
I Package diagram
I Block definition diagram (describes classes, class diagram)
I Internal block diagrams (describes instances of blocks, flow specifications)
I Parametric diagram (equational modelling)

SSQ, WS 15/16 12 [23]

Lecture 05: High-level Design

I High-level specification and modelling:

I What is it, where in the development process does it take place, what
formalisms are useful?

I What is SysML? How does it relate to UML?

I Basic elements of SysML used for high-level design:

I Structural diagrams:
I Package diagram
I Block definition diagram (describes classes, class diagram)
I Internal block diagrams (describes instances of blocks, flow specifications)
I Parametric diagram (equational modelling)

SSQ, WS 15/16 12 [23]

Lecture 06: Formal Modelling with SysML and OCL

I What is OCL?
I A specification language for UML/SysML models
I Characteristics: pure and typed

I What can we use it for?
I Invariants on classes and types
I Pre- and postconditions on operations and methods

I OCL types:
I Basic types: Boolean, Integer, Real, String; OclAny, OclType, OclVoid
I Collection types: Sequence, Bag,OrderdedSet, Set
I Model types

I Logic: three-valued Kleene logic

SSQ, WS 15/16 13 [23]

Lecture 07: Detailed Specification

I What is detailed specification?

I Specification of single modules — „last“ level before code

I What elements are used in specification?

I SysML behavioural diagrams:

I State diagrams (hierarchical finite state machines)

I Activity diagrams (flow charts)

I Sequence diagrams (message sequence charts)

I Use-case diagrams

SSQ, WS 15/16 14 [23]

Lecture 08: Testing

I What is testing, and what are the aims? What can it achieve, what
not?

I What are test elevels?

I What is a black-box test? How are test cases chosen?

I What is a white-box test?

I What is the control-flow graph of a program?

I What kind of coverages are there, and how are they defined?

SSQ, WS 15/16 15 [23]

Lecture 09: Static Program Analysis

I Is what? Where in the development process is it used? What is the
difference to testing?

I What is the basic problem, and how is circumvented?

I What does it mean when we say an analysis is sound, or safe?

I What are false positives?

I Did we consider inter- or intraprocedural analysis?

I What examples for forward/backward analysis did we encounter?

SSQ, WS 15/16 16 [23]

Lecture 10: Verification with Floyd-Hoare Logic

I What is Floyd-Hoare logic, what does it do (and what not), and where
is used in the development process?

I How does it work?

I What is the difference between |= {P} p {q} and ` {P} p {q}?

I What do the notations {P} p {Q} and [P] p [Q] mean?

I What rules does the Floyd-Hoare logic have?

I How are they used?

I Which properties does it have?

SSQ, WS 15/16 17 [23]

Lecture 11: Verification Condition Generation

I What does VCG do?

I How is it related to Floyd-Hoare logic?

I What is a weakest precondition, and how do we calculate it?

I What are program annotations? Why do we need them? How are they
used?

I What does vc(c,P) and pre(c,P) mean, and how do we calcuate
them?

I Which tools do VCG?

SSQ, WS 15/16 18 [23]

Lecture 12: Semantics

I What is semantics? What do we need it for?
I What are the three kinds of semantics, and how to they work?

I Operational semantics specifies how the program is executed, often as a
relation 〈c, σ〉 → σ.

I Denotational semantics models the program as a mathematical entity, often
as a partial function Σ ⇀ Σ using complete partial orders (cpos). Cpos
provide mathematical means to handle partiality and fixpoints (iteration).

I Axiomatic semantics gives proof rules for programs, such as the
Floyd-Hoare rules.

I We can show equivalence of semantics (correctness).

I When do we use which?
I Operational semantics: implementing the language
I Denotational semantics: high-level reasoning
I Axiomatic semantics: reasoning about programs

SSQ, WS 15/16 19 [23]

Lecture 12: Semantics

I What is semantics? What do we need it for?
I What are the three kinds of semantics, and how to they work?

I Operational semantics specifies how the program is executed, often as a
relation 〈c, σ〉 → σ.

I Denotational semantics models the program as a mathematical entity, often
as a partial function Σ ⇀ Σ using complete partial orders (cpos). Cpos
provide mathematical means to handle partiality and fixpoints (iteration).

I Axiomatic semantics gives proof rules for programs, such as the
Floyd-Hoare rules.

I We can show equivalence of semantics (correctness).

I When do we use which?

I Operational semantics: implementing the language
I Denotational semantics: high-level reasoning
I Axiomatic semantics: reasoning about programs

SSQ, WS 15/16 19 [23]

Lecture 12: Semantics

I What is semantics? What do we need it for?
I What are the three kinds of semantics, and how to they work?

I Operational semantics specifies how the program is executed, often as a
relation 〈c, σ〉 → σ.

I Denotational semantics models the program as a mathematical entity, often
as a partial function Σ ⇀ Σ using complete partial orders (cpos). Cpos
provide mathematical means to handle partiality and fixpoints (iteration).

I Axiomatic semantics gives proof rules for programs, such as the
Floyd-Hoare rules.

I We can show equivalence of semantics (correctness).

I When do we use which?
I Operational semantics: implementing the language
I Denotational semantics: high-level reasoning
I Axiomatic semantics: reasoning about programs

SSQ, WS 15/16 19 [23]

Lecture 13: Model-Checking with LTL and CTL

I What is model-checking, and how is it used? How does it compare
with Floyd-Hoare logic?

I What is the basic question?

M |= φ

I What do we use for M, φ, and do we prove it?

I What is a finite state machine, and what is temporal logic?
I LTL, CTL:

I What are the basic operators, when does a formula hold, and what kind of
properties can we formulate?

I Which one is more powerful?
I Which one is decidable, and with which complexity?

I What is the basic problem (and limitation) of model-checking?
I Which tools did we see to model-check LTL/CTL?

SSQ, WS 15/16 20 [23]

Lecture 13: Model-Checking with LTL and CTL

I What is model-checking, and how is it used? How does it compare
with Floyd-Hoare logic?

I What is the basic question? M |= φ

I What do we use for M, φ, and do we prove it?

I What is a finite state machine, and what is temporal logic?
I LTL, CTL:

I What are the basic operators, when does a formula hold, and what kind of
properties can we formulate?

I Which one is more powerful?
I Which one is decidable, and with which complexity?

I What is the basic problem (and limitation) of model-checking?
I Which tools did we see to model-check LTL/CTL?

SSQ, WS 15/16 20 [23]

Module Exams (Modulprüfungen)

I We have the following five areas:
I Lectures 1 – 4: Quality, Norms and Standards, Development Processes,

Requirements Analysis
I Lecture 5 – 7: SysML
I Lecture 8 – 9: Testing and Static Program Analysis
I Lecture 10 – 12: Semantics, Floyd-Hoare Logic and Verification Conditions
I Lecture 13: Model-Checking with LTL and CTL

I You may choose two areas (except for the first). You need to tell us
before the exam starts.

I Questions may come from all lectures, but we will concentrate on the
first and your chosen areas.

SSQ, WS 15/16 21 [23]

Final Remark

I Please remember the evaluation (see stud.ip)!

SSQ, WS 15/16 22 [23]

Thank you, and good bye.

SSQ, WS 15/16 23 [23]

	Questions

