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Generelles 

Einführungsvorlesung zum Masterprofil S & Q 

 

6 ETCS-Punkte 

 

Vorlesung: 

 Montag    12 c.t – 14 Uhr (MZH 1110) 

Übungen:  

 Dienstag  12 c.t. – 14 Uhr (MZH 1470) 

 

Webseite: 

http://www.informatik.uni-bremen.de/~cxl/lehre/ssq.ws15/  
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Folien, Übungsblätter, etc. 
 

Folien 

 … sind auf Englisch (Notationen!) 

 … gibt es auf der Homepage 

 ... sind (üblicherweise) nach der Vorlesung verfügbar 

 

Übungen 

 Übungsblätter gibt es auf dem Web 

 Ausgabe Montag abend/Dienstag morgen 

► Erstes Übungsblatt nächste Woche 

 Abgabe vor der Vorlesung 

► Persönlich hier, oder per Mail bis Montag 12:00 

 

 



  
SSQ, WS 15/16 

  

Literatur 
 

Foliensätze als Kernmaterial 

 

Ausgewählte Fachartikel als Zusatzmaterial 

 Auf der Webseite verfügbar. 

 

Es gibt (noch) keine Bücher, die den Vorlesungsinhalt 
komplett erfassen. 

 

Zum weiteren Stöbern: 

 Wird im Verlauf der Vorlesung bekannt gegeben 

 

 



  
SSQ, WS 15/16 

  

Prozent Note Prozent Note Prozent Note Prozent Note 

89.5-85 1.7 74.5-70 2.7 59.5-55 3.7 

100-95 1.0 84.5-80 2.0 69.5-64 3.0 54.5-50 4.0 

94.5-90 1.3 79.5-75 2.3 64.5-60 3.3 49.5-0 N/b 

Prüfungen 
 Fachgespräch oder Modulprüfung 

 Anmeldefristen beachten! 

Individuelle Termine nach Absprache Februar / März 

Notenspiegel Übungsblätter: 

 

 

  

 

 

Modulprüfung: 

 Keine Abgabe der Übungsblätter nötig  

 Bearbeitung dringend angeraten 
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Overview 
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Objectives 
 

This is an introductory lecture for the topics 
 
                           Quality     –      Safety    –    Security                               
     

The aim is not an introduction into a particular formal method, or even 
formal methods in general. Rather, we want to give a bird’s eye view of 
everything relevant in connection with developing systems of high quality, 
high safety or high security. 

The lecture reflects the fundamentals of the research focus quality, safety 
& security at the department of Mathematics and Computer Science (FB3) 
at the University of Bremen.  This is one of the three focal points of 
computer science at FB3, the other two being Digital Media and Artificial 
Intelligence, Robotics & Cognition. 

This lecture is elaborated jointly by Dieter Hutter, Christoph Lüth, and Jan 
Peleska. 

The choice of material in each semester reflects personal preferences. 
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Ariane 5 

Stuxnet 

Chip & PIN 

Flight  AF 447 

Our car 

Friday October 7,2011  
By Daily Express Reporter  

 
AN accounting error yesterday forced outsourcing  

specialist Mouchel into a major profits warning and  
sparked the resignation of its chief executive.  

 

Why bother with Quality and Safety? 
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Ariane 5 

10 

Ariane 5 exploded on its virgin flight (Ariane Flight 501) on 
4.6.1996. 

 

 

 

 

 

 

 

 

 

 

How could that happen? 
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What Went Wrong With Ariane Flight 501? 

(1) Self-destruction due to instability; 

(2) Instability due to wrong steering movements (rudder); 

(3) On-board computer tried to compensate for (assumed) wrong trajectory; 

(4) Trajectory was calculated wrongly because own position was wrong; 

(5) Own position was wrong because positioning system had crashed; 

(6) Positioning system had crashed because transmission of sensor data to 
ground control failed with integer overflow; 

(7) Integer overflow occurred because values were too high; 

(8) Values were too high because positioning system was integrated 
unchanged from predecessor model, Ariane-4; 

(9) This assumption was not documented because it was satisfied tacitly with 
Ariane-4. 

(10)Positioning system was redundant, but both systems failed (systematic 
error). 

(11)Transmission of data to ground control also not necessary. 
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What is Safety and Security? 

Safety: 

 product achieves acceptable levels of risk or harm to 
people, business, software, property or the environment 
in a specified context of use 

 Threats from “inside” 

► Avoid malfunction of a system (eg. planes, cars, railways…) 

Security: 

 Product is protected against potential attacks from 
people, environment etc.  

 Threats from “outside”  

► Analyze and counteract the abilities of an attacker 
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A safety-critical design flaw –  

invented by Gary Larson 
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Software Development Models 

Definition of software development process and 
documents 

 

 

Examples: 

 Waterfall Model 

 V-Model 

 Model-Driven 
Architectures 

 Agile Development 
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mathematical notions 

Informal 
documents 

program 

formal specifications 

requirements 

proofs 

Formal Software Development 

Informal 
Notions 

refinement 
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Verification and Validation 

Verification: have we built the system right? 

 i.e. correct with respect to a reference artefact  

► specification document 

► reference system 

► Model 

 

Validation: have we built the right system  

 i.e. adequate for its intended operation? 
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V&V Methods 

Testing 

 Test case generation, black- vs. white box 

 Hardware-in-the-loop testing: integrated HW/SW system is tested 

 Software-in-the-loop testing: only software is tested 

 Program runs using symbolic values 

Simulation 

 An executable model is tested with respect to specific properties 

 This is also called Model-in-the-Loop Test 

Static/dynamic program analysis 

 Dependency graphs, flow analysis 

 Symbolic evaluation 

Model checking 

 Automatic proof by reduction to finite state problem 

Formal Verification 

 Symbolic proof of program properties 

 



  
SSQ, WS 15/16 

  

Overview of Lecture Series 

01: Concepts of Quality 

02: Concepts of Safety, Legal Requirements, Certification 

03: A Safety-critical Software Development Process 

04: Requirements Analysis 

05: High-Level Design & Detailed Specification with SysML  

06: Testing 

07 and 08: Program Analysis 

09: Model-Checking  

10 and 11: Software Verification (Hoare-Calculus) 

12: Concurrency 

13: Conclusions 
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Concepts of Quality 
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What is Quality? 

Quality is the collection of its characteristic properties 

 

Quality model: decomposes the high-level definition by 
associating attributes (also called characteristics, factors, 
or criteria) to the quality conception 

 

Quality indicators associate metric values with quality 
criteria, expressing “how well” the criteria have been 
fulfilled by the process or product.  
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Quality Criteria: Different „Dimensions“ of Quality 

For the development of artifacts quality criteria can be 
measured with respect to the 

 development process (process quality) 

 final product (product quality) 

 

Another dimension for structuring quality conceptions is  

 Correctness: the consistency with the product and its 
associated requirements specifications 

 Effectiveness: the suitability of the product for its 
intended purpose 
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Quality Criteria (cont.) 

 

A third dimension structures quality according to product 
properties: 

 Functional properties: the specified services to be 
delivered to the users 

 Structural properties: architecture, interfaces, 
deployment, control structures 

 Non-functional properties: usability, safety, reliability, 
availability, security, maintainability, guaranteed worst-
case execution time (WCET), costs, absence of run-time 
errors, … 
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Quality (ISO/IEC 25010/12) 

“Systems and software engineering — Systems and 
software Quality Requirements and Evaluation 
(SQuaRE) — System and software quality models” 

 Quality model framework (replaces the older ISO/IEC 
9126) 

Product quality model 

 Categorizes system/software product quality properties 

Quality in use model 

 Defines characteristics related to outcomes of interaction 
with a system 

Quality of data model 

 Categorizes data quality attributes 
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Product 
Quality 

Functional 
suitability 

Completeness 
Correctness 

Appropriateness 

Performance 
efficiency 

Time behavior 
Resource 
utilization 
Capacity 

Compatibility 

Co-existence 
Interoperability 

Usability 

Appropriateness 
recognizability 

Learnability 
Operability 
User error 
protection 

User interface 
aesthetics 

Accessibility 

Reliability 

Maturity 
Availability 

Fault tolerance 
Recoverability 

Security 

Confidentiality 
Integrity 

Non-repudiation 
Accountability 
Authenticity 

Maintainability 

Modularity 
Reusability 

Analysability 
Modifiability 
Testability 

Portability 

Adaptability 
Installability 

Replaceability 

Source:  ISO/IEC FDIS 25010 

Product Quality Model 
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System 

Quality in Use 

Computer System 

Quality 

Software Product 

Quality 

System 

Quality in Use 
Requirements 

Computer System 

Quality  
Requirements 

Software Product 

Quality 
Requirements 

Implementation 

Quality in Use Needs 

Products Requirements 

Validation 

Verification 

Validation 

Verification 

Validation 

System 

Quality in 
Use Model 

System 

and 
Software 
Product 

Quality 
Model 

Source:  ISO/IEC FDIS 25010 

System Quality Life Cycle Model 
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Quality in Use Model 
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Product 
Quality 

Functional 
suitability 

Completeness 
Correctness 

Appropriateness 

Performance 
efficiency 

Time behavior 
Resource 
utilization 
Capacity 

Compatibility 

Co-existence 
Interoperability 

Usability 

Appropriateness 
recognizability 

Learnability 
Operability 
User error 
protection 

User interface 
asthetics 

Accessibility 

Reliability 

Maturity 
Availability 

Fault tolerance 
Recoverability 

Security 

Confidentiality 
Integrity 

Non-repudiation 
Accountability 
Authenticity 

Maintainability 

Modularity 
Reusability 

Analysability 
Modifiability 
Testability 

Portability 

Adaptability 
Installability 

Replaceability 

Source:  ISO/IEC FDIS 25010 

How can we „guarantee“ safety and security ? 

Our Focus of Interest 
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Other Norms and Standards 

ISO 9001 (DIN ISO 9000-4): 

 Standardizes definition and supporting principles 
necessary for a quality system to ensure products meet 
requirements 

 “Meta-Standard” 

 

CMM (Capability Maturity Model), Spice 

 Standardises maturity of development process 

 Level 1 (initial): Ad-hoc 

 Level 2 (repeatable): process dependent on individuals 

 Level 3 (defined): process defined & institutionalised 

 Level 4 (managed): measured process 

 Level 5 (optimizing): improvement fed back into process 

 



  
SSQ, WS 15/16 

  

 

Today‘s Summary 
 

Quality: 

 collection of characteristic properties 

 quality indicators measuring quality criteria 

 

Relevant aspects of quality here: 

 Functional suitability 

 Reliability 

 Security 

 

Next week:  

 Concepts of Safety, Legal Requirements, Certification 
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Systeme hoher Qualität und Sicherheit 
Universität Bremen WS 2015/2016 

Christoph Lüth       Jan Peleska        Dieter Hutter 

Lecture 02 (19.10.2015) 
 
Legal Requirements: Norms and Standards 
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Where are we? 

01: Concepts of Quality 

02: Legal Requirements: Norms and Standards 

03: The Software Development Process 

04: Requirements Analysis 

05 and 06: High-Level Design & Detailed Spec’n with SysML  

07: Testing 

08 and 09: Program Analysis 

10: Model-Checking  

11 and 12: Software Verification (Hoare-Calculus) 

13: Concurrency 

14: Conclusions 
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Synopsis 
  

If you want to write safety-criticial software, 
then you need to adhere to state-of-the-art practice 
as encoded by the relevant norms & standards. 

 

Today: 

 What is safety and security? 

 Why do we need it?  Legal background. 

 How is it ensured? Norms and standards 

► IEC 61508 – Functional safety – specialised norms for 
special domains 

► IEC 15408 – Common criteria (security) 

 

 

3 
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The Relevant Question 

If something goes wrong: 

 Whose fault is it? 

 Who pays for it? 

That is why most (if not all) of these standards put a lot 
of emphasis on process and traceability (= auditable 
evidence). Who decided to do what, why, and how?  

The bad news: 

 As a qualified professional, you may become personally 
liable if you deliberately and intentionally (grob 
vorsätzlich) disregard the state of the art or do not comply 
to the rules (=norms,standards) that were to be applied. 

The good news: 

 Pay attention here and you will be delivered from these 
evils. 

 

 

4 
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Safety: 
IEC 61508  

and other norms & standards 
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What is Safety? 
 

Absolute definition: 

 „Safety is freedom from accidents or losses.“  

► Nancy Leveson, „Safeware: System safety and computers“ 

But is there such a thing as absolute safety?  

Technical definition: 

 „Sicherheit: Freiheit von unvertretbaren Risiken“ 

► IEC 61508-4:2001, §3.1.8 

Next week: a development process for safety-critical 

systems 

6 
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Some Terminology 

Fail-safe vs. Fail operational vs. Fault tolerant 

 Fail-safe (or fail-stop): on error, terminate in a safe state 

 Fail operational systems continue their operation, even if 
their controllers fail 

 Fault tolerant systems are more general than fail 
operational systems: in case of faults, they continue with 
a potentially degraded service 

Safety-critical, safety-relevant (sicherheitskritisch) 

 General term --  failure may lead to risk  

 Safety function (Sicherheitsfunktion) 

 Technical term, that functionality which ensures safety 

Safety-related (sicherheitsgerichtet, sicherheitsbezogen) 

 Technical term, directly related to the safety function 

 
7 
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Legal Grounds 

The machinery directive: 

The Directive 2006/42/EC of the European Parliament and of the 
Council of 17 May 2006 on machinery, and amending Directive 
95/16/EC (recast) 

Scope: 

 Machineries (with a drive system and movable parts). 

Structure: 

 Sequence of whereas clauses (explanatory) 

 followed by 29 articles (main body) 

 and 12 subsequent annexes (detailed information about 
particular fields, e.g. health & safety) 

Some application areas have their own regulations: 

 Cars and motorcycles, railways, planes, nuclear plants … 

8 

http://ec.europa.eu/enterprise/sectors/mechanical/documents/legislation/machinery/
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What does that mean? 

Relevant for all machinery (from tin-opener to AGV [= 
automated guided vehicle]) 

Annex IV lists machinery where safety is a concern 

Standards encode current best practice. 

 Harmonised standard available? 

External certification or self-certification 

 Certification ensures and documents conformity to 
standard. 

Result: 

 

 

Sope of the directive is market harmonisation, not safety 
– that is more or less a byproduct. 

Conformité Européenne 

9 
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The Norms and Standards Landscape 

• First-tier standards (A-Normen): 

• General, widely applicable, no specific area of application 

• Example: IEC 61508 

• Second-tier standards (B-Normen): 

• Restriction to a particular area of application 

• Example: ISO 26262 (IEC 61508 for automotive) 

• Third-tier standards (C-Normen): 

• Specific pieces of equipment 

• Example: IEC 61496-3 (“Berührungslos wirkende 
Schutzeinrichtungen”) 

• Always use most specific norm. 
The 

standards 

quagmire ? 

10 
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Norms for the Working Programmer 

IEC 61508: 

 “Functional Safety of Electrical/Electronic/Programmable Electronic Safety-
related Systems (E/E/PE, or E/E/PES)” 

 Widely applicable, general, considered hard to understand  

ISO 26262 

 Specialisation of 61508 to cars (automotive industry) 

DIN EN 50128:2011  

 Specialisation of 61508 to software for railway industry 

RTCA DO 178-B and C (new developments require C): 

 “Software Considerations in Airborne Systems and Equipment Certification“ 

 Airplanes, NASA/ESA 

ISO 15408:  

 “Common Criteria for Information Technology Security Evaluation” 

 Security, evolved from TCSEC (US), ITSEC (EU), CTCPEC (Canada)  

 

 

11 



  SSQ, WS 15/16   

Introducing IEC 61508 

Part 1: Functional safety management, competence, 
 establishing SIL targets  

Part 2: Organising and managing the life cycle 

Part 3: Software requirements 

Part 4: Definitions and abbreviations 

Part 5: Examples of methods for the determination of 
safety-integrity levels 

Part 6: Guidelines for the application 

Part 7: Overview of techniques and measures 

 

  

12 
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How does this work? 

1. Risk analysis determines the safety integrity level (SIL) 

2. A hazard analysis leads to safety requirement 
specification. 

3. Safety requirements must be satisfied 

 Need to verify this is achieved. 

 SIL determines amount of testing/proving etc. 

4. Life-cycle needs to be managed and organised 

 Planning: verification & validation plan 

 Note: personnel needs to be qualified. 

5. All of this needs to be independently assessed. 

 SIL determines independence of assessment body. 

 

13 
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Safety Integrity Levels 

SIL High Demand 
(more than once a year) 

Low Demand 
(once a year or less)  

4 10-9 < P/hr < 10-8 10-5 < P/yr < 10-4 

3 10-8 < P/hr < 10-7 10-4 < P/yr < 10-3 

2 10-7 < P/hr < 10-6 10-3 < P/yr < 10-2 

1 10-6 < P/hr < 10-5 10-2 < P/yr < 10-1 

• P: Probabilty of dangerous failure (per hour/year) 

• Examples: 

 High demand: car brakes 

 Low demand: airbag control 

• Which SIL to choose?  Risk analysis 

• Note: SIL only meaningful for specific safety functions. 

 

14 
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Establishing target SIL I  

IEC 61508 does not describe standard procedure to 
establish a SIL target, it allows for alternatives: 

Quantitative approach 

 Start with target risk level 

 Factor in fatality and  
frequency 

 

Example: 

 Safety system for a chemical plant  

 Max. tolerable risk exposure A=10-6 

 B= 10-2 hazardous events lead to fatality 

 Unprotected process fails C= 1/5 years 

 Then Failure on Demand E = A/(B*C) = 5*10-3, so SIL 2 

 

Maximum tolerable 

risk of fatality 

Individual risk  

(per annum) 

Employee 10-4 

Public 10-5 

Broadly acceptable 

(„Neglibile“) 

10-6 

15 
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Establishing Target SIL II 

Qualitative Method: Risk Graph Analysis (e.g. DIN 13849) 

DIN EN ISO 13849:1 determines the Performance Level  

17 

PL SIL 

a - 

b 1 

c 2 

d 3 

e 4 

Severity of injurity: 
S1 -  slight (reversible) injury 
S2 – severe (irreversible) injury 
 
Occurence: 
F1 – rare occurence 
F2 – frequent occurence 
 
Possible avoidance: 
P1 – possible 
P2 – impossible Relation PL to SIL 

Source: Peter Wratil (Wikipedia) 
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What does the SIL mean for the 
development process? 

In general:  

 „Competent“ personnel 

 Independent assessment („four eyes“) 

SIL 1: 

 Basic quality assurance (e.g ISO 9001) 

SIL 2: 

 Safety-directed quality assurance, more tests 

SIL 3: 

 Exhaustive testing, possibly formal methods 

 Assessment by separate department 

SIL 4: 

 State-of-the-art practices, formal methods 

 Assessment by separate organisation 

 
18 
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Increasing SIL by redudancy 

One can achieve a higher SIL by combining 
independent systems with lower SIL 
(„Mehrkanalsysteme“). 

 Given two systems A,  B with failure probabilities 𝑃𝐴, 𝑃𝐵, 
the chance for failure of both is (with 𝑃𝐶𝐶  probablity of 
common-cause failures): 

𝑃𝐴𝐵 = 𝑃𝐶𝐶 + 𝑃𝐴𝑃𝐵 

Hence, combining two SIL 3 systems may give you a SIL 4 
system. 

However, be aware of systematic errors (and note  that 
IEC 61508 considers all software errors to be 
systematic).  

Note also that for fail-operational systems you need 
three (not two) systems. 

19 
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The Software Development Process   

61508 mandates a V-model software development 
process 

 More next lecture 

Appx A, B give normative guidance on measures to 
apply: 

 Error detection needs to be taken into account (e.g 
runtime assertions, error detection codes, dynamic 
supervision of data/control flow) 

 Use of strongly typed programming languages (see table) 

 Discouraged use of certain features: recursion(!), dynamic 
memory, unrestricted pointers, unconditional jumps 

 Certified tools and compilers must be used. 

► Or `proven in use´ 

 

21 
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Proven in Use  
  
 As an alternative to systematic development, statistics 

about usage may be employed. This is particularly 
relevant: 

 for development tools (compilers, verification tools etc), 

 and for re-used software (modules, libraries). 

 Note that the previous use needs to be to the same 
specification as intended use (eg. compiler: same target 
platform). 

SIL Zero Failure  One Failure 

1 12 ops 12 yrs 24 ops 24 yrs 

2 120 ops 120 yrs 240 ops 240 yrs 

3 1200 ops 1200 yrs 2400 ops 2400 yrs 

4 12000 ops 12000 yrs 24000 ops 24000 yrs 

22 
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Table A.2, Software Architecture 

23 
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Table A.4- Software Design & 
Development 

24 
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Table A.9 – Software Verification 

25 
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Table B.1 – Coding Guidelines 

Table C.1, 
programming 
languages, mentions: 

 ADA, Modula-2, 
Pascal, FORTRAN 
77, C, PL/M, 
Assembler, … 

Example for a 
guideline: 

 MISRA-C: 2004, 
Guidelines for the 
use of the C 
language in critical 
systems. 

26 
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Table B.5 - Modelling 

27 
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Certification 

Certiciation is the process of showing conformance to a standard. 

Conformance to IEC 61508 can be shown in two ways: 

 Either that an organisation (company) has in principle the ability to 

produce a product conforming to the standard, 

 Or that a specific product (or system design) conforms to the standard. 

Certification can be done by the developing company (self-

certification), but is typically done by an accredited body. 

 In Germany, e.g. the TÜVs or the Berufsgenossenschaften (BGs) 

Also sometimes (eg. DO-178B) called `qualification‘.  

31 
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Security: 
The Common Criteria  
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Common Criteria (IEC 15408 ) 

This multipart standard, the Common Criteria (CC), is meant 
to be used as the basis for evaluation of security properties 
of IT products and systems. By establishing such a common 
criteria base, the results of an IT security evaluation will be 
meaningful to a wider audience. 

 

The CC is useful as a guide for the development of products 
or systems with IT security functions and for the procurement 
of commercial products and systems with such functions.  

 

During evaluation, such an IT product or system is known as a 
Target of Evaluation (TOE) .  
 Such TOEs include, for example, operating systems, computer 

networks, distributed systems, and applications. 

36 
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General Model 

Security is concerned with the 
protection of assets. Assets are 
entities that someone places 
value upon.  

 

Threats give rise to risks to the 
assets, based on the likelihood 
of a threat being realized and its 
impact on the assets  

 

(IT and non-IT) Counter-
measures are imposed to 
reduce the risks to assets. 

37 
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Common Criteria (CC) 

The CC addresses protection of information from unauthorized 
disclosure, modification, or loss of use. The categories of protection 
relating to these three types of failure of security are commonly 
called confidentiality, integrity, and availability, respectively. 

 

The CC may also be applicable to aspects of IT security outside of 
these three.  

 

The CC concentrates on threats to that information arising from 
human activities, whether malicious or otherwise, but may be 
applicable to some non-human threats as well.  

 

In addition, the CC may be applied in other areas of IT, but makes 
no claim of competence outside the strict domain of IT security.  

 

 

38 
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Concept of Evaluation 

39 
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Requirements Analysis 

• The security environment includes all the laws, organizational 
security policies, customs, expertise and knowledge that are 
determined to be relevant.  

• It thus defines the context in which the TOE is intended to be 
used.  

• The security environment also includes the threats to security 
that are, or are held to be, present in the environment. 

 

A statement of applicable organizational security policies would 
identify relevant policies and rules.  

 For an IT system, such policies may be explicitly referenced, 
whereas for a general purpose IT product or product class, 
working assumptions about organizational security policy may 
need to be made. 
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Requirements Analysis 

• A statement of assumptions which are to be met by the 
environment of the TOE in order for the TOE to be considered 
secure.  

• This statement can be accepted as axiomatic for the TOE 
evaluation. 

 
A statement of threats to security of the assets would identify all 
the threats perceived by the security analysis as relevant to the TOE.  
 The CC characterizes a threat in terms of a threat agent, a 

presumed attack method, any vulnerabilities that are the 
foundation for the attack, and identification of the asset under 
attack. 
 

An assessment of risks to security would qualify each threat with an 
assessment of the likelihood of such a threat developing into an 
actual attack, the likelihood of such an attack proving successful, 
and the consequences of any damage that may result. 
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Requirements Analysis 

The intent of determining security objectives is to address all of 
the security concerns and to declare which security aspects are 
either addressed directly by the TOE or by its environment.  

• This categorization is based on a process incorporating 
engineering judgment, security policy, economic factors and 
risk acceptance decisions. 

• Corresponds to (part of) requirements definition ! 

 

The results of the analysis of the security environment could then 
be used to state the security objectives that counter the identified 
threats and address identified organizational security policies and 
assumptions.  

 

The security objectives should be consistent with the stated 
operational aim or product purpose of the TOE, and any knowledge 
about its physical environment. 
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Requirements Analysis 

 

The security objectives for the environment would be 
implemented within the IT domain, and by non-technical 
or procedural means. 

 

Only the security objectives for the TOE and its IT 
environment are addressed by IT security requirements. 
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Requirements Analysis 

The IT security requirements are the refinement of the security 
objectives into a set of security requirements for the TOE and 
security requirements for the environment which, if met, will ensure 
that the TOE can meet its security objectives. 

The CC presents security requirements under the distinct categories 
of functional requirements and assurance requirements. 

Functional requirements 

 Security behavior of IT-system 

 E.g. identification & authentication, cryptography,… 

Assurance Requirements 

 Establishing confidence in security functions 

 Correctness of implementation 

 E.g. development, life cycle support, testing, … 
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Functional Requirement 

The functional requirements are levied on those 
functions of the TOE that are specifically in support of IT 
security, and define the desired security behavior.  

 

Part 2 defines the CC functional requirements. Examples 
of functional requirements include requirements for 
identification, authentication, security audit and non-
repudiation of origin. 
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Security Functional Components 

Class FAU: Security audit 

Class FCO: Communication  

Class FCS: Cryptographic support  

Class FDP: User data protection  

Class FIA: Identification and authentication  

Class FMT: Security management  

Class FPR: Privacy 

Class FPT: Protection of the TSF  

Class FRU: Resource utilisation  

Class FTA: TOE access  

Class FTP: Trusted path/channels  
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Security Functional Components  

Content and presentation of the functional 
requirements 

 

47 



  SSQ, WS 15/16   

Decomposition of FDP 

FDP : User Data Protection 
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FDP – Information Flow Control 

FDP_IFC.1 Subset information flow control  

Hierarchical to: No other components.  

Dependencies: FDP_IFF.1 Simple security attributes  

FDP_IFC.1.1 The TSF shall enforce the [assignment: information flow control SFP] on 
[assignment: list of subjects, information, and operations that cause controlled 
information to flow to and from controlled subjects covered by the SFP].  

 

FDP_IFC.2 Complete information flow control  

Hierarchical to: FDP_IFC.1 Subset information flow control  

Dependencies: FDP_IFF.1 Simple security attributes  

FDP_IFC.2.1 The TSF shall enforce the [assignment: information flow control SFP] on 
[assignment: list of subjects and information] and all operations that cause that 
information to flow to and from subjects covered by the SFP.  

FDP_IFC.2.2 The TSF shall ensure that all operations that cause any information in 
the TOE to flow to and from any subject in the TOE are covered by an information 
flow control SFP.  
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Assurance Requirements 

 

Assurance Approach 

 

“The CC philosophy is to provide assurance based upon an 
evaluation (active investigation) of the IT product that is to 
be trusted. Evaluation has been the traditional means of 
providing assurance and is the basis for prior evaluation 
criteria documents. “ 

 

     

CC, Part 3, p.15 
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Assurance Requirements 

• The assurance requirements are levied on 
actions of the developer, on evidence 
produced and on the actions of the evaluator.  

• Examples of assurance requirements include 
constraints on the rigor of the development 
process and requirements to search for and 
analyze the impact of potential security 
vulnerabilities. 

The degree of assurance can be varied for a 
given set of functional requirements; therefore 
it is typically expressed in terms of increasing 
levels of rigor built with assurance 
components. 

Part 3 defines the CC assurance requirements 
and a scale of evaluation assurance levels 
(EALs) constructed using these components.  
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Assurance Components 

Class APE: Protection Profile evaluation  

Class ASE: Security Target evaluation  

Class ADV: Development  

Class AGD: Guidance documents   

Class ALC: Life-cycle support  

Class ATE: Tests  

Class AVA: Vulnerability assessment  

Class ACO: Composition  
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Assurance Components: Example 

ADV_FSP.1 Basic functional specification 
 

EAL-1:   … The functional specification shall describe the purpose and method of use for each SFR-               
enforcing and SFR-supporting TSFI.  

 

EAL-2:   … The functional specification shall completely represent the TSF.  

 

EAL-3:    + … The functional specification shall summarize the SFR-supporting and SFR-non-
interfering          actions associated with each TSFI. 

 

EAL-4:   + … The functional specification shall describe all direct error messages that may          
result from an invocation of each TSFI. 

 

EAL-5:  … The functional specification shall describe the TSFI using a semi-formal style.  

 

EAL-6:  … The developer shall provide a formal presentation of the functional specification of  
       the TSF. The formal presentation of the functional specification of the TSF shall  
       describe the TSFI using a formal style, supported by informal, explanatory text 
       where appropriate. 
 

(TSFI : Interface of the TOE Security Functionality (TSF),  SFR : Security Functional Requirement ) 
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Evaluation Assurance Level  

EALs define levels of 
assurance (no guarantees) 

 
1. functionally tested 

2. structurally tested  

3. methodically tested and checked  

4. methodically designed, tested, and 
reviewed  

5. semiformally designed and tested  

6. semiformally verified design and 
tested  

7. formally verified design and tested  
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Assurance Requirements 

EAL5 – EAL7 require formal methods. 
 

according to CC Glossary:  
 
Formal:  Expressed in a restricted syntax language with 
defined semantics based on well-established 
mathematical concepts. 
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Security Functions 

The statement of TOE security functions shall cover 
the IT security functions and shall specify how these 
functions satisfy the TOE security functional 
requirements. This statement shall include a bi-
directional mapping between functions and 
requirements that clearly shows which functions satisfy 
which requirements and that all requirements are met. 

 

Starting point for design process. 
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Summary 

Norms and standards enforce the application of the 
state-of-the-art when developing software which is 
safety-critical or security-critical. 

Wanton disregard of these norms may lead to personal 
liability. 

Norms typically place a lot of emphasis on process.  

Key question are traceability of decisions and design, 
and verification and validation. 

Different application fields have different norms: 

 IEC 61508 and its specialisations, DO-178B. 

 IEC 15408 („Common Criteria“) 
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Further Reading 

Terminology for dependable systems: 

 J. C. Laprie et al.: Dependability:  Basic Concepts and 
Terminology. Springer-Verlag, Berlin Heidelberg New York 
(1992). 

Literature on safety-critical systems:  

 Storey, Neil: Safety-Critical Computer Systems. Addison 
Wesley Longman (1996). 

 Nancy Levenson: Safeware – System Safety and 
Computers. Addison-Wesley (1995). 
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Your Daily Menu 

Models of software development 

 The software development process, and its rôle in safety-
critical software development. 

 What kind of development models are there? 

 Which ones are useful for safety-critical software  
– and why? 

 What do the norms and standards say? 

 

Basic notions of formal software development 

 What is formal software development? 

 How to specify: properties and hyperproperties 

 Structuring of the development process 
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Where are we? 

01: Concepts of Quality 

02: Legal Requirements: Norms and Standards 

03: The Software Development Process 

04: Hazard Analysis 

05: High-Level Design with SysML 

06: Formal Modelling with SysML 

07: Detailed Specification with SysML  

08: Testing 

09 and 10: Program Analysis 

11: Model-Checking   

12: Software Verification (Hoare-Calculus) 

13: Software Verification (VCG) 

14: Conclusions 
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Software Development Models 
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Software Development Process 

A software development process is the structure 
imposed on the development of a software product. 

We classify processes according to models which specify 

  the artefacts of the development, such as  

► the software product itself, specifications, test documents, 
reports, reviews, proofs, plans etc 

 the different stages of the development, 

 and the artefacts associated to each stage.  

Different models have a different focus: 

 Correctness, development time, flexibility. 

What does quality mean in this context? 

 What is the output? Just the sofware product, or more? 
(specifications, test runs, documents, proofs…) 
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Agile Methods 

Prototype-driven development  

 E.g. Rapid Application Development 

 Development as a sequence of prototypes 

 Ever-changing safety and security requirements 

Agile programming 

 E.g. Scrum, extreme programming 

 Development guided by functional requirements  

 Process structured by rules of conduct for developers 

 Less support for non-functional requirements 

Test-driven development 

 Tests as executable specifications: write tests first 

 Often used together with the other two 
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Waterfall Model (Royce 1970) 

Classical top-down sequential workflow with strictly 
separated phases. 

 

 

 

 

 

 

 

Unpractical as actual workflow (no feedback between 
phases), but even early papers did not really suggest 
this.  

 

 

 

 

 

 

Requirement 

Implementation 

Design 

Maintenance 

Verification 
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Spiral Model (Böhm, 1986) 

Incremental development guided by risk factors 

Four phases: 

 Determine objectives 

 Analyse risks 

 Development and test 

 Review, plan next iteration 

See e.g.  

 Rational Unified Process (RUP) 

 

Drawbacks: 

 Risk identification is the key, and can be quite difficult 
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Model-Driven Development (MDD, MDE) 

Describe problems on abstract level using a modelling language 
(often a domain-specific language), and derive implementation by 
model transformation or run-time interpretation.  

Often used with UML (or its DSLs, eg. SysML) 

 

 

Variety of tools: 

 Rational tool chain, Enterprise Architect, Rhapsody, Papyrus, 
Artisan Studio, MetaEdit+, Matlab/Simulink/Stateflow* 

 EMF (Eclipse Modelling Framework) 

Strictly sequential development 

Drawbacks: high initial investment, limited flexibility 

* Proprietary DSL – not related to UML 
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V-Model 

Evolution of the waterfall model: 

 Each phase is supported by a corresponding testing 
phase (verification & validation) 

 Feedback between next and previous phase 

Standard model for public projects in Germany 

 … but also a general term  for models of this „shape“ 
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Software Development Models 

Structure 
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Methods 
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Model-driven 

developement 
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Development Models for 
Critical Systems 
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Development Models for Critical Systems 

Ensuring safety/security needs structure. 

 …but too much structure makes developments 
bureaucratic, which is in itself a safety risk. 

 Cautionary tale: Ariane-5 

Standards put emphasis on process. 

 Everything needs to be planned and documented. 

 Key issues: auditability, accountability, traceability. 

Best suited development models are variations of the V-
model or spiral model. 

A new trend? 

 V-Model for initial developments of a new product 

 Agile models (e.g. SCRUM) for maintenance and product 
extensions 
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The Safety Life Cycle (IEC 61508) 

Planning 

Realisation 

Operation 

E/E/PES: Electrical/Electronic/Programmable Electronic Safety-related Systems 
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Development Model in IEC 61508 

IEC 61508 prescribes certain activities for each phase of 
the life cycle. 

Development is one part of the life cycle.  

IEC 61508 recommends V-model. 
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Development Model in DO-178B 
 

DO-178B defines different processes in the SW life cycle: 

 Planning process 

 Development process, structured in turn into 

► Requirements process 

► Design process 

► Coding process 

► Integration process 

 Verification process 

 Quality assurance process 

 Configuration management process 

 Certification liaison process 

There is no conspicuous diagram, but the Development Process has 
sub-processes suggesting the phases found in the V-model as well. 

 Implicit recommendation of the V-model. 
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Traceability 

The idea of being able to follow requirements (in 
particular, safety requirements) from requirement spec 
to the code (and possibly back). 

 

On the simplest level, an Excel sheet with (manual) links 
to the program. 

 

More sophisticated tools include DOORS. 

 Decompose requirements, hierarchical requirements 

 Two-way traceability: from code, test cases, test 
procedures, and test results back to requirements 

 Eg. DO-178B requires all code derives from requirements 
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Artefacts in the Development Process 

Planning: 
• Document plan 
• V&V plan 
• QM plan 
• Test plan 
• Project manual 

Specifications: 

• Safety requirement spec. 
• System specification 
• Detail specification 
• User document (safety 

reference manual) 

Implementation: 

• Code 

Verification & validation: 

• Code review protocols 
• Test cases, procedures, 

and test results, 
• Proofs 

 
 

 
 

Possible formats: 
• Word documents 
• Excel sheets 
• Wiki text 
• Database (Doors) 

 
• UML/SysML diagrams 
• Formal languages: 

• Z, HOL, etc. 
• Statecharts or 

similar diagrams 
 

• Source code 
 

Documents must be identified and 
reconstructable. 
• Revision control and configuration 

management mandatory. 
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Basic Notions of Formal 
Software Development 



  SSQ, WS 15/16   

Formal Software Development 

In formal development, properties are stated in a rigorous way with 
a precise mathematical semantics. 

These formal specifications can be proven. 

Advantages: 

 Errors can be found early in the development process, saving 
time and effort and hence costs. 

 There is a higher degree of trust in the system. 

 Hence, standards recommend use of formal methods for high 
SILs/EALs. 

Drawback:  

 Higher effort 

 Requires qualified personnel (that would be you). 

There are tools which can help us by 

 finding (simple) proofs for us, or 

 checking our (more complicated) proofs. 
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informal specification 

Formal Software Development 
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A General Notion of Properties 

 

Defn: a property is a   
set of infinite execution traces  
(i.e. infinite sequences of states) 

 

Trace t satisfies property P, 
written 𝑡 ⊨ 𝑃, iff 𝑡 ∈ 𝑃  

 

b ≤ t  iff  ∃𝑡′. 𝑡 = 𝑏 ⋅ 𝑡′   

 i.e. b is a finite prefix of t  

 

 

… 

b: 

t: 

t‘ : 
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Safety and Liveness Properties 

Safety properties 

 Nothing bad happens 

 partial correctness, program safety,  access control 

Liveness properties 

 Something good happens 

 Termination, guaranteed service, availability 

 

Theorem:   P .  P = SafeP  LiveP 

 Each property can be represented as a combination 

of safety and liveness properties. 

 

Alpen & Schneider (1985, 1987) 
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Safety Properties 

Safety property S:   „Nothing bad happens“ 

A bad thing is finitely observable and irremediable 

S is a safety property iff 

  ∀𝑡. 𝑡 ∉ 𝑆 → ∃𝑏. finite 𝑏 ∧ 𝑏 ≤ 𝑡 → ∀𝑢. 𝑏 ≤ 𝑢 → 𝑢 ∉ 𝑆  

 

 

 

 a finite prefix b always causes the bad thing  

 

Safety is typically proven by induction. 

 Safety properties may be enforced by run-time monitors. 

 Safety is testable (i.e. we can test for non-safety) 

 

b : 

t : 
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Liveness Properties 

Liveness property L:  „Good things will happen“ 

 

A good thing is always possible and possibly infinite: 
 

L is a liveness property iff 

 ∀ 𝑡.  finite 𝑡 → ∃𝑔. 𝑡 ≤ 𝑔 ∧ 𝑔 ∈ 𝐿 
 

 i.e. all finite traces t can be extended to a trace g in L. 

 

Liveness is typically proven by well-foundedness. 

g : 

t : 
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Underspecification and Nondeterminism 

A system S is characterised by a set of traces,  𝑆⟧ 

A system S satisfies a property P, written  

   𝑆 ⊨ 𝑃 iff   𝑆⟧ ⊆ 𝑃  

Why more than one trace? Difference between:  

 Underspecification or loose specification –  
we specify several possible implementations, but each 
implementation should be deterministic. 

 Non-determinism – different program runs might result 
in different traces. 

Example: a simple can vending machine. 

 Insert coin, chose brand, dispense drink. 

 Non-determinisim due to internal or external choice. 
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Security Policies 

Many security policies are not properties! 

 

Examples: 

 Non-Interference (Goguen & Meseguer 1982) 

► Commands of high users have no effect on observations of 
low users 

 Average response time is lower than k. 

 

Security policies are examples of hyperproperties. 

A hyperproperty H is a set of properties   

 i.e. a set of set of traces. 

 System S satisfies H, 𝑆 ⊨ 𝐻, iff  𝑆 ∈ 𝐻. 
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Structuring the Development 

36 
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Structure in the Development 

Horizontal structuring 

 Modularization into components 

 Composition and Decomposition 

 Aggregation 
 

Vertical structuring 

 Abstraction and refinement 
from design specification to implementation 

 Declarative vs. imparative specification 

 Inheritence 
 

Layers / Views 

 Adresses multiple aspects of a system 

 Behavioral model, performance model, structural model, 
analysis model(e.g. UML, SysML) 
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Horizontal Structuring (informal) 

Composition of components  

 Dependent on the individual layer of abstraction 

 E.g. modules, procedures, functions,… 

Example: 
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Horizontal Structuring: Composition 

Given two systems 𝑆1, 𝑆2, their sequential composition is defined as 

  
𝑆1; 𝑆2 = 𝑠 ∙  𝑡  𝑠 ∈  𝑆1 , 𝑡 ∈  𝑆2 } 

 

 All traces from 𝑆1, followed by all traces from 𝑆2. 

 

Given two traces 𝑠, 𝑡, their interleaving is defined (recursively) as  
<> ∥ 𝑡 = 𝑡 
𝑠 ∥ <> = 𝑠 
𝑎 ⋅ 𝑠 ∥ 𝑏 ⋅  𝑡 =  𝑎 ⋅ 𝑢  𝑢 ∈ 𝑠 ∥ 𝑏 ∙ 𝑡 } ∪ { 𝑏 ⋅ 𝑢 |  𝑢 ∈ 𝑎 ⋅ 𝑠 ∥ 𝑡} 

 

Given two systems 𝑆1, 𝑆2, their parallel composition is defined as 

 
𝑆1 ∥ 𝑆2 = { 𝑠 ∥ 𝑡  |𝑠 ∈ 𝑆1 , 𝑡 ∈ 𝑆2 } 

 

 Traces from 𝑆1 interleaved  with traces from  𝑆2. 
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Vertical Structure - Refinement 

Data refinement 

 Abstract datatype is „implemented“ in terms of the 
more concrete datatype 

 Simple example: define stack with lists 

Process refinement 

 Process is refined by excluding certain runs 

 Refinement as a reduction of underspecification by 
eliminating possible behaviours 

Action refinement 

 Action is refined by a sequence of actions 

 E.g.  a stub for a procedure is refined to an executable 
procedure 
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Refinement and Properties 

Refinement typically preserves safety properties. 

 

 This means if we start with an abstract specification 
which we can show satisfies the desired properties, and 
refine it until we arrive at an implementation, we have a 
system for the properties hold by construction: 
 

𝑆𝑃 ⇝ 𝑆𝑃1 ⇝ 𝑆𝑃2 ⇝ … ⇝ 𝐼𝑚𝑝 

 

However, security is typically not preserved by 
refinement nor by composition! 
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Security and Composition 

Only complete bicycles are allowed to pass the  gate.   

Secure ! Secure ! 

44 



  SSQ, WS 15/16   

Security and Composition 

Insecure ! 

Only complete bicycles are allowed to pass the  gate.   
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A Formal Treatment of Refinement 

Def: T is a refinement of S if  𝑆 ⊑ 𝑇 ⇔  𝑇⟧ ⊆  𝑆⟧  

 Remark: a bit too general, but will do here. 

 

Theorem: Refinement preservers properties: 

                   If 𝑆 ⊨ 𝑃 and 𝑆 ⊑ 𝑇, then 𝑇 ⊨ 𝑃. 

 Proof: Recall 𝑆 ⊨ 𝑃 ⟺  𝑆⟧  ⊆ P, and  𝑆 ⊑ 𝑇 ⇔  𝑇⟧ ⊆  𝑆⟧,  

            hence  𝑇⟧ ⊆ 𝑃 ⟺ 𝑇 ⊨ 𝑃. 

 

However, refinement does not preserve hyperproperties.  

 Why? 𝑆 ⊨ 𝐻 ⟺  𝑆⟧ ∈ 𝐻, but 𝐻 not closed under subsets. 
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Conclusion & Summary 

Software development models: structure vs. flexibility 

Safety standards such as IEC 61508, DO-178B suggest 
development according to V-model. 

 Specification and implementation linked by verification 
and validation. 

 Variety of artefacts produced at each stage, which have to 
be subjected to external review. 

Properties: sets of traces 

hyperproperties: sets of properties 

Structuring of the development: 

 Horizontal – e.g. composition 

 Vertical – refinement (data, process and action ref.) 

 Refinement preserves properties (safety), but not 
hyperproperties (security). 
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Where are we? 

01: Concepts of Quality 

02: Legal Requirements: Norms and Standards 

03: The Software Development Process 

04: Hazard Analysis 

05: High-Level Design with SysML 

06: Formal Modelling with SysML 

07: Detailed Specification with SysML  

08: Testing 

09 and 10: Program Analysis 

11: Model-Checking   

12: Software Verification (Hoare-Calculus) 

13: Software Verification (VCG) 

14: Conclusions 
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Your Daily Menu 

Hazard Analysis: 

 What‘s that? 

Different forms of hazard analysis:  

 Failure Mode andEffects Analysis (FMEA) 

 Failure Tree Analysis (FTA) 

 Event Tree Analysis (ETA) 
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Hazard Analysis in the Development Cycle 
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The Purpose of Hazard Analysis 

5 
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must be verified. 
 
The product must be 
validated wrt. the 
safety requirements. 

Software Development  
(V-Model) 

V
a

li
d

a
ti

o
n

 

Verification 
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Hazard Analysis…  

provides the basic foundations for system safety. 

is performed to identify hazards, hazard effects, and 
hazard causal factors. 

is used to determine system risk, to determine the 
signifigance of hazards, and to etablish design measures 
that will eliminate or mitigate the identified hazards. 

is used to systematically examine systems, 
subsystems, facilities, components, software, personnel, 
and their interrelationships. 

 
Clifton Ericson: Hazard Analysis Techniques for System Safety. 

 Wiley-Interscience, 2005. 

6 
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Form and Output of Hazard Analysis 

The output of Hazard Analysis is a list of safety 
requirements, and documents detailing how these were 
derived. 

Because the process is informal, it can only be checked 
by reviewing. 

It is therefore critical that  

 standard forms of analysis are used, 

 documents have a standard form, and 

 all assumptions are documented. 

7 
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Classification of Requirements 

Requirements to ensure  

 Safety 

 Security 

 

Requirements for 

 Hardware 

 Software 

 

Characteristics / classification of requirements  

 according to the type of a property 

 

8 
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Classification of Hazard Analysis 

Top-down methods start with an anticipated hazard 
and work back from the hazard event to potential 
causes for the hazard  

 Good for finding causes for hazard  

 Good for avoiding the investigation of “non-relevant” 
errors  

 Bad for detection of missing hazards  

 

Bottom-up methods consider “arbitrary” faults and 
resulting errors of the system, and investigate whether 
they may finally cause a hazard  

 Properties are complementary to top-down properties  

 

9 



  SSQ, WS 15/16   

Hazard Analysis Methods 

Fault Tree Analysis (FTA) – top-down  

Failure Modes and Effects Analysis (FMEA) – bottom up  

Event Tree Analysis (ETA) – bottom-up  

Cause Consequence Analysis – bottom up  

HAZOP Analysis – bottom up  

 

10 
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Fault Tree Analysis (FTA) 

Top-down deductive failure analysis (of undesired 
states) 

 Define undesired top-level event 

 Analyse all causes affecting an event to construct fault 
(sub)tree 

 Evaluate fault tree 

 

 

11 
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Fault-Tree Analysis: Process Overview 

1. Understand system design 

2. Define top undesired event 

3. Establish boundaries (scope) 

4. Construct fault tree 

5. Evaluate fault tree (cut sets, probabilities) 

6. Validate fault tree (check if correct and complete) 

7. Modify fault tree (if required) 

8. Document analysis 

12 
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Fault Tree Analysis: Example 1 
 

Battery 

Fuse 

Float switch  

Lamp 

Example:  
A lamp warning about low 
level of brake fluid. 
See circuit diagram. 
Top Undesired Event: 
Warning lamp off despite 
low level of fluid.  

Source: N. Storey, Safety-Critical Computer Systems. 



  SSQ, WS 15/16   

FTA: Example II 

Example:  A laser operated from a control 
computer system. 

The laser is connected via a relay and 
a power driver, and protected by a 
cover switch. 
Top Undesired Event: 
Laser activated without explicit 
command from computer system.  

Source: N. Storey, Safety-Critical Computer Systems. 
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Event Tree Analysis (ETA) 

Applies to a chain of cooperating activities 

Investigates the effect of activities failing while the chain 
is processed 

Depicted as binary tree; each node has two leaving 
edges: 

 Activity operates correctly 

 Activity fails 

Useful for calculating risks by assigning probabilities to 
edges 

O(2^n) complexity 

 

16 



  SSQ, WS 15/16   

Event Tree Analysis Overview 

17 

Input: 

 

• Design knowledge 

• Accident histories 

ETA Process: 

 

1. Identify Accident Scenarios 

2. Identify IEs (Initiating Events) 

3. Identify pivotal events 

4. Construct event tree diagrams 

5. Evaluate risk paths 

6. Document process 

Output: 
• Mishap outcomes 
• Outcome risks 
• Causal sources 
• Safety Requirements 
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Event Tree Analysis: Example 1 

Cooling System for a Nuclear Power Plant 

18 

IE                 Pivotal Events                                                                              Outcome  
      Electricity       Emergency       Fission Product   Containment          Fission Release 
                                               Core Cooling    Removal 

Pipe 
Breaks 

Fails 

Available 

Available 

Available 
Available 

Fails 

Available 

Fails 
Fails 

Fails 
Available 

Fails 

Very Small 

Small 

Small 

Medium 

Large 

Very Large 

Very Large 
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Event Tree Analysis: Example 2 

Fire Detection/Suppression System for Office Building 

19 

Fire Starts 
P= 0.01 

YES (P= 0.9) 

NO (P= 0.1) 

YES (P= 0.7) 

NO  (P= 0.3) 

YES (P= 0.8) 

NO  (P= 0.2) 

YES (P= 0.8) 

NO  (P= 0.2) 

Limited damage 

Extensive damage, 
People escape 

Limited damage, 
Wet people 

Death/injury, 
Extensive damage 

Death/injury, 
Extensive damage 

0.00504 

0.00126 

0.00216 

0.00054 

0.001 

IE                 Pivotal Events                                                     Outcomes                Prob. 
                    Fire Detection     Fire Alarms        Fire Sprinkler 
                      Works                    Works                 Works 
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Failure Modes and Effects Analysis (FMEA) 

Analytic approach to review potential failure modes and 
their causes. 

Three approaches: functional, structural or hybrid. 

Typically performed on hardware, but useful for 
software as well.  

It analyzes  

 the failure mode, 

 the failure cause, 

 the failure effect, 

 its criticality, 

 and the recommended action. 

  and presents them in a standardized table. 

  

 

 
20 
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Software Failure Modes 

Guide word Deviation Example Interpretation 

omission The system produces no output 
when it should. Applies to a 
single instance of a service, but 
may be repeated. 

No output in response to change 
in input; periodic output 
missing. 

commission The system produces an output, 
when a perfect system would 
have produced none. One must 
consider cases with both, correct 
and incorrect data. 

Same value sent twice in series; 
spurious output, when inputs 
have not changed. 

early Output produced before it 
should be. 

Really only applies to periodic 
events; Output before input is 
meaningless in most systems. 

late Output produced after it should 
be. 

Excessive latency (end-to-end 
delay) through the system; late 
periodic events. 

value 
(detectable) 

Value output is incorrect, but in 
a way, which can be detected by 
the recipient. 

Out of range. 

value 
(undetectable) 

Value output is incorrect, but in 
a way, which cannot be 
detected. 

Correct in range; but wrong 
value 

21 
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Criticality Classes 

 Risk as given by the risk mishap index (MIL-STD-882): 

 

 

 

 

 

 

 

 

Names vary, principle remains: 

 Catastrophic – single failure 

 Critical – two failures 

 Marginal – multiple failures/may contribute  
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Severity Probability 

1. Catastrophic A. Frequent 

2. Critical B. Probable 

3. Marginal  C. Occasional 

4. Negligible D. Remote 

E. Improbable 
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FMEA Example: Airbag Control (Struct.) 

23 

ID  Mode Cause Effect Crit. Appraisal 

1 Omission Gas cartridge 
empty 

Airbag not released in 
emergency situation 

C1 SR-56.3 

2 Omission Cover does not 
detach 

Airbag not released fully in 
emergency situation. 

C1 SR-57.9 

3 Omission Trigger signal 
not present in 
emergency. 

Airbag not released in 
emergency situation 
 

C1 Ref. To SW-
FMEA 

4 Comm. Trigger signal 
present in non-
emergency 

Airbag released during 
normal vehicle operation 

C2 Ref. To SW-
FMEA 
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FMEA Example: Airbag Control (Funct.) 

24 

ID Mode Cause Effect Crit. Appraisal 

5-1 Omission Software 
terminates 
abnormally 

Airbag not 
released in 
emergency. 

C1 See 1.1, 1.2. 

5-1.1 Omission - Division by 0 See 1 C1 SR-47.3 
Static Analysis 

5-1.2 Omission - Memory fault See 1 C1 SR-47.4 
Static Analysis 

5-2 Omision Software does not 
terminate 

Airbag not 
released in 
emergency. 

C1 SR-47.5 
Static Analysis 

5-3 Late Computation takes 
too long. 

Airbag not 
released in 
emergency. 

C1 SR-47.6 

5-4 Comm. Spurious signal 
generated 

Airbag released 
in non-
emergency 

C2 SR-49.3 
 

5-5 Value (u) Software computes 
wrong result 

Either of 5-1 or 
5-4. 

C1 SR-12.1 
Formal Verification 
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The Seven Principles of Hazard Analysis 
 

Ericson (2005) 

1) Hazards, mishaps and risk are not chance events. 

2) Hazards are created during design. 

3) Hazards are comprised of three components. 

4) Hazards and mishap risk is the core safety process. 

5) Hazard analysis is the key element of hazard and 
mishap risk management. 

6) Hazard management involves seven key hazard 
analysis types. 

7) Hazard analysis primarily encompasses seven hazard 
analysis techniques.  

26 
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Summary 

Hazard Analysis is the start of the formal development. 

Its most important output are safety requirements. 

Adherence to safety requirements has to be verified 
during development, and validated at the end. 

We distinguish different types of analysis: 

 Top-Down analysis (Fault Trees) 

 Bottom-up (FMEAs, Event Trees) 

It makes sense to combine different types of analyses, 
as their results are complementary. 

29 
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Conclusions 

Hazard Analysis is a creative process, as it takes an 
informal input („system safety“) and produces a formal 
outout (safety requirements). Its results cannot be 
formally proven, merely checked and reviewed. 

Review plays a key role. Therefore, 

 documents must be readable, understandable, auditable; 

 analysis must be in well-defined and well-documented 
format; 

 all assumptions must be well documented. 

Next week: High-Level Specification. 

30 
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Where are we? 

01: Concepts of Quality 

02: Legal Requirements: Norms and Standards 

03: The Software Development Process 

04: Hazard Analysis 

05: High-Level Design with SysML 

06: Formal Modelling with SysML 

07: Detailed Specification with SysML  

08: Testing 

09 and 10: Program Analysis 

11: Model-Checking   

12: Software Verification (Hoare-Calculus) 

13: Software Verification (VCG) 

14: Conclusions 
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Your Daily Menu 

What is high-level design? 

 Describing the structure of the system at an abstract level 

 Should fit with formal model at lower level 

In which language? 

 Wide-spectrum specification languages such as Z, B, Event-
B, CASL, … 

 Architectural languages  

 Modeling languages such as the UML 

 UML is very software-centred, hence SysML 

Today: 

  Introduction to SysML 

 Structural modeling in SysML 

3 
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High-Level Design in the Development Cycle 

Edit picture 
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An Introduction to SysML 

5 
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What is a model? 

„A model is a representation in a certain medium of 
something in the same or another medium. The model 
captures the important aspects of the thing being 
modelled from a certain point of view and simplifies or 
omits the rest.“               Rumbaugh, Jacobson, Booch: UML Reference Manual. 

In other words: an abstract representation of reality. 

Purposes of models: 

 Analysing requirements 

 Understanding, communicating and capturing the design 

 Organizing information about a large system 

 Analyse design decisions early in the development 
process 
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Model-Driven Development (MDD, MDE) 

Recall the idea of MDD: 
 Describe problems on abstract level using a modelling language 

(often a domain-specific language), and derive implementation 
by model transformation or run-time interpretation.  

 Often used with UML (or its DSLs, eg. SysML) 

 

 

 

However, using a modelling language like UML or SysML 
does not mean one has to employ MDD; in particular, 
we can still employ V-model-like approaches as required 
by safety standards. 

 

7 
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The Unifed Modeling Language (UML) 

The UML grew out of a wealth of modelling languages in 
the 1990s, as James Rumbaugh, Grady Booch and Ivar 
Jacobson all worked at Rational Software. 

It was adopted by the Object Management Group (OMG) 
in 1997, and approved as ISO standard in 2005. 

UML 2 consists of  

 the superstructure to define diagrams, 

 a core meta-model, 

 the object constraint language (OCL), 

 an interchange format  

UML 2 is not a fixed language, it can be extended and 
customised using profiles. 

 

8 
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The Systems Modeling Language SysML 

SysML is a modeling language for systems engineering 

Standardised in 2007 by the OMG (Ver. 1.0, now at 1.3) 

SysML Standard available at: 
http://www.omg.org/spec/SysML/1.3/PDF 

UML vs. SysML: 

 

 

 

9 

UML SysML 

http://www.omg.org/spec/SysML/1.3/PDF
http://www.omg.org/spec/SysML/1.3/PDF
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What for SysML? 

The aim of SysML (much like UML) is to serve as a 
standardised notation allowing all stakeholders to 
understand and communicate the salient aspects of the 
system under development: 

 the requirements, 

 the structure (static aspects), and 

 the behaviour (dynamic aspects). 

Certain aspects (diagrams) of the SysML are formal, 
others are informal. 

  Important distinction when developing critical systems 

All diagrams are views of one underlying model. 

 

10 
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Views in SysML 

Structure: 

 How is the system constructed? How does it decompose? 

Behaviour: 

 What can we observe? Does it have a state? 

Requirements: 

 What are the requirements? Are they met? 

Parametrisation: 

 What are the constraints (physical/design)? 

… and possibly more. 

11 
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Example: A Cleaning Robot (HooverBot) 

Structure: 

 Has an engine, wheels (or tracks?), a vacuum cleaner, a 
control computer, a battery… 

Behaviour: 

 General: Starts, then cleans until battery runs out, returns 
to charging station 

 Cleaning: moves in irregular pattern, avoids obstacles 

Requirements: 

 Must cover floor when possible, battery must last at least 
six hours, should never run out of battery, … 

Constraints: 

 Can only clean up to 5g, can not drive faster than 1m/s, 
laws concerning movement and trajectory, … 

12 



  SSQ, WS 15/16   

SysML Diagrams 
 

13 

Structural Diagrams 

Package Diagram 

Internal Block Diagram Parametric Diagram 

Block Definition Diagram 

Behavioural Diagrams 

Use Case Diagram * 

State Machine Diagram Sequence Diagram 

Activity Diagram 

Requirement Diagram * 

* Not considered further. 
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Structural Diagrams in SysML 

14 
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Block Definition Diagram 

Corresponds to class diagrams in the UML 

Blocks are the basic building elements of a model 

 Models are instances of blocks 

Block definition diagrams model blocks and their 
relations: 

 Inheritance 

 Association 

Blocks can also model interface definitions. 

15 
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Example 1: Vehicles 

A vehicle can be a car, or 
a bicycle. 

A car has an engine 

A car has 4 wheels, a 
bicyle has 2 wheels 

Engines and wheels have 
operations and values 

 

In SysML, Engine and 
Wheel are parts of Car 
and Bicycle. 

16 
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Example 2: HooverBots 

The hoover bots have a control computer, and a 
vacuum cleaner. 

 HooverBot 100 has one v/c, Hoover 1000 has two. 

 Two ways to model this (i.e. two views) 

17 
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Internal Block Diagrams 

Internal block diagrams decribe instances of blocks. 

Here, instances for HooverBots 

On this level, we can describe connections between 
ports (flow specifications) 

 Flow specifications have directions. 

 

18 
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HooverBot 100 and 1000  

19 



  SSQ, WS 15/16   

Package Diagrams 

20 

Packages are used to group 
diagrams, much like 
directories in the file 
system. 

 

Not considered much in 
the following 
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Parametric Diagrams 

Parametric diagrams describe constraints between 
properties and their parameters. 

It can be seen as a restricted form of an internal block 
diagram, or as equational modeling as in Simulink. 

 

21 

Source: 
http://astah.net/tutorials/sysml/parametric  
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Modeling Tool: Astah-SysML 

Astah-SysML is available at  
 
   http://astah.net/editions/sysml 

 

A faculty licence is available for FB3 Uni Bremen 

 Non-commercial use only, do not distribute! 

 

The tool not only helps with the drawing, it also keeps 
track of the relationship between the diagrams: you  edit 
the model rather than the diagrams. 

22 

http://astah.net/editions/sysml


  SSQ, WS 15/16   

Summary 
 

High-level modelling describes the structure of the 
system at an abstract level. 

SysML is a standardised modelling language for systems 
engineering, based on the UML. 

 We disregard certain aspects of SysML in this lecture 

SysML  structural diagrams describe this structure. 

 Block definition diagrams 

 Internal block definition diagrams 

 Package diagrams 

We may also need to describe formal constraints, or 
invariants. 

For this: OCL --- next week.  

23 
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Where are we? 

01: Concepts of Quality 

02: Legal Requirements: Norms and Standards 

03: The Software Development Process 

04: Hazard Analysis 

05: High-Level Design with SysML 

06: Formal Modelling with SysML and OCL 

07: Detailed Specification with SysML  

08: Testing 

09 and 10: Program Analysis 

11: Model-Checking   

12: Software Verification (Hoare-Calculus) 

13: Software Verification (VCG) 

14: Conclusions 
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Formal Modelling  in the Development Cycle 
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What is OCL? 

OCL is the Object Constraint Language. 

What is OCL? 

 „A formal language used to describe expressions on UML 
models. These expressions typically specify invariant 
conditions that must hold for the system being modeled or 
queries over objects described in a model.”    (OCL standard, §7) 

Why OCL?  

 „A UML diagram, such as a class diagram, is typically not 
refined enough to provide all the relevant aspects of a 
specification. There is, among other things, a need to 
describe additional constraints about the objects in the 
model. “                                                            (OCL standard, §7.1) 

4 
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Characteristics of the OCL 

OCL is a pure specificication language. 

 OCL expressions do not have side effects. 

OCL is not a programming language. 

 Expressions are not executable (though some may be). 

OCL is typed language 

 Each expression has  type; all expressions must be well-
typed.  

 Types are classes, defined by class diagrams. 

5 
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OCL can be used for the following: 

as a query language 

to specify invariants on classes and types in the class  

to specify type invariant for Stereotypes 

to describe pre- and post conditions on Operations and 
Methods 

to describe Guards 

to specify target (sets) for messages and actions 

to specify constraints on operations 

to specify derivation rules for attributes for any 
expression over a UML model.  

                                                                                                      (OCL standard, §7.1.1) 

 

 

6 
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Example: A Flight-Booking System 

Flight destinations are given by  

 an IATA id, and a string 

A flight is given by  

 Source and destination, arrival and departure date, 
capacity and free seats 

A query asks for 

 a flight from/to at a given time and number of free seats 

Operations: 

 Query 

 Book a flight 

7 
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Example: A Flight-Booking System 

Possible constraints: 

No more free seats than capacity 

Source and destination must be disjoint 

Query must return „correct“ flight 

Destination identifiers must be unique 

To book a flight: 

 Possible if enough free seats 

 Afterwards, number of free seats reduced 

Possible extension: 

Query returns a schedule --- list of connecting flights 

 

8 
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Example: The Traffic Light 

9 
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pedLight: False 
carLight: True 
request: False 
counter: 0 

Example: The Traffic Light 

10 
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pedLight: False 
carLight: True 
request: True 
counter: 1 

Example: The Traffic Light 

11 
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pedLight: False 
carLight: False 
request: True 
counter: 1 

Example: The Traffic Light 

12 
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Deadlock 

pedLight: True 
carLight: False 
request: False 
counter: 1 

Example: The Traffic Light 

13 
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OCL Basics  

The language is typed: each expression has a type. 

Three-valued logic (Kleene logic) 

 Actually, more like four-valued (null) 

Expressions always live in a context: 

 Invariants on classes, interfaces, types. 

 

 

 

 Pre/postconditions on operations or methods 

14 

context Class 

  inv Name: expr 

context Type :: op(a1: Type) : Type 

  pre Name: expr 

  post Name: expr 
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OCL Types 

Basic types: 

 

 Boolean, Integer, Real, String 

 OclAny, OclType, OclVoid 

 

Collection types: 

 

 Sequences, Bag, OrderedSet, Set 

 

Model types 

15 
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Basic types and operations 

Integer (ℤ)                                                     OCL-Std. §11.5.2 

 

Real (ℝ)                                                         OCL-Std. §11.5.1 

 Integer is a subclass of Real 

 round, floor from Real to Integer 

 

String (Zeichenketten)                                OCL-Std. §11.5.3 

 substring, toReal, toInteger, characters, etc. 

 

Boolean (Wahrheitswerte)                         OCL-Std. §11.5.4              

 or, xor, and, implies 

 Relationen auf Real, Integer, String 

16 
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Collection Types 

Sequence, Bag, OrderedSet, Set                   OCL-Std. §11.7 

 

Operations on all collections:  

 size, includes, count, isEmpty, flatten 

 Collections are always „flattened“ 

Set 

 union, intersection 

Bag 

 union, intersection, count 

Sequence 

 first, last, reverse, prepend, append 

17 
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Collection Types: Iterators 

Iterators are higher-order functions 

All iterators defined via iterate                 OCL-Std. §7.7.6 
 

coll->iterate(elem: Type, acc: Type= expr | expr[el, acc]) 

 

iterate(e: T, acc: T= v) 

{ acc= v; 

  for (Enumeration e= c.elements(); e.hasMoreElements();) { 

       e= e.nextElement(); 

       acc.add(expr[e, acc]); 

       } 

  return acc; 

} 

 

18 
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Model types 

Model types are given by 

 attributes,  

 operations, and 

 Associations of the model 

Navigation along the association 

 If cardinality is 1, type is of target type T 

 Otherise, it is Set(T) 

User-defined operations in expressions have to be  
stateless (stereotype <<query>>) 

 

19 
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Undefinedness in OCL  

Undefinedness is propagated                   OCL-Std §7.5.11 

 In other words, all operations are strict 

Exceptions: 

 Boolean operators (and, or non-strict on both sides) 

 Case distinction 

 Test on definedness: oclIsUndefined with 

𝑜𝑐𝑙𝐼𝑠𝑈𝑛𝑑𝑒𝑓𝑖𝑛𝑒𝑑 𝑒 =   
𝑡𝑟𝑢𝑒                𝑖𝑓 𝑒 = ⊥
𝑓𝑎𝑙𝑠𝑒           𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  

 

Resulting logic is three-valued (Kleene-Logic) 

In fact, four-valued: there is always null 

Iterators are “semi-strict”  

20 
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OCL Style Guide 

Avoid complex navigation („Loose coupling“) 

 Otherwise changes in models break OCL constraints 

 

Always choose adequate context 

 

„Use of allInstances()is discouraged“ 

 

Split up invariants if possible 

 

Consider defining auxiliary operations if expressions 
become too complex. 

21 
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Summary 

OCL is a typed, state-free specification language which 
allows us to denote constraints on models. 

We can define or models much more precise. 

 Ideally: no more natural language needed. 

OCL is part of the more „academic“ side of UML/SysML.  

 Tool support is not great, some tools ignore OCL, most 
tools at least type-check OCL, hardly any do proofs. 

However, in critical system development, the kind of 
specification that OCL allows is essential. 

Next week: detailed specification with SysML. 

 Behavioural diagrams: state diagrams, sequence charts … 

22 
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Where are we? 

01: Concepts of Quality 

02: Legal Requirements: Norms and Standards 

03: The Software Development Process 

04: Hazard Analysis 

05: High-Level Design with SysML 

06: Formal Modelling with SysML and OCL 

07: Detailed Specification with SysML  

08: Testing 

09 and 10: Program Analysis 

11: Model-Checking   

12: Software Verification (Hoare-Calculus) 

13: Software Verification (VCG) 

14: Conclusions 

 



  SSQ, WS 15/16   

Detailed Specification in the Development Cycle 
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Why detailed Specification? 

Detailed specification is the specification of single 
modules making up our system.  

This is the „last“ level both in abstraction and detail 
before we get down to the code – in fact, some 
specifications at this level can be automatically 
translated into code. 

Why not write code straight away?  

 We want to stay platform-independent. 

 We may not want to get distracted by details of our target 
platform.  

 At this level, we have a better chance of finding errors or 
proving safety properties. 

 

4 
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Levels of Detailed Specification 

We can specify the basic modules  

By their (external) behaviour:  

 Which operations can be called, what are their 
pre/post-conditions and effects. 

 This can be modelled using OCL.  

 Alternatively, we can model the system‘s internal 
states by a state machine, which has states and 
guarded transitions between them.  

By their (internal) structure:  

 Modelling the control flow by flow charts aka. 
activity charts. 

 There are also a variety of action languages 
(platform-independent programming languages) for 
UML, but these are not standard for SysML. 

5 
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State Diagrams: Basics 

State diagrams are a particular form of (hierarchical) 
finite state machines. 

 

   A finite state machine is given by 𝑀 =  Σ, →  where 

 Σ is a finite set of states, and 

 → ⊆ Σ × Σ is a transition relation which is left-total. 

 

Example: a simple coffee machine. 

We will explore FSMs in detail later. 

In hierarchical state machines, a state may contain 
another FSM (with initial/final states). 

State Diagrams in SysML are taken unchanged from 
UML. 

6 
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Basic Elements of State Diagrams 

States 

 Initial/Final 

Transitions 

Events (Triggers) 

Guards  

Actions (Effects) 

 

 

7 
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What is an Event? 

„The specification of a noteworthy occurence which has a 
location in time and space.“                           (UML Reference Manual) 

SysML knows: 

 Signal events            event name/ 

 Call events                operation name/ 

 Time events              after(t)/ 

 Change event            when(e)/ 

 Entry events              Entry/ 

 Exit events                 Exit/ 

 

8 
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State Diagram Elements (SysML Ref. §13.2) 

Choice pseudo state 

Composite state 

Entry point 

Exit point 

Final state 

History pseudo states 

Initial pseudo state 

Junction pseudo state 

Receive signal action 

Send signal action 

Action 

9 

Region 

Simple state 

State list 

State machine 

Terminate node 

Submachine state 
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Activity Charts: Foundations 

The activity charts of SysML (UML) are a variation of old-
fashioned flow charts. 

 Standardised as DIN 66001 (ISO 5807) 

Flow charts can 
describe programs 
(right example) or 
non-computational 
activities (left exam- 
ple)  

 

SysML activity charts 
are extensions of 
UML activity charts. 

 
11 

Quelle: Erik Streb, via Wikipedia 

Quelle: Wikipedia 
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Basics of Activity Diagrams 

Activities model the sequence and conditions for low-
level behaviours:  
“An activity is  the specification of parameterized behaviour 
as the coordinated sequencing of subordinate unites whose 
individual elements are actions.”                    (UML Ref. §12.3.4) 

This is performed by means of control flow and object 
flow models 

Control flow allows to disable and enable (sub-) 
activities using these two enumeration values. 

An activity execution results in the execution of a set of 
actions in some specific order. 

Activity executions may comprise several logical 
execution threads. 

 
12 
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What is an Action? 

A terminating basic behaviour, such as 

 Changing variable values                  [UML Ref. §11.3.6] 

 Calling operations                              [UML Ref. §11.3.10] 

 Calling activities                                  [UML Ref. §12.3.4] 

 Creating and destroying objects, links, associations 

 Sending or receiving signals 

 Raising exceptions . 

Actions are part of a (potentially larger, more complex) 
behaviour 

Inputs to actions are provided by ordered sets of pins 

 A pin is a typed element, associated with a multiplicity 

 Input pins transport typed elements to an action 

 Actions deliver outputs consisting of typed elements on 
output pins 

13 
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Elements of Activity Diagrams (SysML Ref. §11.2.1) 

Paths (arrows): 

 Control flow 

 Object flow 

 Probability and rates 

 

Activities in BDDs 

Partitions 

Interruptible Regions 

Structured activities 
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Nodes:  

 Action nodes 

 Activities 

 Decision nodes 

 Final nodes 

 Fork nodes 

 Initial nodes 

 Local pre/post-conditions 

 Merge nodes 

 Object nodes 

 Probabilities and rates 
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Behavioural Semantics 

Semantics is based on token flow – similar to Petri Nets,                   
see [UML Ref. pp. 326] 

 A token can be an input signal, timing condition, 
interrupt, object node (representing data), control 
command (call, enable) communicated via input pin, 
… 

 An executable node (action or sub-activity) in the 
activity diagram begins its execution, when the 
required tokens are available on their input edges. 

 On termination, each executable node places tokens 
on certain output edges, and this may activate the 
next executable nodes linked to these edges. 

16 
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Activity Diagrams – Links With BDDs 

Block definition diagrams may show 

 Blocks representing activities 

 

 

 

 

 

 One activity may be composed of other activities – 
composition indicates parallel execution threads of the 
activities at the “part end” 

 One activity may contain several blocks representing 
object nodes (which represent data flowing through the 
activity diagram). 

17 
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SysML Diagrams Overview 
 

19 

Structural Diagrams 

Package Diagram 

Internal Block Diagram Parametric Diagram 

Block Definition Diagram 

Behavioural Diagrams 

Use Case Diagram * 

State Machine Diagram Sequence Diagram 

Activity Diagram 

Requirement Diagram * 

* Not considered further. 
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Sequence Diagrams 

Sequence Diagrams describe the flow of messages 
between actors. 

Extremely useful, but also extremely limited. 

 

 

 

 

 

 

 

 

We may consider concurrency further later on. 
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Quelle:  
IBM developerWorks 
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Summary 

Detailed specification means we specify the internal 
structure of the modules in our systems. 
 

Detailed specification in SysML: 

 State diagrams are hierarchical finite state machines 
which specify states and transitions. 

 Activity charts model the control flow of the program. 
 

More behavioural diagrams in SysML: 

 Sequence charts model the exchange of messages 
between actors. 

 Use case diagrams describe particular uses of the system. 

21 
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Where are we? 

01: Concepts of Quality 

02: Legal Requirements: Norms and Standards 

03: The Software Development Process 

04: Hazard Analysis 

05: High-Level Design with SysML 

06: Formal Modelling with SysML and OCL 

07: Detailed Specification with SysML  

08: Testing 

09: Program Analysis 

10 and 11: Software Verification (Hoare-Calculus) 

12: Model-Checking   

13: Concurrency 

14: Conclusions 
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Your Daily Menu 

What is testing? 

Different kinds of tests. 

Different test methods: black-box vs. white-box. 

The basic problem: cannot test all possible inputs. 

Hence, coverage criteria: how to test enough. 

3 
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Testing in the Development Cycle 
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What is Testing? 

In our sense, testing is selected, controlled program 
execution. 

The aim of testing is to detect bugs, such as 

 derivation of occurring characteristics of quality 
properties compared to the specified ones; 

 inconsistency between specification and implementation; 

 or structural features of a program that cause a faulty 
behavior of a program. 

 

5 

Testing is the process of executing a program or 
system with the intent of finding errors. 

Myers, 1979 

Program testing can be used to show the presence of 
bugs, but never to show their absence. 

E.W. Dijkstra, 1972 
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The Testing Process 

Test cases, test plan, etc. 

System-under-test (s.u.t.) 

Warning -- test literature is quite expansive: 

 

6 

Testing is any activity aimed at evaluating an attribute 
or capability of a program or system and determining 
that it meets its required results. 

Hetzel, 1983 
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Test Levels 

Component tests and unit tests: test at the interface 

level of single components (modules, classes) 

Integration test: testing interfaces of components fit 

together 

System test: functional and non-functional test of the 

complete system from the user’s perspective 

Acceptance test: testing if system implements contract 

details 

 

7 
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Test Methods 

Static vs. dynamic: 

 With static tests, the code is analyzed without being run. 
We cover these methods as static program analysis later. 

 With dynamic tests, we run the code under controlled 
conditions, and check the results against a given 
specification. 

The central question: where do the test cases come 
from? 

 Black-box: the inner structure of the s.u.t. is opaque, test 
cases are derived from specification only; 

 Grey-box: some inner structure of the s.u.t. is known, eg. 
Module architecture; 

 White-box: the inner structure of the s.u.t. is known, and 
tests cases are derived from the source code; 

8 
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Black-Box Tests 

Limit analysis: 

 If the specification limits input parameters, then values 
close to these limits should be chosen. 

 Idea is that programs behave continuously, and errors 
occur at these limits. 

Equivalence classes: 

 If the input parameter values can be decomposed into 
classes which are treated equivalently, test cases have to 
cover all classes. 

Smoke test: 

 “Run it, and check it does not go up in smoke.” 

9 
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Example: Black-Box Testing 

Equivalence classes or limits? 

 

 

 

 

 

Equivalence classes or limits? 

10 

Example: A Company Bonus System 

The loyalty bonus shall be computed depending on the 
time of employment. For employes of more than three 
years, it shall be 50% of the monthly salary, for 
employees of more than five years, 75%, and for 
employees of more than eight years, it shall be 100%. 

Example: Air Bag 

The air bag shall be released if the vertical acceleration 
𝑎𝑣  equals or exceeds  15 𝑚 𝑠2 . The vertical acceleration 

will never be less than zero, or more than 40 𝑚 𝑠2 . 
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Black-Box Tests 

Quite typical for GUI tests, or functional testing. 

Testing invalid input: depends on programming 

language  the stronger the typing, the less testing for 

invalid input is required. 

 Example: consider lists in C, Java, Haskell. 

 Example: consider ORM in Python, Java. 

11 
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Other approaches: Monte-Carlo Testing 

In Monte-Carlo testing (or random testing), we generate 
random input values, and check the results against a 
given spec. 

This requires executable specifications. 

Attention needs to be paid to the distribution values. 

Works better with high-level languages (Java, Scala, 
Haskell) where the datatypes represent more 
information on an abstract level. 

 ScalaCheck, QuickCheck for Haskell 

Example: consider list reversal in C, Java, Haskell 

 Executable spec: 

► Reversal is idempotent. 

► Reversal distributes over concatenation. 

 Question: how to generate random lists? 

12 
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White-Box Tests 

In white-box tests, we derive test cases based on the 
structure of the program (structural testing) 

 To abstract from the source code (which is a purely 
syntactic artefact), we consider the control flow graph 
of the program. 

 

 

 

 

 

 

Hence, paths in the cfg correspond to runs of the 
program. 

13 

Def: Control Flow Graph (cfg) 

• Nodes are elementary statements (e.g. assignments, 

return, break, . . . ), and control expressions (eg. in 

conditionals and loops), and 

• there is a vertex from n to m if the control flow can reach 

node m coming from n. 
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A Very Simple Programming Language 

In the following, we use a very simple language with  a C-
like syntax. 

Arithmetic operators given by 
𝑎 ∷= 𝑥  𝑛  𝑎1 𝑜𝑝𝑎 𝑎2 

with 𝑥 a variable, 𝑛 a numeral,  𝑜𝑝𝑎arith. op. (e.g. +, -, *)  

Boolean operators given by 
𝑏 ≔ true  false not 𝑏  𝑏1𝑜𝑝𝑏 𝑏2  𝑎1𝑜𝑝𝑟 𝑎2 

with 𝑜𝑝𝑏 boolean operator (e.g. and, or) and 𝑜𝑝𝑟 a 
relational operator (e.g. =, <) 

Statements given by  
𝑆 ∷= 
𝑥 ≔ 𝑎 𝑙  | 𝑠𝑘𝑖𝑝 𝑙   𝑆1; 𝑆2 | 𝑖𝑓 𝑏

𝑙 𝑆1  𝑒𝑙𝑠𝑒 𝑆2  𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙 {𝑆} 

We may write the labels als comments 

    x:= a+ 10; /* 1 */ if (y < 3) /* 2 */ { x:= x+1; /* 3 */  } else { y:= y+1; /* 4 */ }   
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Example: Control-Flow Graph 

if (x < 0) /* 1 */ { 

   x := – x; /* 2 */ 

   } 

z := 1; /* 3 */ 

while (x > 0) /*4*/ { 

  z := z * y; /* 5 */ 

  x := x – 1; /* 6 */ 

} 

return z /* 7 */ 

1 

2 

3 

4 

5 

6 

7 

An execution path is 
a path though the 
cfg. 

 
Examples: 
• [1,3,4,7, E] 

• [1,2,3,4,7, E] 

• [1,2,3,4,5,6,4,7, E] 

• [1,3,4,5,6,4,5,6,4,7, E] 

• … 

E 
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Coverage 

Statement coverage: Each node in the cfg is visited at 
least once. 

Branch coverage: Each vertex in the cfg is traversed at 
least once. 

Decision coverage: Like branch coverage, but specifies 
how often conditions (branching points) must be 
evaluated. 

Path coverage: Each path in the cfg is executed at least 
once. 

16 
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Example: Statement Coverage 

17 

1 

2 

3 

4 

5 

6 

7 

E 

if (x < 0) /* 1 */ { 

   x := – x /* 2 */ 

   }; 

z := 1; /* 3 */ 

while (x > 0) /*4*/ { 

  z := z * y; /* 5 */ 

  x := x – 1 /* 6 */ 

}; 

return z /* 7 */ 

Which (minimal) path 
covers all statements? 
 
 p = [1,2,3,4,5,6,4,7,E] 

 

Which state generates p? 
 
  x = -1 
  y any 
  z any 
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Example: Branch Coverage 

18 

1 

2 

3 

4 

5 

6 

7 

E 

if (x < 0) /* 1 */ { 

   x := – x /* 2 */ 

   }; 

z := 1; /* 3 */ 

while (x > 0) /*4*/ { 

  z := z * y; /* 5 */ 

  x := x – 1 /* 6 */ 

}; 

return z /* 7 */ 

Which (minimal) path 
covers all vertices? 

         𝑝1= 1,2,3, 4,5,6, 4,7, 𝐸  
𝑝2 = [1,3, 4, 7, 𝐸] 

 

Which states   generate 
𝑝1, 𝑝2? 

             𝑝1         𝑝2   
    x   -1    0 
  y  any   any 
  z  any   any 

 

Note 𝑝3 (x= 1) does not 
add coverage.   
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Example: Path Coverage 

19 

1 

2 

3 

4 

5 

6 

7 

E 

if (x < 0) /* 1 */ { 

   x := – x /* 2 */ 

   }; 

z := 1; /* 3 */ 

while (x > 0) /*4*/ { 

  z := z * y; /* 5 */ 

  x := x – 1 /* 6 */ 

}; 

return z /* 7 */ 

How many paths are 
there? 

Let     𝑞1 = 1,2,3   
             𝑞2 = 1,3  

                𝑝 = 4,5,6  

                𝑟 = [4,7, 𝐸] 

   then all paths are  
𝑃 = 𝑞1 𝑞2) 𝑝

∗ 𝑟 

 

Number of possible 
paths: 

      𝑃 = 2 ⋅ 𝑀𝑎𝑥𝐼𝑛𝑡 − 1   
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Statement, Branch and Path Coverage 

Statement Coverage: 

 Necessary but not sufficient, not suitable as only test 
approach. 

 Detects dead code (code which is never executed). 

 About 18% of all defects are identified. 

Branch coverage: 

 Least possible single approach. 

 Detects dead code, but also frequently executed program 
parts. 

 About 34% of all defects are identified. 

Path Coverage: 

 Most powerful structural approach; 

 Highest defect identification rate (100%); 

 But no practical relevance. 

20 
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Decision Coverage 

Decision coverage is more then branch coverage, but 
less then full path coverage. 

Decision coverage requires that for all decisions in the 
program, each possible outcome is considered once. 

Problem: cannot sufficiently distinguish boolean 
expressions. 

 For A || B, the following are sufficient:  
     A        B       Result 

     false false  false 

     true   false  true 

 But this does not distinguish A || B from A;  B is effectively 
not tested. 

21 
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Decomposing Boolean Expressions 

The binary boolean operators include conjunction 𝑥 ∧ 𝑦, 
disjunction 𝑥 ∨ 𝑦, or anything expressible by these (e.g. 
exclusive disjunction, implication). 

 

 

 

 

An elementary term is a variable, a boolean-valued 
function, a relation (equality =, orders <,≤,>,≥,  etc), or 
a negation of these. 

This is a fairly syntactic view, e.g. 𝑥 ≤ 𝑦 is elementary, but 
𝑥 < 𝑦 ∨ 𝑥 = 𝑦 is not, even though they are equivalent. 

In formal logic, these are called literals. 

 
22 

Elementary Boolean Terms 

An elementary boolean term does not contain binary 

boolean operators, and cannot be further decomposed. 
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Simple Condition Coverage 

In simple condition coverage, for each condition in the 
program, each elementary boolean term evaluates to 
True and False at least once. 

Note that this does not say much about the possible 
value of the condition. 

Examples and possible solutions: 
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if (temperature > 90 && pressure > 120) {… 

        C1                 C2            Result 

       True               True            True 

       True               False           False 

       False              True            False 

       False              False           False 
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Modified Condition Coverage 

It is not always possible to generate all possible combi-
nations of elementary terms, e.g. 3 <= x && x < 5. 

In modified (or minimal) condition coverage, all 
possible combinations of those elementary terms the 
value of which determines the value of the whole 
condition need to be considered. 

Example: 

 

 

 

 

 

Another example: (x > 1 && ! p) || q 
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3 <= x && x < 5 

False     False     False    ← not needed  
False     True       False 

True       False     False 

True       True       True 
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Modified Condition/Decision Coverage 

Modified Condition/Decision Coverage (MC/DC) is 
required by DO-178B for Level A software. 

It is a combination of the previous coverage criteria 
defined as follows: 

 Every point of entry and exit in the program has been 
invoked at least once; 

 Every decision in the program has taken all possible 
outcomes at least once; 

 Every condition in a decision in the program has taken all 
possible outcomes at least once; 

 Every condition in a decision has been shown to 
independently affect that decision’s outcome. 

25 
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How to achieve MC/DC 

Not: Here is the source code, what is the minimal set of 
test cases? 

Rather: From requirements we get test cases, do they 
achieve MC/DC? 

Example: 

 Test cases:                                        Source Code: 
                                                       Z := (A || B) && (C || D) 
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Test case 1 2 3 4 5 

Input A F F T F  T 

Input B F T F T F 

Input C T F F T T 

Input D F T F F F 

Result Z F T F T T 

Question: do test cases 
achieve MC/DC? 

Source:  Hayhurst et al, A Practical Tutorial  
on MC/DC. NASA/TM2001-210876 
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Summary 

(Dynamic) Testing is the controlled execution of code, 
and comparing the result against an expected outcome. 

Testing is (traditionally) the main way for verification 

Depending on how the test cases are derived, we 
distinguish white-box and black-box tests. 

In black-box tests, we can consider limits and 
equivalence classes for input values to obtain test 
cases. 

In white-box tests, we have different notions of 
coverage: statement coverage, path coverage, condition 
coverage, etc. 

Next week: Static testing aka. static program analysis. 

27 
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Where are we? 

01: Concepts of Quality 

02: Legal Requirements: Norms and Standards 

03: The Software Development Process 

04: Hazard Analysis 

05: High-Level Design with SysML 

06: Formal Modelling with SysML and OCL 

07: Detailed Specification with SysML  

08: Testing 

09: Static Program Analysis 

10 and 11: Software Verification (Hoare-Calculus) 

12: Model-Checking   

13: Concurrency 

14: Conclusions 
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Today: Static Program Analysis 

Analysis of run-time behavior of programs without 
executing them (sometimes called static testing) 

Analysis is done for all possible runs of a program 
(i.e. considering all possible inputs)  

Typical tasks 

 Does the variable x have a constant value ? 

 Is the value of the variable x always positive ? 

 Can the pointer p be null at a given program point ? 

 What are the possible values of the variable y ? 

These tasks can be used for verification (e.g. is there any 
possible dereferencing of the null pointer), or for 
optimisation when compiling. 
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Program Analysis in the Development Cycle 



  SSQ, WS 15/16   

Usage of Program Analysis 

Optimising compilers 
Detection of sub-expressions that are evaluated multiple times 

Detection of unused local variables 

Pipeline optimisations 

 

Program verification 
Search for runtime errors in programs 

Null pointer dereference 

Exceptions which are thrown and not caught 

Over/underflow of integers, rounding errors with floating point 
numbers 

Runtime estimation (worst-caste executing time, wcet) 

In other words, specific verification aspects.  
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Program Analysis: The Basic Problem 

Basic Problem:  

 

 

Given a property P and a program p, we say 𝑝 ⊨ 𝑃 if a P 
holds for p. An algorithm (tool) 𝜙 which decides P is a 
computable predicate 𝜙: 𝑝 → 𝐵𝑜𝑜𝑙. We say: 

 𝜙 is sound if    whenever 𝜙 𝑝  then 𝑝 ⊨ 𝑃.  

 𝜙 is safe (or complete) if    whenever 𝑝 ⊨ 𝑃 then 𝜙 𝑝 . 

From the basic problem it follows that there are no 
sound and safe tools for interesting properties. 

 In other words, all interesting tools must either under- or 
overapproximate.  

  

 

 

All interesting program properties are undecidable. 
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Program Analysis: Approximation 

 

 

Correct Errors 

Overapproximation 

Underapproximation 

 

Underapproximation only finds correct 
programs but may miss out some 

 Useful in optimising compilers 

 Optimisation must respect semantics 
of program, but may optimise. 

 

Overapproximation finds all errors but 
may find non-errors (false positives) 

 Useful in verification. 

 Safety analysis must find all errors, 
but may report some more. 

 Too high rate of false positives may 
hinder acceptance of tool. 

Not 
computable 

Computable 

All programs 
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Program Analysis Approach 

Provides approximate answers 

 yes / no / don’t know or  

 superset or subset of values 

 Uses an abstraction of program’s behavior 

 Abstract data values (e.g. sign abstraction) 

 Summarization of information from  
execution paths e.g. branches of the if-else statement 

Worst-case assumptions about environment’s behavior 

 e.g. any value of a method parameter is possible 

Sufficient precision with good performance 
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Flow Sensitivity 

Flow-sensitive analysis 

Considers program's flow of control 

Uses control-flow graph as a representation of the 
source 

Example: available expressions analysis 

 

Flow-insensitive analysis 

Program is seen as an unordered collection of 
statements 

Results are valid for any order of statements 
e.g.  S1 ; S2 vs. S2 ; S1 

Example: type analysis (inference) 
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Context Sensitivity 

Context-sensitive analysis 

Stack of procedure invocations and return values of 
method parameters 

Results of analysis of the method M depend on the caller 
of M 

 

Context-insensitive analysis 

Produces the same results for all possible invocations of 
M independent of possible callers and parameter values. 
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Intra- vs. Inter-procedural Analysis 

 

Intra-procedural analysis 

Single function is analyzed in isolation 

Maximally pessimistic assumptions about parameter 
values and results of procedure calls 

 

Inter-procedural analysis 

Whole program is analyzed at once 

Procedure calls are considered 
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Data-Flow Analysis 

Focus on questions related to values of variables and their lifetime 
 

Selected analyses: 

Available expressions (forward analysis) 

 Which expressions have been computed already without 
change of the occurring variables (optimization) ? 

Reaching definitions (forward analysis) 

 Which assignments contribute to a state in a program point? 
(verification) 

Very busy expressions (backward analysis) 

 Which expressions are executed in a block regardless which 
path the program takes (verification) ? 

Live variables (backward analysis) 

 Is the value of a variable in a program point used in a later part 
of the program (optimization) ? 
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Our Simple Programming Language 

In the last lecture, we introduced a very simple language 
with  a C-like syntax. 

Synposis: 

 

Arithmetic operators given by 
𝑎 ∷= 𝑥  𝑛  𝑎1 𝑜𝑝𝑎 𝑎2 

Boolean operators given by 
𝑏 ≔ true  false not 𝑏  𝑏1𝑜𝑝𝑏 𝑏2  𝑎1𝑜𝑝𝑟 𝑎2 
𝑜𝑝𝑏 ∈ 𝑎𝑛𝑑, 𝑜𝑟 , 𝑜𝑝𝑟 ∈ =,<,≤,>,≥,≠  

Statements given by  
𝑆 ∷= 
𝑥 ≔ 𝑎 𝑙  | 𝑠𝑘𝑖𝑝 𝑙   𝑆1; 𝑆2 | 𝑖𝑓 𝑏

𝑙 𝑆1  𝑒𝑙𝑠𝑒 𝑆2  𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙 {𝑆} 

 
 



  SSQ, WS 15/16   

Computing the Control Flow Graph 

To calculate the cfg, we define some functions on the 
abstract syntax: 

 The initial label (entry point) init: 𝑆 → 𝐿𝑎𝑏 

 The final labels (exit points) final: 𝑆 →  ℙ 𝐿𝑎𝑏  

 The elementary blocks block: 𝑆 → ℙ 𝐵𝑙𝑜𝑐𝑘𝑠  
where an elementary block is  

► an assignment [x:= a],  

► or [skip],  

► or a test [b]  

 The control flow flow: 𝑆 →  ℙ 𝐿𝑎𝑏 × 𝐿𝑎𝑏  and reverse 
control flowR: 𝑆 →  ℙ 𝐿𝑎𝑏 × 𝐿𝑎𝑏 .  

The control flow graph of a program S  is given by  

 elementary blocks block 𝑆  as nodes, and 

 flow(S) as vertices.  
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Labels, Blocks, Flows: Definitions 

  

𝑓𝑖𝑛𝑎𝑙 𝑥 ≔ 𝑎 𝑙 = 𝑙  

𝑓𝑖𝑛𝑎𝑙 𝑠𝑘𝑖𝑝 𝑙 = 𝑙  
𝑓𝑖𝑛𝑎𝑙 𝑆1; 𝑆2 = 𝑓𝑖𝑛𝑎𝑙 𝑆2  
𝑓𝑖𝑛𝑎𝑙 𝑖𝑓 𝑏 𝑙   𝑆1 𝑒𝑙𝑠𝑒 {𝑆2} = 𝑓𝑖𝑛𝑎𝑙 𝑆1 ∪ 𝑓𝑖𝑛𝑎𝑙 𝑆2  

𝑓𝑖𝑛𝑎𝑙 𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙  𝑆  = {𝑙} 

 

𝑖𝑛𝑖𝑡 𝑥 ≔ 𝑎 𝑙 = 𝑙 

𝑖𝑛𝑖𝑡 𝑠𝑘𝑖𝑝 𝑙 = 𝑙 
𝑖𝑛𝑖𝑡 𝑆1; 𝑆2 = 𝑖𝑛𝑖𝑡 𝑆1  
𝑖𝑛𝑖𝑡 (𝑖𝑓 𝑏 𝑙   𝑆1  𝑒𝑙𝑠𝑒 𝑆2 = 𝑙 
𝑖𝑛𝑖𝑡 (𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙   𝑆 = 𝑙  

𝑓𝑙𝑜𝑤 𝑥 ≔ 𝑎 𝑙 = ∅ 

𝑓𝑙𝑜𝑤 𝑠𝑘𝑖𝑝 𝑙 = ∅ 
𝑓𝑙𝑜𝑤 𝑆1; 𝑆2 = 𝑓𝑙𝑜𝑤 𝑆1 ∪ 𝑓𝑙𝑜𝑤 𝑆2 ∪ 𝑙, 𝑖𝑛𝑖𝑡 𝑆2 )  𝑙 ∈ 𝑓𝑖𝑛𝑎𝑙 𝑆1  
𝑓𝑙𝑜𝑤 𝑖𝑓 𝑏 𝑙  𝑆1 𝑒𝑙𝑠𝑒 {𝑆2 } = 𝑓𝑙𝑜𝑤 𝑆1 ∪ 𝑓𝑙𝑜𝑤 𝑆2 ∪ {(𝑙, 𝑖𝑛𝑖𝑡 𝑆1 ), 𝑙, 𝑖𝑛𝑖𝑡 𝑆2 )  

𝑓𝑙𝑜𝑤 (𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙  𝑆  = 𝑓𝑙𝑜𝑤 𝑆 ∪ 𝑙, 𝑖𝑛𝑖𝑡 𝑆 ∪ { 𝑙′, 𝑙 |𝑙′ ∈ 𝑓𝑖𝑛𝑎𝑙 𝑆 } 

𝑓𝑙𝑜𝑤𝑅 𝑆 = 𝑙′, 𝑙  𝑙, 𝑙′ ∈ 𝑓𝑙𝑜𝑤(𝑆)} 

𝑏𝑙𝑜𝑐𝑘𝑠 𝑥 ≔ 𝑎 𝑙 = 𝑥 ≔ 𝑎 𝑙  

𝑏𝑙𝑜𝑐𝑘𝑠 𝑠𝑘𝑖𝑝 𝑙 =  𝑠𝑘𝑖𝑝 𝑙  
𝑏𝑙𝑜𝑐𝑘𝑠 𝑆1; 𝑆2 = 𝑏𝑙𝑜𝑐𝑘𝑠 𝑆1 ∪ 𝑏𝑙𝑜𝑐𝑘𝑠 𝑆2  
𝑏𝑙𝑜𝑐𝑘𝑠 𝑖𝑓 𝑏 𝑙  𝑆1  𝑒𝑙𝑠𝑒 𝑆2

= 𝑏 𝑙 ∪ 𝑏𝑙𝑜𝑐𝑘𝑠 𝑆1 ∪ 𝑏𝑙𝑜𝑐𝑘𝑠 𝑆2  
𝑏𝑙𝑜𝑐𝑘𝑠 𝑤ℎ𝑖𝑙𝑒 𝑏 𝑙  𝑆 = 𝑏 𝑙 ∪ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆) 

𝑙𝑎𝑏𝑒𝑙𝑠 𝑆 = 𝑙  𝐵 𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆)}  
𝐹𝑉 𝑎 = free variables in 𝑎 
𝐴𝑒𝑥𝑝 𝑆 = non-trival subexpressions 
                    in 𝑆 (variables and                                      
                    constants are trivial) 
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An Example Program 

init(P) = 1 

final(P) = {3} 

blocks(P) = 

     { [x := a+b]1, [y := a*b]2, [y > a+b]3, [a:=a+1]4, [x:= a+b]5} 

flow(P) = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 3)} 

flowR(P) = {(2, 1), (3, 2), (4, 3), (5, 4), (3, 5)} 

labels(P) = {1, 2, 3, 4, 5) 

 

FV(a + b) = {a, b} 

FV(P) = {a, b, x, y} 

Aexp(P) = {a+b, a*b, a+1} 

  

x := a +b 

y > a + b 

a := a + 1 

x := a + b 

1 

5 

4 

3 

y := a * b 
2 

P =  [x := a+b]1; [y := a*b]2; while [y > a+b]3 { [a:=a+1]4; [x:= a+b]5 } 
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Available Expression Analysis 

  

x := a +b 

y > a + b 

a := a + 1 

x := a + b 

1 

5 

4 

3 

y := a * b 
2 

S : 

For each program point, which 
expressions must have already been 
computed, and not modified, on all 
paths to this program point.   

The available expression analysis will 
determine:    
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Available Expression Analysis 

  

kill( [x :=a]l ) = 𝑎′ ∈ 𝐴𝑒𝑥𝑝 𝑆  𝑥 ∈ 𝐹𝑉 ′𝑎 } 
kill( [skip]l ) = ∅ 

kill( [b]l ) = ∅  

gen( [x :=a]l ) = 𝑎′ ∈ 𝐴𝑒𝑥𝑝 𝑎  𝑥 ∉ 𝐹𝑉 ′𝑎 } 
gen( [skip]l ) = ∅ 

gen( [b]l ) = 𝐴𝑒𝑥𝑝(𝑏) 

AEin( l ) =  
∅,                                                      if l ∈  init(S)

   𝐴𝐸𝑜𝑢𝑡 𝑙′  𝑙′, 𝑙 ∈ 𝑓𝑙𝑜𝑤(𝑆) , otherwise   
 

AEout ( l ) = 𝐴𝐸𝑖𝑛 𝑙   \ 𝑘𝑖𝑙𝑙 𝐵𝑙 ∪ 𝑔𝑒𝑛 𝐵𝑙 , where 𝐵𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆) 

 

x := a +b 

y > a + b 

a := a + 1 

x := a + b 

1 

5 

4 

3 

y := a * b 
2 

S : 

l kill(l) gen(l) 

1 ∅ {a+b} 

2 ∅ {a*b} 

3 ∅ {a+b} 

4 {a+b, a*b, a+1} ∅ 

5 ∅ {a+b} 

l AEin AEout 

1 ∅ {a+b} 

2 {a+b} {a+b, a*b} 

3 {a+b} {a+b} 

4 {a+b} ∅ 

5 ∅ {a+b} 
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Reaching Definitions Analysis 

Reaching definitions (assignment) 
analysis determines if: 

  

An assignment of the form [x := a]l 

may reach a certain program point k 
if there is an execution of the 
program where x was last assigned a 
value at l when the program point k 
is reached  

x := 5 

x > 1 

y := x * y 

x := x - 1 

1 

5 

4 

3 

y := 1 
2 

S : 
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Reaching Definitions Analysis 

  

kill( [skip]l ) = ∅ 

kill( [b]l ) = ∅ 

kill( [x :=a]l ) = 𝑥, ? ∪  𝑥, 𝑘  𝐵𝑘  𝑖𝑠 𝑎𝑛 𝑎𝑠𝑠𝑖𝑔𝑚𝑒𝑛𝑡 𝑖𝑛 𝑆} 

gen( [x :=a]l ) = { 𝑥, 𝑙 } 
gen( [skip]l ) = ∅ 

gen( [b]l ) = ∅ 

RDin( l ) =  
{ 𝑥, ? |𝑥 ∈ 𝐹𝑉 𝑠                           if l ∈  init(S)

  𝑅𝐷𝑜𝑢𝑡 𝑙′ 𝑙′, 𝑙 ∈ 𝑓𝑙𝑜𝑤 𝑆         otherwise 
 

RDout ( l ) = 𝑅𝐷𝑖𝑛 𝑙  \ 𝑘𝑖𝑙𝑙 𝐵𝑙 ∪ 𝑔𝑒𝑛 𝐵𝑙   where 𝐵𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆) 

x := 5 

x > 1 

y := x * y 

x := x - 1 

1 

5 

4 

3 

y := 1 
2 

l kill(Bl) gen(Bl) 

1 {(x,?), (x,1),(x,5)} {(x, 1)} 

2 {(y,?), (y,2),(y,4)} {(y, 2)} 

3 ∅ ∅ 

4 {(y,?), (y,2),(y,4)} {(y, 4)} 

5 {(x,?), (x,1),(x,5)} {(x, 5)} 

S : 

l RDin RDout 

1 {(x,?), (y,?)} {(x,1), (y,?)} 

2 {(x,1), (y,?)} {(x,1), (y,2)} 

3 {(x,1), (x,5), (y,2), (y,4)} {(x,1), (x,5), (y,2), (y,4)} 

4 {(x,1), (x,5), (y,2), (y,4)} {(x,1), (x,5),(y,4)} 

5 {(x,1), (x,5),(y,4)} {(x,5),(y,4)} 
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Live Variables Analysis 

A variable x is live at some program 
point (label l) if there exists if there 
exists a path from l to an exit point that 
does not change the variable. 

Live Variables Analysis determines: 

 

 

 

 

 

Application: dead code elemination. 

  

x := 2 

x := 1 

y > x 

z := y 

no yes 

1 

5 

4 

3 

y := 4 
2 

S : 

z := y*y 
6 

x := z 

7 

For each program point, which 
variables may be live at the exit 
from that point. 
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Live Variables Analysis 

  

kill( [x :=a]l ) = {𝑥}  
kill( [skip]l ) = ∅ 

kill( [b]l ) = ∅ 

gen( [x :=a]l ) = 𝐹𝑉(𝑎) 
gen( [skip]l ) = ∅ 

gen( [b]l ) = 𝐹𝑉(𝑏)  

LVout( l ) =  
∅                                                         if l ∈ final(S)

 𝐿𝑉𝑖𝑛 𝑙′ 𝑙′, 𝑙 ∈ 𝑓𝑙𝑜𝑤𝑅 𝑆       otherwise 
  

LVin ( l ) = 𝐿𝑉𝑜𝑢𝑡 𝑙  \ 𝑘𝑖𝑙𝑙 𝐵𝑙 ∪ 𝑔𝑒𝑛 𝐵𝑙       where 𝐵𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆) 

x := 2 

x := 1 

y > x 

z := y 

no yes 

1 

5 

4 

3 

y := 4 
2 

l kill(l) gen(l) 

1 {x} ∅ 

2 {y} ∅ 

3 {x} ∅ 

4 ∅ {x, y} 

5 {z} {y} 

6 {z} {y} 

7 {x} {z} 

l LVin LVout 

1 ∅ ∅ 

2 ∅ {y} 

3 {y} {x, y} 

4 {x, y} {y} 

5 {y} {z} 

6 {y} {z} 

7 {z} ∅ 

S : 

z := y*y 
6 

x := z 

7 
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First Generalized Schema 

Analysis ( l ) =   
  𝐄𝐕                                                                         if 𝑙 ∈ 𝐄
□ Analysis ( l‘ ) 𝑙′, 𝑙 ∈ 𝐅𝐥𝐨𝐰 𝑆 }  otherwise

 

 

Analysis ( l ) = 𝑓l ( Analysis ( l ) ) 

 

With: 

□ is either  or  

𝐄𝐕  is the initial / final analysis information 

𝐅𝐥𝐨𝐰 is either flow or flowR 

𝐄 is either {init(S)} or final(S) 

𝑓𝑙  is the transfer function associated with 𝐵𝑙 ∈ 𝑏𝑙𝑜𝑐𝑘𝑠(𝑆) 
 

Backward analysis: 𝐅𝐥𝐨𝐰 = flowR,  = IN,  = OUT 

Forward analysis: 𝐅𝐥𝐨𝐰 = flow,  = OUT,  = IN 
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Partial Order 

𝐿 =  𝑀,⊑  is a partial order iff 

 Reflexivity: ∀𝑥 ∈ 𝑀. 𝑥 ⊑ 𝑥 

 Transitivity: ∀𝑥, 𝑦, 𝑧 ∈ 𝑀. 𝑥 ⊑ 𝑦 ∧ 𝑦 ⊑ 𝑧 ⇒ 𝑥 ⊑ 𝑧 

 Anti-symmetry: ∀𝑥, 𝑦 ∈ 𝑀. 𝑥 ⊑ 𝑦 ∧ 𝑦 ⊑ 𝑥 ⇒ 𝑥 = 𝑦 

 

Let 𝐿 =  𝑀,⊑  be a partial order,  𝑆 ⊆ 𝑀 

 𝑦 ∈ 𝑀 is upper bound for 𝑆 𝑆 ⊑ 𝑦  iff ∀𝑥 ∈ 𝑆. 𝑥 ⊑ 𝑦 

 𝑦 ∈ 𝑀 is lower bound for S (𝑦 ⊑ 𝑆) iff ∀𝑥 ∈ 𝑆. 𝑦 ⊑ 𝑥 

 Least upper bound ⨆𝑋 ∈ 𝑀 of 𝑋 ⊆ 𝑀:  

► 𝑋 ⊑ ⨆𝑋 ∧ ∀𝑦 ∈ 𝑀.𝑋 ⊑ 𝑦 ⇒ ⨆𝑋 ⊑ 𝑦 

 Greatest lower bound ⊓ 𝑋 of 𝑋 ⊆ 𝑀: 

► ⊓ 𝑋 ⊑ 𝑋 ∧ ∀𝑦 ∈ 𝑀. 𝑦 ⊑ 𝑋 ⇒ 𝑦 ⊑  ⊓ 𝑋 
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Lattice 

A lattice (“Verbund”) is a partial order L = (M, ⊑) such that 

 

 ⊔X and ⊓X exist for all X ⊆ M 

 Unique greatest element ⊤ = ⊔M = ⊓∅ 

 Unique least element ⊥ = ⊓M = ⊔∅ 
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Transfer Functions 

Transfer functions to propagate information along the execution 
path (i.e. from input to output, or vice versa) 

 

Let 𝐿 = 𝑀,⊑  be a lattice. Let 𝐹  be the set of transfer functions of 
the form   
 fl : L  L with l being a label  

 

Knowledge transfer is monotone 

 ∀ 𝑥, 𝑦. 𝑥 ⊑ 𝑦 ⟹ 𝑓𝑙 𝑥 ⊑ 𝑓𝑙 𝑦   

 

Space 𝐹 of transfer functions 

 𝐹   contains all transfer functions fl 

 𝐹   contains the identity function id:  ∀𝑥 ∈ 𝑀. 𝑖𝑑 𝑥 = 𝑥  

 𝐹   is closed under composition: ∀ 𝑓, 𝑔 ∈ 𝐹. 𝑔 ∘ 𝑓 ∈ 𝐹  
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The Generalized Analysis 

Analysis ( l ) =  ⊔ Analysis ( l‘ ) | (l′, l) ∈ 𝐹𝑙𝑜𝑤 𝑆 ⊔ { 𝜄𝐸
′  }    

     with  𝜄𝐸
′ =  

𝐸𝑉             if 𝑙 ∈ 𝐸
⊥        otherwise  

Analysis ( l ) = 𝑓𝑙( Analysis ( l ) ) 

 

With: 
 

L property space representing data flow information with  
𝐿,⊑  a lattice 

 𝐹𝑙𝑜𝑤 is a finite flow  (i.e. 𝑓𝑙𝑜𝑤 or 𝑓𝑙𝑜𝑤𝑅  ) 

𝐸𝑉 is an extremal value for the extremal labels 𝐸 (i.e.  𝑖𝑛𝑖𝑡 𝑆  or 
𝑓𝑖𝑛𝑎𝑙(𝑆) 

transfer functions 𝑓𝑙  of a space of transfer functions 𝐹 
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Summary 
 

Static Program Analysis is the analysis of run-time 
behavior of programs without executing them 
(sometimes called static testing). 

Approximations of program behaviours by analyzing the 
program‘s cfg. 

Analysis include 

 available expressions analysis,  

 reaching definitions, 

 live variables analysis. 

These are instances of a more general framework. 

These techniques are used commercially, e.g. 

 AbsInt aiT (WCET) 

 Astrée Static Analyzer (C program safety) 
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Where are we?
I 01: Concepts of Quality
I 02: Legal Requirements: Norms and Standards
I 03: The Software Development Process
I 04: Hazard Analysis
I 05: High-Level Design with SysML
I 06: Formal Modelling with SysML and OCL
I 07: Detailed Specification with SysML
I 08: Testing
I 09: Program Analysis
I 10: Foundations of Software Verification
I 11: Verification Condition Generation
I 12: Semantics of Programming Languages
I 13: Model-Checking
I 14: Conclusions and Outlook
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Today: Software Verification using Floyd-Hoare logic

I The Floyd-Hoare calculus proves properties of imperative programs.
I Thus, it is at home in the lower levels of the verification branch, much

like the static analysis from last week.
I It is far more powerful than static analysis — and hence, far more

complex to use (it requires user interaction, and is not automatic).
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Idea

I What does this compute?

I How can we prove this?
I Inuitively, we argue about which

value variables have at certain
points in the program.

I Thus, to prove properties of
imperative programs like this, we
need a formalism where we can
formalise assertions of the
program properties at certain
points in the exection, and which
tells us how these assertions
change with program execution.

P := 1 ;
C := 1 ;
whi le (C ≤ N) {

P := P ∗ C ;
C := C + 1

} ;
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Floyd-Hoare-Logic
I Floyd-Hoare-Logic consists of a set of rules to derive valid assertions

about programs. The assertions are denoted in the form of
Floyd-Hoare-Triples {P} p {Q}, with P the precondition, p a program
and Q the postcondition.

I The logical language has both logical variables (which do not change),
and program variables (the value of which changes with program
execution).

I Floyd-Hoare-Logic has one basic principle and one basic trick.
I The principle is to abstract from the program state into the logical

language; in particular, assignment is mapped to substitution.
I The trick is dealing with iteration: iteration corresponds to induction in

the logic, and thus is handled with an inductive proof. The trick here is
that in most cases we need to strengthen our assertion to obtain an
invariant.
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Recall Our Small Language

I Arithmetic Expressions (AExp)

a ::= N | Loc | a1 + a2 | a1 − a2 | a1 × a2

with variables Loc, numerals N

I Boolean Expressions (BExp)

b ::= true | false | a1 = a2 | a1 < a2 | ¬b | b1 ∧ b2 | b1 ∨ b2

I Statements (Com)

c ::= skip | Loc := AExp | skip | c1; c2
| if b {c1} else {c2} | while b {c}
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Semantics of our Small Language
I The semantics of an imperative language is state transition: the

program has an ambient state, and changes it by assigning values to
certain locations

I Concrete example: execution starting with N = 3

P ?
C ?
N 3

 
P 1
C ?
N 3

 
P 1
C 1
N 3

 
P 1
C 1
N 3

 . . .

P 6
C 4
N 3

Semantics in a nutshell
I Expressions evaluate to values Val(in our case, integers)
I A program state maps locations to values: Σ = Loc⇀ Val
I A programs maps an initial state to possibly a final state (if it

terminates)
I Assertions are predicates over program states.

SSQ, WS 15/16 7 [19]



Floyd-Hoare-Triples

Partial Correctness (|= {P} c {Q})
c is partial correct with precondition P and postcondition Q if:
for all states σ which satisfy P
if the execution of c on σ terminates in σ′

then σ′ satisfies Q

Total Correctness (|= [P] c [Q])
c is total correct with precondition P and postcondition Q if:
for all states σ which satisfy P
the execution of c on σ terminates in σ′

and σ′ satisfies Q

I |= {true} while true {skip} {true} holds
I |= [true] while true {skip} [true] does not hold

SSQ, WS 15/16 8 [19]



Assertion Language

I Extension of AExp and BExp by
I logical variables Var v := n,m, p, q, k, l , u, v , x , y , z
I defined functions and predicates on Aexp n!,

∑n
i=1, . . .

I implication, quantification b1 ⇒ b2,∀v . b,∃v . b

I Aexpv

a ::= N | Loc | a1 + a2 | a1 − a2 | a1 × a2 | Var | f (e1, . . . , en)

I Bexpv

b ::= true | false | a1 = a2 | a1 ≤ a2 | ¬b | b1 ∧ b2 | b1 ∨ b2
| b1 ⇒ b2 | p(e1, . . . , en) | ∀v . b | ∃v . b
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Rules of Floyd-Hoare-Logic

I The Floyd-Hoare logic allows us to derive assertions of the form
` {P} c {Q}

I The calculus of Floyd-Hoare logic consists of six rules of the form

` {P1} c1 {Q1} . . . ` {Pn} cn {Qn}
` {P} c {Q}

I This means we can derive ` {P} c {Q} if we can derive ` {Pi} ci {Qi}

I There is one rule for each construction of the language.

SSQ, WS 15/16 10 [19]



Rules of Floyd-Hoare Logic: Assignment

` {B[e/X ]}X := e {B}

I An assigment X:=e changes the state such that at location X we now
have the value of expression e. Thus, in the state before the
assignment, instead of X we must refer to e.

I It is quite natural to think that this rule should be the other way
around.

I Examples:

X := 10 ;
{0 < 10←→ (X < 10)[X/0]}
X := 0
{X < 10}

{X < 9←→ X + 1 < 10}
X := X+ 1
{X < 10}
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Rules of Floyd-Hoare Logic: Conditional and
Sequencing

` {A ∧ b} c0 {B} ` {A ∧ ¬b} c1 {B}
` {A} if b {c0} else {c1} {B}

I In the precondition of the positive branch, the condition b holds,
whereas in the negative branch the negation ¬b holds.

I Both branches must end in the same postcondition.

` {A} c0 {B} ` {B} c1 {C}
` {A} c0; c1 {C}

I We need an intermediate state predicate B.
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Rules of Floyd-Hoare Logic: Iteration

` {A ∧ b} c {A}
` {A} while b {c} {A ∧ ¬b}

I Iteration corresponds to induction. Recall that in (natural) induction
we have to show the same property P holds for 0, and continues to
hold: if it holds for n, then it also holds for n + 1.

I Analogously, here we need an invariant A which has to hold both
before and after the body (but not necessarily in between).

I In the precondition of the body, we can assume the loop condition
holds.

I The precondition of the iteration is simply the invariant A, and the
postcondition of the iteration is A and the negation of the loop
condition.
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Rules of Floyd-Hoare Logic: Weakening
A′ −→ A ` {A} c {B} B −→ B′

` {A′} c {B′}

c

All possible program states

A B

c

All possible program states

B'A'

I |= {A} c {B} means that whenever we start in a state where A holds,
c ends (if it does) in state where B holds.

I Further, for two sets of states, P ⊆ Q iff P −→ Q.

I We can restrict the set A to A′ (A′ ⊆ A or A′ −→ A) and we can
enlarge the set B to B′ (B ⊆ B′ or B −→ B′), and obtain
|= {A′} c {B′}.
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c

All possible program states

B'A'

I |= {A} c {B} means that whenever we start in a state where A holds,
c ends (if it does) in state where B holds.

I Further, for two sets of states, P ⊆ Q iff P −→ Q.
I We can restrict the set A to A′ (A′ ⊆ A or A′ −→ A) and we can
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Overview: Rules of Floyd-Hoare-Logic

` {A} skip {A} ` {B[e/X ]}X := e {B}

` {A ∧ b} c0 {B} ` {A ∧ ¬b} c1 {B}
` {A} if b {c0} else {c1} {B}

` {A ∧ b} c {A}
` {A} while b {c} {A ∧ ¬b}

` {A} c0 {B} ` {B} c1 {C}
` {A} c0; c1 {C}

A′ −→ A ` {A} c {B} B −→ B′

` {A′} c {B′}
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Properties of Hoare-Logic
Soundness
If ` {P} c {Q}, then |= {P} c {Q}

I If we derive a correctness assertion, it holds.
I This is shown by defining a formal semantics for the programming

language, and showing that all rules are correct wrt. to that semantics.

Relative Completeness
If |= {P} c {Q}, then ` {P} c {Q} except for the weakening conditions.

I Failure to derive a correctness assertion is always due to a failure to
prove some logical statements (in the weakening).

I First-order logic itself is incomplete, so this result is as good as we can
get.
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The Need for Verification

Consider the following variations of the faculty example.
Which are correct?

{1 ≤ N}
P := 1 ;
C := 1 ;
whi le (C≤N) {

C := C+1 ;
P := P∗C

}
{P = N!}

{1 ≤ N}
P := 1 ;
C := 1 ;
whi le (C<N) {

C := C+1 ;
P := P∗C

}
{P = N!}

{1 ≤ N ∧ n = N}
P := 1 ;
whi le (70<N) {

P := P∗N ;
N := N−1

}
{P = n!}
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A Hatful of Examples

{i = Y }
X := 1 ;
whi le (¬ (Y = 0) ) {
Y := Y−1 ;
X := 2∗X

}
{X = 2i}

{A ≥ 0 ∧ B ≥ 0}
Q := 0 ;
R := A−(B∗Q) ;
whi le (B ≤ R) {
Q := Q+1 ;
R := A−(B∗Q)

}
{A = B ∗ Q + R ∧ R < B}

{0 < A}
T:= 1 ;
S:= 1 ;
I := 0 ;
whi le (S ≤ A) {

T := T+ 2 ;
S := S+ T ;
I := I+ 1
}

{I ∗ I <= A ∧ A < (I + 1) ∗ (I + 1)}
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{A ≥ 0 ∧ B ≥ 0}
Q := 0 ;
R := A−(B∗Q) ;
whi le (B ≤ R) {
Q := Q+1 ;
R := A−(B∗Q)

}
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Summary

I Floyd-Hoare logic in a nutshell:

I The logic abstracts over the concrete program state by program assertions

I Program assertions are boolean expressions, enriched by logical variables
(and more)

I We can prove partial correctness assertions of the form |= {P} c {Q} (or
total |= [P] c [Q]).

I Validity (correctness wrt a real programming language) depends very
much on capturing the exact semantics formally.

I Floyd-Hoare logic itself is rarely used directly in practice, verification
condition generation is — see next lecture.

SSQ, WS 15/16 19 [19]



Systeme Hoher Sicherheit und Qualität
Universität Bremen WS 2015/2016

Lecture 11 (11.01.2016)

Verification Condition Generation

Christoph Lüth Jan Peleska Dieter Hutter



Frohes Neues Jahr!

SSQ, WS 15/16 2 [19]



Where are we?
I 01: Concepts of Quality
I 02: Legal Requirements: Norms and Standards
I 03: The Software Development Process
I 04: Hazard Analysis
I 05: High-Level Design with SysML
I 06: Formal Modelling with SysML and OCL
I 07: Detailed Specification with SysML
I 08: Testing
I 09: Program Analysis
I 10: Foundations of Software Verification
I 11: Verification Condition Generation
I 12: Semantics of Programming Languages
I 13: Model-Checking
I 14: Conclusions and Outlook
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Introduction

I In the last lecture, we learned about the Floyd-Hoare calculus.

I It allowed us to state and prove correctness assertions about programs,
written as {P} c {Q}.

I The problem is that proofs of ` {P} c {Q} are exceedingly tedious,
and hence not viable in practice.

I We are looking for a calculus which reduces the size (and tediousness)
of Floyd-Hoare proofs.

I The starting point is the relative completeness of the Floyd-Hoare
calculus.
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Completeness of the Floyd-Hoare Calculus

Relative Completeness
If |= {P} c {Q}, then ` {P} c {Q} except for the weakening conditions.

I To show this, one constructs a so-called weakest precondition.

Weakest Precondition
Given a program c and an assertion P, the weakest precondition is an
assertion W which
1. is a valid precondition: |= {W } c {P}

2. and is the weakest such: if |= {Q} c {P}, then W −→ Q.

I Question: is the weakest precondition unique?

Only up to logical equivalence: if W1 and W2 are weakest
preconditions, then W1 ←→W2.

SSQ, WS 15/16 5 [19]
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Constructing the Weakest Precondition

I Consider the following simple program and its verification:
{X = x ∧ Y = y}

Z:= Y ;

Y:= X ;

X:= Z ;
{X = y ∧ Y = x}

I The idea is to construct the weakest precondition inductively.

SSQ, WS 15/16 6 [19]



Constructing the Weakest Precondition

I Consider the following simple program and its verification:
{X = x ∧ Y = y}

Z:= Y ;

Y:= X ;
{Z = y ∧ Y = x}
X:= Z ;
{X = y ∧ Y = x}

I The idea is to construct the weakest precondition inductively.

SSQ, WS 15/16 6 [19]



Constructing the Weakest Precondition

I Consider the following simple program and its verification:
{X = x ∧ Y = y}

Z:= Y ;
{Z = y ∧ X = x}
Y:= X ;
{Z = y ∧ Y = x}
X:= Z ;
{X = y ∧ Y = x}

I The idea is to construct the weakest precondition inductively.

SSQ, WS 15/16 6 [19]



Constructing the Weakest Precondition

I Consider the following simple program and its verification:
{X = x ∧ Y = y}
←→
{Y = y ∧ X = x}
Z:= Y ;
{Z = y ∧ X = x}
Y:= X ;
{Z = y ∧ Y = x}
X:= Z ;
{X = y ∧ Y = x}

I The idea is to construct the weakest precondition inductively.
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Constructing the Weakest Precondition
I There are four straightforward cases:

wp(skip,P) def= P
wp(X := e,P) def= P[e/X ]
wp(c0; c1,P) def= wp(c0,wp(c1,P))

wp(if b {c0} else {c1},P) def= (b ∧ wp(c0,P)) ∨ (¬b ∧ wp(c1,P))

I The complicated one is iteration. This is not surprising, because
iteration gives computational power (and makes our language
Turing-complete). It can be given recursively:

wp(while b {c},P) def= (¬b ∧ P) ∨ (b ∧ wp(c,wp(while b {c},P)))

A closed formula can be given using Turing’s β-predicate, but it is
unwieldy to write down.

I Hence, wp(c,P) is not an effective way to prove correctness.
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Verfication Conditions: Annotated Programs

I Idea: invariants specified in the program by annotations.

I Arithmetic and Boolean Expressions (AExp, BExp) remain as they
are.

I Annotated Statements (ACom)

c ::= skip | Loc := AExp | assert P | if b {c1} else {c2}
| while b inv I {c} | c1; c2

SSQ, WS 15/16 8 [19]



Calculuation Verification Conditions

I For an annotated statement c ∈ ACom and an assertion P (the
postcondition), we calculuate a set of verification conditions vc(c,P)
and a precondition pre(c,P).

I The precondition is an auxiliary definition — it is mainly needed to
compute the verification conditions.

I If we can prove the verification conditions, then pre(c,P) is a proper
precondition, i.e. |= {pre(c,P)} c {P}.
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Calculating Verification Conditions
pre(skip,P) def= P

pre(X := e,P) def= P[e/X ]
pre(c0; c1,P) def= pre(c0, pre(c1,P))

pre(if b {c0} else {c1},P) def= (b ∧ pre(c0,P)) ∨ (¬b ∧ pre(c1,P))
pre(assert Q,P) def= Q

pre(while b inv I {c},P) def= I

vc(skip,P) def= ∅
vc(X := e,P) def= ∅
vc(c0; c1,P) def= vc(c0, pre(c1,P)) ∪ vc(c1,P)

vc(if b {c0} else {c1},P) def= vc(c0,P) ∪ vc(c1,P)
vc(assert Q,P) def= {Q −→ P}

vc(while b inv I {c},P) def= vc(c, I) ∪{I ∧ b −→ pre(c, I)}
∪ {I ∧ ¬b −→ P}

vc({P} c {Q}) def= {P −→ pre(c,Q)} ∪ vc(c,Q)
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Correctness of the VC Calculus

Correctness of the VC Calculus
For a annotated program c and an assertion P:

vc(c,P) =⇒ {pre(c,P)} c {P}

I Proof: By induction on c.
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Example: Faculty

Let Fac be the annotated faculty program:
{0 ≤ N}
P := 1 ;
C := 1 ;
whi le C ≤ N inv {P = (C − 1)! ∧ C − 1 ≤ N} {

P := P ∗ C ;
C := C + 1

}
{P = N!}

vc(Fac) =
{ 0 ≤ N −→ 1 = 0! ∧ 0 ≤ N,

P = (C − 1)! ∧ C − 1 ≤ N ∧ C ≤ N −→ P × C = C ! ∧ C ≤ N,
P = (C − 1)! ∧ C − 1 ≤ N ∧ ¬(C ≤ N) −→ P = N! }
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The Framing Problem

I One problem with the simple definition from above is that we need to
specify which variables stay the same (framing problem).
I Essentially, when going into a loop we use lose all information of the

current precondition, as it is replaced by the loop invariant.
I This does not occur in the faculty example, as all program variables are

changed.

I Instead of having to write this down every time, it is more useful to
modify the logic, such that we specify which variables are modified,
and assume the rest stays untouched.

I Sketch of definition: We say |= {P,X} c {Q} is a Hoare-Triple with
modification set X if for all states σ which satisfy P if c terminates in
a state σ′, then σ′ satisfies Q, and if σ(x) 6= σ′(x) then x ∈ X .
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Verification Condition Generation Tools

I The Why3 toolset (http://why3.lri.fr)

I The Why3 verification condition generator

I Plug-ins for different provers

I Front-ends for different languages: C (Frama-C), Java (Krakatoa)

I The Boogie VCG
(http://research.microsoft.com/en-us/projects/boogie/)

I The VCC Tool (built on top of Boogie)

I Verification of C programs

I Used in German Verisoft XT project to verify Microsoft Hyper-V hypervisor

SSQ, WS 15/16 14 [19]
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Why3 Overview: Toolset
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Why3 Overview: VCG
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Why3 Example: Faculty (in WhyML)

let fac(n: int): int
requires { n >= 0 }
ensures { result = fact(n) } =
let p = ref 0 in
let c = ref 0 in
p := 1;
c := 1;
while !c <= n do

invariant { !p= fact(!c-1) /\ !c-1 <= n }
variant { n- !c }
p:= !p* !c;
c:= !c+ 1
done;

!p
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Why3 Example: Generated VC for Faculty
goal WP_parameter_fac :
forall n:int.
n >= 0 ->
(forall p:int.

p = 1 ->
(forall c:int.

c = 1 ->
(p = fact (c - 1) /\ (c - 1) <= n) /\
(forall c1:int, p1:int.

p1 = fact (c1 - 1) /\ (c1 - 1) <= n ->
(if c1 <= n then forall p2:int.

p2 = (p1 * c1) ->
(forall c2:int.

c2 = (c1 + 1) ->
(p2 = fact (c2 - 1) /\
(c2 - 1) <= n) /\
0 <= (n - c1) /\
(n - c2) < (n - c1))

else p1 = fact n))))
SSQ, WS 15/16 18 [19]



Summary

I Starting from the relative completeness of the Floyd-Hoare calculus,
we devised a Verification Condition Generation calculus which makes
program verification viable.

I Verification Condition Generation reduces an annotated program to a
set of logical properties.

I We need to annotate preconditions, postconditions and invariants.

I Tools which support this sort of reasoning include Why3 and Boogie.
They come with front-ends for real programming languages, such as C,
Java, C#, and Ada.

I To scale to real-world programs, we need to deal with framing,
modularity (each function/method needs to be verified independently),
and machine arithmetic (integer word arithmetic and floating-points).
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Where are we?
I 01: Concepts of Quality
I 02: Legal Requirements: Norms and Standards
I 03: The Software Development Process
I 04: Hazard Analysis
I 05: High-Level Design with SysML
I 06: Formal Modelling with SysML and OCL
I 07: Detailed Specification with SysML
I 08: Testing
I 09: Program Analysis
I 10: Foundations of Software Verification
I 11: Verification Condition Generation
I 12: Semantics of Programming Languages
I 13: Model-Checking
I 14: Conclusions and Outlook
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Semantics in the Development Process
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Semantics — what does that mean?

” Semantics: The meaning of words, phrases or systems. “

— Oxford Learner’s Dictionaries

I In mathematics and computer science, semantics is giving a meaning
in mathematical terms. It can be contrasted with syntax, which
specifies the notation.

I Here, we will talk about the meaning of programs. Their syntax is
described by formal grammars, and their semantics in terms of
mathematical structures.

I Why would we want to do that?
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Why Semantics?

Semantics describes the meaning of a program (written in a
programming language) in mathematical precise and unambiguous way.
Here are three reasons why this is a good idea:

I It lets us write better compilers. In particular, it makes the language
independent of a particular compiler implementation.

I If we know the precise meaning of a program, we know when it should
produce a result and when not. In particular, we know which situations
the program should avoid.

I Finally, it lets us reason about program correctness.

Empfohlene Literatur: Glynn Winskel. The Formal Semantics of
Programming Languages: An Introduction. The MIT Press, 1993.
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Semantics of Programming Languages

Historically, there are three ways to write down the semantics of a
programming language:

I Operational semantics describes the meaning of a program by
specifying how it executes on an abstract machine.

I Denotational semantics assigns each program to a partial function on
the system state.

I Axiomatic semantics tries to give a meaning of a programming
construct by giving proof rules. A prominent example of this is the
Floyd-Hoare logic of previous lectures.
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A Tale of Three Semantics

P := 1;
C := 1;
while C <= N {
  P := P * C;
  C := C + 1
}

Operational

Axiomatic

Denotational

Programs

I Each semantics should be
considered a view of the
program.

I Importantly, all semantics
should be equivalent. This
means we have to put
them into relation with
each other, and show that
they agree. Doing so is an
important sanity check for
the semantics.

I In the particular case of
axiomatic semantics
(Floyd-Hoare logic), it is
the question of correctness
of the rules.
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Operational Semantics
I Evaluation is directed by the syntax.
I We inductively define relations → between configurations (a command

or expression together with a state) to an integer, boolean or a state:

→A ⊆ (AExp,Σ)× Z
→B ⊆ (BExp,Σ)× Bool
→S ⊆ (Com,Σ)× Σ

where the system state is defined as as

Σ def= Loc⇀ Z

I (p, σ)→S σ
′ means that evaluating the program p in state σ results in

state σ′, and (a, σ)→A i means evaluating expression a in state σ
results in integer value i .

SSQ, WS 15/16 8 [27]



Structural Operational Semantics

I The evaluation relation is defined by rules of the form

〈a, σ〉 →A i
〈p a1, σ〉 →A f (i)

for each programming language construct p. This means that when the
argument a of the construct has been evaluated, we can evaluate the
whole expression.

I This is called structural operational semantics.

I Note that this does not specify an evaluation strategy.

I This evaluation is partial and can be non-deterministic.
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IMP: Arithmetic Expressions

Numbers: 〈n, σ〉 →A n

Variables: 〈X, σ〉 →A σ(X)

Addition:
〈a0, σ〉 →A n 〈a1, σ〉 →A m
〈a0 + a1, σ〉 →A n + m

Subtraction:
〈a0, σ〉 →A n 〈a1, σ〉 →A m
〈a0 - a1, σ〉 →A n −m

Multiplication:
〈a0, σ〉 →A n 〈a1, σ〉 →A m
〈a0 * a1, σ〉 →A n ·m
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IMP: Boolean Expressions (Constants, Relations)

〈true, σ〉 →B True 〈false, σ〉 → False

〈b, σ〉 →B False
〈not b, σ〉 →B True

〈b, σ〉 →B True
〈not b, σ〉 →B False

〈a0, σ〉 →A n 〈a1, σ〉 →A m
〈a0 = a1, σ〉 →B True

n = m 〈a0, σ〉 →A n 〈a1, σ〉 →A m
〈a0 = a1, σ〉 →B False n 6= m

〈a0, σ〉 →A n 〈a1, σ〉 →A m
〈a0 < a1, σ〉 →B True n < m

〈a0, σ〉 →A n 〈a1, σ〉 →A m
〈a0 < a1, σ〉 →B False n ≥ m
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IMP: Boolean Expressions (Operators)

〈b0, σ〉 →B False 〈b1, σ〉 →B False
〈b0 and b1, σ〉 →B False

〈b0, σ〉 →B False 〈b1, σ〉 →B True
〈b0 and b1, σ〉 →B False

〈b0, σ〉 →B True 〈b1, σ〉 →B False
〈b0 and b1, σ〉 →B False

〈b0, σ〉 →B True 〈b1, σ〉 →B True
〈b0 and b1, σ〉 →B True

〈b0, σ〉 →B True 〈b1, σ〉 →B True
〈b0 or b1, σ〉 →B True

〈b0, σ〉 →B True 〈b1, σ〉 →B False
〈b0 or b1, σ〉 →B True

〈b0, σ〉 →B False 〈b1, σ〉 →B True
〈b0 or b1, σ〉 →B True

〈b0, σ〉 →B False 〈b1, σ〉 →B False
〈b0 or b1, σ〉 →B False
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IMP: Boolean Expressions (Operators — Variation)

〈b0, σ〉 →B False
〈b0 and b1, σ〉 →B False

〈b0, σ〉 →B True 〈b1, σ〉 →B False
〈b0 and b1, σ〉 →B False

〈b0, σ〉 →B True 〈b1, σ〉 →B True
〈b0 and b1, σ〉 →B True

〈b0, σ〉 →B True
〈b0 or b1, σ〉 →B True

〈b0, σ〉 →B False 〈b1, σ〉 →B True
〈b0 or b1, σ〉 →B True

〈b0, σ〉 →B False 〈b1, σ〉 →B False
〈b0 or b1, σ〉 →B False

What is the difference?
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Operational Semantics of IMP: Statements

〈skip, σ〉 →S σ

〈a, σ〉 →S n
〈X := a, σ〉 →S σ[n/X ]

〈c0, σ〉 →S τ 〈c1, τ〉 →S τ
′

〈c0; c1, σ〉 →S τ
′

〈b, σ〉 →B True 〈c0, σ〉 →S τ

〈if b {c0} else {c1}, σ〉 →S τ

〈b, σ〉 → False 〈c1, σ〉 →S τ

〈if b {c0} else {c1}, σ〉 →S τ

〈b, σ〉 →B False
〈while b {c}, σ〉 →S σ

〈b, σ〉 →B True 〈c, σ〉 →S τ
′ 〈while b {c}, τ ′〉 →S τ

〈while b {c}, σ〉 →S τ
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Why Denotational Semantics?

I Denotational semantics takes an abstract view of program: if c1 ∼ c2,
they have the “same meaning”.

I This allows us, for example, to compare programs in different
programming languages.

I It also accommodates reasoning about programs far better than
operational semantics. In particular, we can prove the correctness of
the Floyd-Hoare rules.

I It gives us compositionality and referential transparency, mapping
programming language construct p to denotation φ:

D[[p(e1, . . . , en)]] = φ(D[[e1]], . . . ,D[[en]])
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Denotational Semantics

I Programs are denoted by functions on states Σ = Loc⇀ Z.

I Semantic functions assign a meaning to statements and expressions:

Arithmetic expressions: E : AExp→ (Σ→ Z)
Boolean expressions: B : BExp→ (Σ→ Bool)
Statements: D : Com→ (Σ ⇀ Σ)

I Note the meaning of a program p is a partial function, reflecting the
fact that programs may not terminate.

I Our expressions always do, but that is because our language is quite simple.
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Denotational Semantics of IMP: Arithmetic
Expressions

E [[n]] def= λσ ∈ Σ.n
E [[X ]] def= λσ ∈ Σ.σ(X )

E [[a0 + a1]] def= λσ ∈ Σ.(E [[a0]]σ + E [[a1]]σ)
E [[a0 - a1]] def= λσ ∈ Σ.(E [[a0]]σ − E [[a1]]σ)
E [[a0 * a1]] def= λσ ∈ Σ.(E [[a0]]σ · E [[a1]]σ)
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Denotational Semantics of IMP: Boolean
Expressions

B[[true]] def= λσ ∈ Σ.True
B[[false]] def= λσ ∈ Σ.False
B[[not b]] def= λσ ∈ Σ.¬B[[b]]σ

B[[a0 = a1]] def= λσ ∈ Σ.
{

True E [[a0]]σ = E [[a1]]σ
False E [[a0]]σ 6= E [[a1]]σ

B[[a0 < a1]] def= λσ ∈ Σ.
{

True E [[a0]]σ < E [[a1]]σ
False E [[a0]]σ ≥ E [[a1]]σ

B[[b0 and b1]] def= λσ ∈ Σ.B[[b0]]σ ∧ B[[b1]]σ
B[[b0 or b1]] def= λσ ∈ Σ.B[[b0]]σ ∨ B[[b1]]σ
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Denotational Semantics of IMP: Statements

The simple part:

D[[skip]] def= λσ ∈ Σ. σ
D[[X := a]] def= λσ ∈ Σ. σ[E [[a]]σ/X ]
D[[c0; c1]] def= D[[c1]] ◦ D[[c0]]

D[[if b {c0} else {c1}]]
def= λσ ∈ Σ.

{
D[[c0]]σ B[[b]]σ = True
D[[c1]]σ B[[b]]σ = False

The hard part:

D[[while b {c}]] = λσ ∈ Σ.
{
σ B[[b]]σ = False
(D[[while b {c}]] ◦ D[[c]])σ B[[b]]σ = True

This recursive definition is not constructive — it does not tell us how to
construct the function. Worse, it is unclear it even exists in general.
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Partial Orders and Least Upper Bounds

To construct fixpoints of the form x = f (x), we need the theory of
complete partial orders (cpo’s).

Definition (Partial Order)
Given a set X , a partial order v ⊆ X × X is
(i) transitive: if x v y , y v z , then x v z
(ii) reflexive: x v x
(iii) anti-symmetric: if x v y , y v x then x = y

Definition (Least Upper Bound)
For Y ⊆ X , the least upper bound

⊔
Y ∈ X is:

(i) ∀y ∈ Y . y v
⊔
Y

(ii) for any z ∈ X such that ∀y ∈ Y . y v z , we have
⊔
Y v z
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Complete Partial Orders

Definition (Complete Partial Order)
A partial order v is complete (a cpo) if any ω-chain
x1 v x2 v x3 v x4 . . . = {xi | i ∈ ω} has a least upper bound⊔

i∈ω xi ∈ X .

A cpo is called pointed (pcpo), if there is a smallest element ⊥ ∈ X .
(Note some authors assume all cpos to be pointed.)

Definition (Continuous Function)
Given cpos (X ,v) and (Y ,≤). A function f : X → Y is
(i) monotone, if x v y then f (x) ≤ f (y)
(ii) continuous, if monotone and f (

⊔
i∈ω xi ) =

⊔
i∈ω f (xi )
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Fixpoints

Theorem (Each continuous function has a least fixpoint)
Let (X ,v) be a pcpo, and f : X → X continuous, then f has a least
fixpoint fix(f ),given as

fix(f ) =
⊔

n∈ω

f n(⊥)

I In our case, the state Σ is made into a pcpo Σ⊥ by ’adjoining’ a new
element ⊥, ordered as ⊥ v σ.

I This models partial functions: Σ ⇀ Σ ∼= Σ→ Σ⊥

I Σ→ Σ⊥ ist a pcpo, ordered as

f v g ←→ ∀x .f (x) v g(x)

Concretely, f v g means that f is defined on fewer states than g .
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Denotational Semantics of IMP: Statements

D[[skip]] def= λσ ∈ Σ. σ
D[[X := a]] def= λσ ∈ Σ. σ[E [[a]]σ/X ]
D[[c0; c1]] def= D[[c1]] ◦ D[[c0]]

D[[if b {c0} else {c1}]]
def= λσ ∈ Σ.

{
D[[c0]]σ B[[b]]σ = True
D[[c1]]σ B[[b]]σ = False

D[[while b {c}]] def= fix(Γ)

where Γ(φ) def= λσ ∈ Σ.
{
φ ◦ D[[c]]σ B[[b]]σ = True
σ B[[b]]σ = False
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Equivalence of Semantics
Lemma
(i) For a ∈ Aexp, n ∈ N, E [[a]]σ = n iff 〈a, σ〉 →A n
(ii) For b ∈ BExp, t ∈ Bool, B[[b]]σ = t iff 〈b, σ〉 →B t

Proof: Structural Induction on a and b.
Lemma
For c ∈ Com, if 〈c, σ〉 →S σ

′ then D[[c]]σ = σ′

Proof: Induction over deriviation of 〈c, σ〉 →S σ
′.

Theorem (Equivalence of Semantics)
For c ∈ Com, and σ, σ′ ∈ Σ,

〈c, σ〉 →S σ
′ iff D[[c]]σ = σ′

The proof of this theorem requires a technique called fixpoint induction
which we will not go into detail about here.
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Correctness of Floyd-Hoare Rules

Denotational semantics allows us to prove the correctness of the
Floyd-Hoare rules.
I We extend the boolean semantic functions E and B to AExpv and
BExpv, respectively.

I We can then define the validity of a Hoare triple in terms of
denotations:

|= {P} c {Q} iff ∀σ.B[[P]]σ ∧ D[[c]]σ 6= ⊥ −→ B[[Q]](D[[c]]σ)

I We can now show the rules preserve validity, i.e. if the preconditions
are valid Hoare triples, then so is the conclusion.
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Remarks

I Our language and semantics is quite simple-minded. We have not take
into account:
I undefined expressions (such as division by 0 or accessing an undefined

variable),
I side effects in expressions,
I declaration of variables,
I pointers, references, pointer arithmetic,
I input/output (what is the semantic model?), or
I concurrency.

I However, there are formal semantics for languages such as
StandardML, C, or Java, although most of them concentrate on some
aspect of the language (e.g. Java concurrency is not very well defined
in the standard). Only StandardML has a language standard which is
written as an operational semantics.
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Conclusion

I Programming semantics come in three flavours: operational,
denotational, axiomatic.

I Each of these has their own use case:

I Operational semantics gives details about evaluation of programs, and is
good for implementing the programming language.

I Denotational semantics is abstract and good for high-level reasoning (e.g.
correctness of program logics or tools).

I Axiomatic semantics is about program logics, and reasoning about
programs.

I Denotational semantics needs the mathematical toolkit of cpos to
construct fixpoints.
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Where are we?
I 01: Concepts of Quality
I 02: Legal Requirements: Norms and Standards
I 03: The Software Development Process
I 04: Hazard Analysis
I 05: High-Level Design with SysML
I 06: Formal Modelling with SysML and OCL
I 07: Detailed Specification with SysML
I 08: Testing
I 09: Program Analysis
I 10: Foundations of Software Verification
I 11: Verification Condition Generation
I 12: Semantics of Programming Languages
I 13: Model-Checking
I 14: Conclusions and Outlook
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Modelchecking in the Development Process

I Model-checking proves properties of abstractions of the system.

I Thus, it scales also to higher levels of the development process
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Introduction

I In the last lectures, we were verifying program properties with the
Floyd-Hoare calculus and related approaches. Program verification was
reduced to a deductive problem by translating the program into logic
(specifically, state change becomes substitution).

I Model-checking takes a different approach: instead of directly working
with the program, we work with an abstraction of the system (a
model). Because we build abstractions, this approach is also applicable
in the higher verification levels.

I But what are the properties we want to express? How do we express
them, and how do we prove them?
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The Model-Checking Problem

The Basic Question
Given a modelM, and a property φ, we want to know whether

M |= φ

I What isM?

I What is φ?

I How to prove it?

I The basic problem: state explosion

SSQ, WS 15/16 6 [25]
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Finite State Machines

Finite State Machine (FSM)
A FSM is given byM = 〈Σ,→〉 where
I Σ is a finite set of states, and
I → ⊆ Σ× Σ is a transition relation, such that → is left-total:

∀s ∈ Σ.∃s ′ ∈ Σ. s → s ′

I Many variations of this definition exists, e.g. sometimes we have state
variables or labelled transitions.

I Note there is no final state, and no input or output (this is the key
difference to automata).

I If → is a function, the FSM is deterministic, otherwise it is
non-deterministic.
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The Railway Crossing

Source: Wikipedia
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The Railway Crossing — Abstraction

Train

Car

Gates
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The Railway Crossing — Model

States of the train:

xing

away

lvngappr

gate= closd

States of the car:

xing

away

lvngappr

gate= open gate = closed

States of the gate:

closdopen

train = appr

train = lvng
train = lvngtrain= appr 
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The FSM

I The states here are a map from variables Car, Train, Gate to the
domains

ΣCar = {appr, xing, lvng, away}
ΣTrain = {appr, xing, lvng, away}
ΣGate = {open, clsd}

or alternatively, a three-tuple S ∈ Σ = ΣCar × ΣTrain × ΣGate.

I The transition relation is given by e.g.

〈away, open, away〉 → 〈appr, open, away〉
〈appr, open, away〉 → 〈xing, open, away〉
. . .
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Railway Crossing — Safety Properties

I Now we want to express safety (or security) properties, such as the
following:
I Cars and trains never cross at the same time.
I The car can always leave the crossing
I Approaching trains may eventually cross.
I There are cars crossing the tracks.

I We distinguish safety properties from liveness properties:
I Safety: something bad never happens.
I Liveness: something good will (eventually) happen.

I To express these properties, we need to talk about sequences of states
in an FSM.
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Linear Temporal Logic (LTL) and Paths

I LTL allows us to talk about paths in a FSM, where a path is a
sequence of states connected by the transition relation.

I We first define the syntax of formula,

I then what it means for a path to satisfy the formula, and

I from that we derive the notion of a model for an LTL formula.

Paths
Given a FSMM = 〈Σ,→〉, a path inM is an (infinite) sequence
〈s1, s2, s3, . . .〉 such that si ∈ Σ and si → si+1 for all i .

I For a path p = 〈s1, s2, s3, . . .〉, we write pi for si (selection) and pi for
〈si , si+1, . . .〉 (the suffix starting at i).
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Linear Temporal Logic (LTL)

φ ::= > | ⊥ | p — True, false, atomic
| ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 −→ φ2 — Propositional formulae
| X φ — Next state
| ♦φ — Some Future State
| �φ — All future states (Globally)
| φ1 U φ2 — Until

I Operator precedence: Unary operators; then U; then ∧, ∨; then −→.
I An atomic formula p above denotes a state predicate. Note that

different FSMs have different states, so the notion of whether an
atomic formula is satisfied depends on the FSM in question. A different
(but equivalent) approach is to label states with atomic propositions.

I From these, we can define other operators, such as φ R ψ (release) or
φW ψ (weak until).
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Satifsaction and Models of LTL
Given a path p and an LTL formula φ, the satisfaction relation p |= φ is
defined inductively as follows:

p |= True
p 6|= False
p |= p iff p(p1)
p |= ¬φ iff p 6|= φ

p |= φ ∧ ψ iff p |= φ and p |= ψ
p |= φ ∨ ψ iff p |= φ or p |= ψ
p |= φ −→ ψ iff whenever p |= φ then p |= ψ

p |= X φ iff p2 |= φ
p |= �φ iff for all i , we have pi |= φ
p |= ♦φ iff there is i such that pi |= φ
p |= φ U ψ iff there is i pi |= ψ and for all j = 1, . . . , i − 1, pj |= φ

Models of LTL formulae
A FSMM satisfies an LTL formula φ,M |= φ, iff every path p inM
satisfies φ.
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The Railway Crossing
I Cars and trains never cross at the same time.

�¬(car = xing ∧ train = xing)

I A car can always leave the crossing:

�(car = xing −→ ♦(car = lvng))

I Approaching trains may eventually cross:

�(train = appr −→ ♦(train = xing))

I There are cars crossing the tracks:

♦(car = xing) means something else!

I Can not express this in LTL!
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Computational Tree Logic (CTL)

I LTL does not allow us the quantify over paths, e.g. assert the
existance of a path satisfying a particular property.

I To a limited degree, we can solve this problem by negation: instead of
asserting a property φ, we check wether ¬φ is satisfied; if that is not
the case, φ holds. But this does not work for mixtures of universal and
existential quantifiers.

I Computational Tree Logic (CTL) is an extension of LTL which allows
this by adding universal and existential quantifiers to the modal
operators.

I The name comes from considering paths in the computational tree
obtained by unwinding the FSM.
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CTL Formulae

φ ::= > | ⊥ | p — True, false, atomic
| ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 −→ φ2 — Propositional formulae
| AX φ | EX φ — All or some next state
| AFφ | EFφ — All or some future states
| AGφ | EGφ — All or some global future
| A[φ1 U φ2] | E[φ1 U φ2] — Until all or some
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Satifsfaction

I Note that CTL formulae can be considered to be a LTL formulae with
a ’modality’ (A or E ) added on top of each temporal operator.

I Generally speaking, the A modality says the temporal operator holds
for all paths, and the E modality says the temporal operator only holds
for all least one path.

I Of course, that strictly speaking is not true, because the arguments of the
temporal operators are in turn CTL forumulae, so we need recursion.

I This all explains why we do not define a satisfaction for a single path
p, but satisfaction with respect to a specific state in an FSM.
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Satisfaction for CTL

Given an FSMM = 〈Σ,→〉, s ∈ Σ and a CTL formula φ, then
M, s |= φ is defined inductively as follows:

M, s |= True
M, s 6|= False
M, s |= p iff p(s)
M, s |= φ ∧ ψ iffM, s |= φ andM, s |= ψ
M, s |= φ ∨ ψ iffM, s |= φ orM, s |= ψ
M, s |= φ −→ ψ iff wheneverM, s |= φ thenM, s |= ψ
. . .
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Satisfaction for CTL (c’ed)
Given an FSMM = 〈Σ,→〉, s ∈ Σ and a CTL formula φ, then
M, s |= φ is defined inductively as follows:

. . .
M, s |= AX φ iff for all s1 with s → s1, we have M, s1 |= φ
M, s |= EX φ iff for some s1 with s → s1, we haveM, s1 |= φ
M, s |= AGφ iff for all paths p with p1 = s,

we haveM, pi |= φ for all i ≥ 2
M, s |= EGφ iff there is a path p with p1 = s and

we haveM, pi |= φ for all i ≥ 2
M, s |= AFφ iff for all paths p with p1 = s

we haveM, pi |= φ for some i
M, s |= EFφ iff there is a path p with p1 = s and

we have;M, pi |= φ for some i
M, s |= A[φ U ψ] iff for all paths p with p1 = s, there is i

withM, pi |= ψ and for all j < i ,M, pj |= φ
M, s |= E[φ U ψ] iff there is a path p with p1 = s and there is i

withM, pi |= ψ and for all j < i ,M, pj |= φ
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Patterns of Specification

I Something bad (p) cannot happen: AG¬p

I p occurs infinitly often: AG(AF p)

I p occurs eventually: AF p

I In the future, p will hold eventually forever: AFAG p

I Whenever p will hold in the future, q will hold eventually:
AG(p −→ AF q)

I In all states, p is always possible: AG(EF p)
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LTL and CTL

I We have seen that CTL is more expressive than LTL, but (surprisingly),
there are properties which we can formalise in LTL but not in CTL!

I Example: all paths which have a p along them also have a q along
them.

I LTL: ♦p −→ ♦q

I CTL: Not AF p −→ AF q (would mean: if all paths have p, then all
paths have q), neither AG(p −→ AF q) (which means: if there is a p,
it will be followed by a q).

I The logic CTL∗ combines both LTL and CTL (but we will not consider
it further here).
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State Explosion and Complexity

I The basic problem of model checking is state explosion.
I Even our small railway crossing has
|Σ| = |ΣCar × ΣTrain × ΣGate| = |ΣCar| · |ΣTrain| · |ΣGate| = 4 · 4 · 2 = 32
states. Add one integer variable with 232 states, and this gets
intractable.

I Theoretically, there is not much hope. The basic problem of deciding
wether a particular formula holds is known as the satisfiability problem,
and for the temporal logics we have seen, its complexity is as follows:
I LTL without U is NP-complete.
I LTL is PSPACE -complete.
I CTL is EXPTIME -complete.

I The good news is that at least it is decidable. Practically, state
abstraction is the key technique. E.g. instead of considering all possible
integer values, consider only wether i is zero or larger than zero.
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Summary

I Model-checking allows us to show to show properties of systems by
enumerating the system’s states, by modelling systems as finite state
machines, and expressing properties in temporal logic.

I We considered Linear Temporal Logic (LTL) and Computational Tree
Logic (CTL). LTL allows us to express properties of single paths, CTL
allows quantifications over all possible paths of an FSM.

I The basic problem: the system state can quickly get huge, and the
basic complexity of the problem is horrendous. Use of abstraction and
state compression techniques make model-checking bearable.

I Tomorrow: practical experiments with model-checkers (NuSMV and/or
Spin)
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Where are we?
I 01: Concepts of Quality
I 02: Legal Requirements: Norms and Standards
I 03: The Software Development Process
I 04: Hazard Analysis
I 05: High-Level Design with SysML
I 06: Formal Modelling with SysML and OCL
I 07: Detailed Specification with SysML
I 08: Testing
I 09: Program Analysis
I 10: Foundations of Software Verification
I 11: Verification Condition Generation
I 12: Semantics of Programming Languages
I 13: Model-Checking
I 14: Conclusions and Outlook
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Introductive Summary

I This lecture series was about developing systems of high quality and
high safety.

I Quality is measured by quality criteria, which guide improvement of
the development process. It is basically an economic criterion.

I Safety is “freedom from unacceptable risks”. It is a technical criterion.

I Both high quality and safety can be achieved by the means described
in this lecture series.

I Moreover, there is the legal situation: the machinery directive and
other laws require (indirectly) you use these techniques where
appropriate. This is why these lectures are so important: disregarding
this state of the art may make you personally liable.
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Quality in the Software Development Process

I Hazard analysis

I High-level design
I SysML, structural diagrams

I Formal Modelling
I SysML and OCL

I Detailed Specification
I SysML, behavioural diagrams

I Testing
I Static Program Analysis
I Floyd-Hoare Logic
I Semantics of Programming

Languages
I Model-Checking
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Examples of Formal Methods in Practice

I Hardware verification:
I Intel: formal verification of microprocessors
I Infineon: equivalence checks

I Software verification (research projects):
I Verisoft — Microsoft Hyper-V (VCC)
I L4.verified — NICTA, Australia (Isabelle)

I Tools used in industry (excerpt):
I AbsInt tools: aiT, Astrée, CompCert (C)
I SPARK tools (Ada)
I SCADE (MatLab/Simulink)
I UPAALL, Spin, FDR2, other model checkers
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SSQ at University of Bremen

I AG BS (Prof. Jan Peleska): Testing, abstract interpretation.
I Strong industrial links to aerospace and railway industry, spin-off (Verified

Systems)

I DFKI CPS and AG RA (Profs. Rolf Drechsler, Dieter Hutter, Christoph
Lüth):
I Strong industrial links: Infineon, Intel, NXP
I Hardware and system verification
I Software verification
I Security
I Further application areas: robotics and AAL

I SyDe Graduate College (University of Bremen, DFKI, DLR)
I Includes more application areas: Space, robotics, real-time image processing
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Questions
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Lecture 01: Concepts of quality

I What is quality? What are quality criteria?

I What could be useful quality criteria?

I What is the conceptual difference between ISO 9001 and CMM?
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Lecture 02: Concepts of Safety and Security

I What is safety?

I Norms and Standards:

I Legal situation
I What is the machinery directive?
I Norm landscape: First, second, third-tier norms
I Important norms: IEC 61508, ISO 26262, DIN EN 50128, DO-178B, ISO

15408

I Risk analysis:

I What is a SIL? Target SIL?
I How do we obtain a SIL? What does it mean for the development?

SSQ, WS 15/16 9 [23]



Lecture 03: Quality of the Software Development
Process

I Which software development models did we encounter?

I Waterfall, spiral, agile, MDD, V-model:
I How does it work?
I What are the advantages and disadvantages?

I Which models are appropriate for safety-critical developments?
I What are the typical artefacts (and where do they occur)?
I Formal software development:

I What is it, and how does it work?
I How can we define properties, what kind of properties are there, how are

they defined?
I Development structure: horizontal vs. vertical, layers and views
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Lecture 04: Hazard Analysis

I What is hazard analysis?

I Where (in the development process) is it used?

I Basic approaches: bottom-up vs. top-down, and what do they mean?

I Which methods did we encounter?

I FMEA, FTA, Event traces — how do they work,
advantages/disadvantages?

I What are the prime verification techniques?
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Lecture 05: High-level Design

I High-level specification and modelling:

I What is it, where in the development process does it take place, what
formalisms are useful?

I What is SysML? How does it relate to UML?

I Basic elements of SysML used for high-level design:

I Structural diagrams:
I Package diagram
I Block definition diagram (describes classes, class diagram)
I Internal block diagrams (describes instances of blocks, flow specifications)
I Parametric diagram (equational modelling)
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Lecture 06: Formal Modelling with SysML and OCL

I What is OCL?
I A specification language for UML/SysML models
I Characteristics: pure and typed

I What can we use it for?
I Invariants on classes and types
I Pre- and postconditions on operations and methods

I OCL types:
I Basic types: Boolean, Integer, Real, String; OclAny, OclType, OclVoid
I Collection types: Sequence, Bag,OrderdedSet, Set
I Model types

I Logic: three-valued Kleene logic
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Lecture 07: Detailed Specification

I What is detailed specification?

I Specification of single modules — „last“ level before code

I What elements are used in specification?

I SysML behavioural diagrams:

I State diagrams (hierarchical finite state machines)

I Activity diagrams (flow charts)

I Sequence diagrams (message sequence charts)

I Use-case diagrams
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Lecture 08: Testing

I What is testing, and what are the aims? What can it achieve, what
not?

I What are test elevels?

I What is a black-box test? How are test cases chosen?

I What is a white-box test?

I What is the control-flow graph of a program?

I What kind of coverages are there, and how are they defined?
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Lecture 09: Static Program Analysis

I Is what? Where in the development process is it used? What is the
difference to testing?

I What is the basic problem, and how is circumvented?

I What does it mean when we say an analysis is sound, or safe?

I What are false positives?

I Did we consider inter- or intraprocedural analysis?

I What examples for forward/backward analysis did we encounter?
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Lecture 10: Verification with Floyd-Hoare Logic

I What is Floyd-Hoare logic, what does it do (and what not), and where
is used in the development process?

I How does it work?

I What is the difference between |= {P} p {q} and ` {P} p {q}?

I What do the notations {P} p {Q} and [P] p [Q] mean?

I What rules does the Floyd-Hoare logic have?

I How are they used?

I Which properties does it have?
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Lecture 11: Verification Condition Generation

I What does VCG do?

I How is it related to Floyd-Hoare logic?

I What is a weakest precondition, and how do we calculate it?

I What are program annotations? Why do we need them? How are they
used?

I What does vc(c,P) and pre(c,P) mean, and how do we calcuate
them?

I Which tools do VCG?
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Lecture 12: Semantics

I What is semantics? What do we need it for?
I What are the three kinds of semantics, and how to they work?

I Operational semantics specifies how the program is executed, often as a
relation 〈c, σ〉 → σ.

I Denotational semantics models the program as a mathematical entity, often
as a partial function Σ ⇀ Σ using complete partial orders (cpos). Cpos
provide mathematical means to handle partiality and fixpoints (iteration).

I Axiomatic semantics gives proof rules for programs, such as the
Floyd-Hoare rules.

I We can show equivalence of semantics (correctness).

I When do we use which?
I Operational semantics: implementing the language
I Denotational semantics: high-level reasoning
I Axiomatic semantics: reasoning about programs
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Lecture 13: Model-Checking with LTL and CTL

I What is model-checking, and how is it used? How does it compare
with Floyd-Hoare logic?

I What is the basic question?

M |= φ

I What do we use for M, φ, and do we prove it?

I What is a finite state machine, and what is temporal logic?
I LTL, CTL:

I What are the basic operators, when does a formula hold, and what kind of
properties can we formulate?

I Which one is more powerful?
I Which one is decidable, and with which complexity?

I What is the basic problem (and limitation) of model-checking?
I Which tools did we see to model-check LTL/CTL?
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Module Exams (Modulprüfungen)

I We have the following five areas:
I Lectures 1 – 4: Quality, Norms and Standards, Development Processes,

Requirements Analysis
I Lecture 5 – 7: SysML
I Lecture 8 – 9: Testing and Static Program Analysis
I Lecture 10 – 12: Semantics, Floyd-Hoare Logic and Verification Conditions
I Lecture 13: Model-Checking with LTL and CTL

I You may choose two areas (except for the first). You need to tell us
before the exam starts.

I Questions may come from all lectures, but we will concentrate on the
first and your chosen areas.
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Final Remark

I Please remember the evaluation (see stud.ip)!
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Thank you, and good bye.
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