
Systeme Hoher Sicherheit und Qualität
Universität Bremen WS 2015/2016

Lecture 14 (01.02.2016)

Concluding Remarks

Christoph Lüth Jan Peleska Dieter Hutter



Where are we?
I 01: Concepts of Quality
I 02: Legal Requirements: Norms and Standards
I 03: The Software Development Process
I 04: Hazard Analysis
I 05: High-Level Design with SysML
I 06: Formal Modelling with SysML and OCL
I 07: Detailed Specification with SysML
I 08: Testing
I 09: Program Analysis
I 10: Foundations of Software Verification
I 11: Verification Condition Generation
I 12: Semantics of Programming Languages
I 13: Model-Checking
I 14: Conclusions and Outlook

SSQ, WS 15/16 2 [23]



Introductive Summary

I This lecture series was about developing systems of high quality and
high safety.

I Quality is measured by quality criteria, which guide improvement of
the development process. It is basically an economic criterion.

I Safety is “freedom from unacceptable risks”. It is a technical criterion.

I Both high quality and safety can be achieved by the means described
in this lecture series.

I Moreover, there is the legal situation: the machinery directive and
other laws require (indirectly) you use these techniques where
appropriate. This is why these lectures are so important: disregarding
this state of the art may make you personally liable.

SSQ, WS 15/16 3 [23]



Quality in the Software Development Process

I Hazard analysis

I High-level design
I SysML, structural diagrams

I Formal Modelling
I SysML and OCL

I Detailed Specification
I SysML, behavioural diagrams

I Testing
I Static Program Analysis
I Floyd-Hoare Logic
I Semantics of Programming

Languages
I Model-Checking

SSQ, WS 15/16 4 [23]



Quality in the Software Development Process

I Hazard analysis
I High-level design

I SysML, structural diagrams

I Formal Modelling
I SysML and OCL

I Detailed Specification
I SysML, behavioural diagrams

I Testing
I Static Program Analysis
I Floyd-Hoare Logic
I Semantics of Programming

Languages
I Model-Checking

SSQ, WS 15/16 4 [23]



Quality in the Software Development Process

I Hazard analysis
I High-level design

I SysML, structural diagrams
I Formal Modelling

I SysML and OCL

I Detailed Specification
I SysML, behavioural diagrams

I Testing
I Static Program Analysis
I Floyd-Hoare Logic
I Semantics of Programming

Languages
I Model-Checking

SSQ, WS 15/16 4 [23]



Quality in the Software Development Process

I Hazard analysis
I High-level design

I SysML, structural diagrams
I Formal Modelling

I SysML and OCL
I Detailed Specification

I SysML, behavioural diagrams

I Testing
I Static Program Analysis
I Floyd-Hoare Logic
I Semantics of Programming

Languages
I Model-Checking

SSQ, WS 15/16 4 [23]



Quality in the Software Development Process

I Hazard analysis
I High-level design

I SysML, structural diagrams
I Formal Modelling

I SysML and OCL
I Detailed Specification

I SysML, behavioural diagrams

I Testing
I Static Program Analysis
I Floyd-Hoare Logic

I Semantics of Programming
Languages

I Model-Checking

SSQ, WS 15/16 4 [23]



Quality in the Software Development Process

I Hazard analysis
I High-level design

I SysML, structural diagrams
I Formal Modelling

I SysML and OCL
I Detailed Specification

I SysML, behavioural diagrams

I Testing

I Static Program Analysis
I Floyd-Hoare Logic

I Semantics of Programming
Languages

I Model-Checking

SSQ, WS 15/16 4 [23]



Quality in the Software Development Process

I Hazard analysis
I High-level design

I SysML, structural diagrams
I Formal Modelling

I SysML and OCL
I Detailed Specification

I SysML, behavioural diagrams

I Testing
I Static Program Analysis

I Floyd-Hoare Logic

I Semantics of Programming
Languages

I Model-Checking

SSQ, WS 15/16 4 [23]



Quality in the Software Development Process

I Hazard analysis
I High-level design

I SysML, structural diagrams
I Formal Modelling

I SysML and OCL
I Detailed Specification

I SysML, behavioural diagrams

I Testing
I Static Program Analysis
I Floyd-Hoare Logic
I Semantics of Programming

Languages

I Model-Checking

SSQ, WS 15/16 4 [23]



Quality in the Software Development Process

I Hazard analysis
I High-level design

I SysML, structural diagrams
I Formal Modelling

I SysML and OCL
I Detailed Specification

I SysML, behavioural diagrams

I Testing
I Static Program Analysis
I Floyd-Hoare Logic
I Semantics of Programming

Languages
I Model-Checking

SSQ, WS 15/16 4 [23]



Examples of Formal Methods in Practice

I Hardware verification:
I Intel: formal verification of microprocessors
I Infineon: equivalence checks

I Software verification (research projects):
I Verisoft — Microsoft Hyper-V (VCC)
I L4.verified — NICTA, Australia (Isabelle)

I Tools used in industry (excerpt):
I AbsInt tools: aiT, Astrée, CompCert (C)
I SPARK tools (Ada)
I SCADE (MatLab/Simulink)
I UPAALL, Spin, FDR2, other model checkers

SSQ, WS 15/16 5 [23]



SSQ at University of Bremen

I AG BS (Prof. Jan Peleska): Testing, abstract interpretation.
I Strong industrial links to aerospace and railway industry, spin-off (Verified

Systems)

I DFKI CPS and AG RA (Profs. Rolf Drechsler, Dieter Hutter, Christoph
Lüth):
I Strong industrial links: Infineon, Intel, NXP
I Hardware and system verification
I Software verification
I Security
I Further application areas: robotics and AAL

I SyDe Graduate College (University of Bremen, DFKI, DLR)
I Includes more application areas: Space, robotics, real-time image processing

SSQ, WS 15/16 6 [23]



Questions

SSQ, WS 15/16 7 [23]



Lecture 01: Concepts of quality

I What is quality? What are quality criteria?

I What could be useful quality criteria?

I What is the conceptual difference between ISO 9001 and CMM?

SSQ, WS 15/16 8 [23]



Lecture 02: Concepts of Safety and Security

I What is safety?

I Norms and Standards:

I Legal situation
I What is the machinery directive?
I Norm landscape: First, second, third-tier norms
I Important norms: IEC 61508, ISO 26262, DIN EN 50128, DO-178B, ISO

15408

I Risk analysis:

I What is a SIL? Target SIL?
I How do we obtain a SIL? What does it mean for the development?

SSQ, WS 15/16 9 [23]



Lecture 03: Quality of the Software Development
Process

I Which software development models did we encounter?

I Waterfall, spiral, agile, MDD, V-model:
I How does it work?
I What are the advantages and disadvantages?

I Which models are appropriate for safety-critical developments?
I What are the typical artefacts (and where do they occur)?
I Formal software development:

I What is it, and how does it work?
I How can we define properties, what kind of properties are there, how are

they defined?
I Development structure: horizontal vs. vertical, layers and views

SSQ, WS 15/16 10 [23]



Lecture 03: Quality of the Software Development
Process

I Which software development models did we encounter?
I Waterfall, spiral, agile, MDD, V-model:

I How does it work?
I What are the advantages and disadvantages?

I Which models are appropriate for safety-critical developments?
I What are the typical artefacts (and where do they occur)?
I Formal software development:

I What is it, and how does it work?
I How can we define properties, what kind of properties are there, how are

they defined?
I Development structure: horizontal vs. vertical, layers and views

SSQ, WS 15/16 10 [23]



Lecture 04: Hazard Analysis

I What is hazard analysis?

I Where (in the development process) is it used?

I Basic approaches: bottom-up vs. top-down, and what do they mean?

I Which methods did we encounter?

I FMEA, FTA, Event traces — how do they work,
advantages/disadvantages?

I What are the prime verification techniques?

SSQ, WS 15/16 11 [23]



Lecture 04: Hazard Analysis

I What is hazard analysis?

I Where (in the development process) is it used?

I Basic approaches: bottom-up vs. top-down, and what do they mean?

I Which methods did we encounter?

I FMEA, FTA, Event traces — how do they work,
advantages/disadvantages?

I What are the prime verification techniques?

SSQ, WS 15/16 11 [23]



Lecture 05: High-level Design

I High-level specification and modelling:

I What is it, where in the development process does it take place, what
formalisms are useful?

I What is SysML? How does it relate to UML?

I Basic elements of SysML used for high-level design:

I Structural diagrams:
I Package diagram
I Block definition diagram (describes classes, class diagram)
I Internal block diagrams (describes instances of blocks, flow specifications)
I Parametric diagram (equational modelling)

SSQ, WS 15/16 12 [23]



Lecture 05: High-level Design

I High-level specification and modelling:

I What is it, where in the development process does it take place, what
formalisms are useful?

I What is SysML? How does it relate to UML?

I Basic elements of SysML used for high-level design:

I Structural diagrams:
I Package diagram
I Block definition diagram (describes classes, class diagram)
I Internal block diagrams (describes instances of blocks, flow specifications)
I Parametric diagram (equational modelling)

SSQ, WS 15/16 12 [23]



Lecture 05: High-level Design

I High-level specification and modelling:

I What is it, where in the development process does it take place, what
formalisms are useful?

I What is SysML? How does it relate to UML?

I Basic elements of SysML used for high-level design:

I Structural diagrams:
I Package diagram
I Block definition diagram (describes classes, class diagram)
I Internal block diagrams (describes instances of blocks, flow specifications)
I Parametric diagram (equational modelling)

SSQ, WS 15/16 12 [23]



Lecture 06: Formal Modelling with SysML and OCL

I What is OCL?
I A specification language for UML/SysML models
I Characteristics: pure and typed

I What can we use it for?
I Invariants on classes and types
I Pre- and postconditions on operations and methods

I OCL types:
I Basic types: Boolean, Integer, Real, String; OclAny, OclType, OclVoid
I Collection types: Sequence, Bag,OrderdedSet, Set
I Model types

I Logic: three-valued Kleene logic

SSQ, WS 15/16 13 [23]



Lecture 07: Detailed Specification

I What is detailed specification?

I Specification of single modules — „last“ level before code

I What elements are used in specification?

I SysML behavioural diagrams:

I State diagrams (hierarchical finite state machines)

I Activity diagrams (flow charts)

I Sequence diagrams (message sequence charts)

I Use-case diagrams

SSQ, WS 15/16 14 [23]



Lecture 08: Testing

I What is testing, and what are the aims? What can it achieve, what
not?

I What are test elevels?

I What is a black-box test? How are test cases chosen?

I What is a white-box test?

I What is the control-flow graph of a program?

I What kind of coverages are there, and how are they defined?

SSQ, WS 15/16 15 [23]



Lecture 09: Static Program Analysis

I Is what? Where in the development process is it used? What is the
difference to testing?

I What is the basic problem, and how is circumvented?

I What does it mean when we say an analysis is sound, or safe?

I What are false positives?

I Did we consider inter- or intraprocedural analysis?

I What examples for forward/backward analysis did we encounter?

SSQ, WS 15/16 16 [23]



Lecture 10: Verification with Floyd-Hoare Logic

I What is Floyd-Hoare logic, what does it do (and what not), and where
is used in the development process?

I How does it work?

I What is the difference between |= {P} p {q} and ` {P} p {q}?

I What do the notations {P} p {Q} and [P] p [Q] mean?

I What rules does the Floyd-Hoare logic have?

I How are they used?

I Which properties does it have?

SSQ, WS 15/16 17 [23]



Lecture 11: Verification Condition Generation

I What does VCG do?

I How is it related to Floyd-Hoare logic?

I What is a weakest precondition, and how do we calculate it?

I What are program annotations? Why do we need them? How are they
used?

I What does vc(c,P) and pre(c,P) mean, and how do we calcuate
them?

I Which tools do VCG?

SSQ, WS 15/16 18 [23]



Lecture 12: Semantics

I What is semantics? What do we need it for?
I What are the three kinds of semantics, and how to they work?

I Operational semantics specifies how the program is executed, often as a
relation 〈c, σ〉 → σ.

I Denotational semantics models the program as a mathematical entity, often
as a partial function Σ ⇀ Σ using complete partial orders (cpos). Cpos
provide mathematical means to handle partiality and fixpoints (iteration).

I Axiomatic semantics gives proof rules for programs, such as the
Floyd-Hoare rules.

I We can show equivalence of semantics (correctness).

I When do we use which?
I Operational semantics: implementing the language
I Denotational semantics: high-level reasoning
I Axiomatic semantics: reasoning about programs

SSQ, WS 15/16 19 [23]



Lecture 12: Semantics

I What is semantics? What do we need it for?
I What are the three kinds of semantics, and how to they work?

I Operational semantics specifies how the program is executed, often as a
relation 〈c, σ〉 → σ.

I Denotational semantics models the program as a mathematical entity, often
as a partial function Σ ⇀ Σ using complete partial orders (cpos). Cpos
provide mathematical means to handle partiality and fixpoints (iteration).

I Axiomatic semantics gives proof rules for programs, such as the
Floyd-Hoare rules.

I We can show equivalence of semantics (correctness).

I When do we use which?

I Operational semantics: implementing the language
I Denotational semantics: high-level reasoning
I Axiomatic semantics: reasoning about programs

SSQ, WS 15/16 19 [23]



Lecture 12: Semantics

I What is semantics? What do we need it for?
I What are the three kinds of semantics, and how to they work?

I Operational semantics specifies how the program is executed, often as a
relation 〈c, σ〉 → σ.

I Denotational semantics models the program as a mathematical entity, often
as a partial function Σ ⇀ Σ using complete partial orders (cpos). Cpos
provide mathematical means to handle partiality and fixpoints (iteration).

I Axiomatic semantics gives proof rules for programs, such as the
Floyd-Hoare rules.

I We can show equivalence of semantics (correctness).

I When do we use which?
I Operational semantics: implementing the language
I Denotational semantics: high-level reasoning
I Axiomatic semantics: reasoning about programs

SSQ, WS 15/16 19 [23]



Lecture 13: Model-Checking with LTL and CTL

I What is model-checking, and how is it used? How does it compare
with Floyd-Hoare logic?

I What is the basic question?

M |= φ

I What do we use for M, φ, and do we prove it?

I What is a finite state machine, and what is temporal logic?
I LTL, CTL:

I What are the basic operators, when does a formula hold, and what kind of
properties can we formulate?

I Which one is more powerful?
I Which one is decidable, and with which complexity?

I What is the basic problem (and limitation) of model-checking?
I Which tools did we see to model-check LTL/CTL?

SSQ, WS 15/16 20 [23]



Lecture 13: Model-Checking with LTL and CTL

I What is model-checking, and how is it used? How does it compare
with Floyd-Hoare logic?

I What is the basic question? M |= φ

I What do we use for M, φ, and do we prove it?

I What is a finite state machine, and what is temporal logic?
I LTL, CTL:

I What are the basic operators, when does a formula hold, and what kind of
properties can we formulate?

I Which one is more powerful?
I Which one is decidable, and with which complexity?

I What is the basic problem (and limitation) of model-checking?
I Which tools did we see to model-check LTL/CTL?

SSQ, WS 15/16 20 [23]



Module Exams (Modulprüfungen)

I We have the following five areas:
I Lectures 1 – 4: Quality, Norms and Standards, Development Processes,

Requirements Analysis
I Lecture 5 – 7: SysML
I Lecture 8 – 9: Testing and Static Program Analysis
I Lecture 10 – 12: Semantics, Floyd-Hoare Logic and Verification Conditions
I Lecture 13: Model-Checking with LTL and CTL

I You may choose two areas (except for the first). You need to tell us
before the exam starts.

I Questions may come from all lectures, but we will concentrate on the
first and your chosen areas.

SSQ, WS 15/16 21 [23]



Final Remark

I Please remember the evaluation (see stud.ip)!

SSQ, WS 15/16 22 [23]



Thank you, and good bye.

SSQ, WS 15/16 23 [23]


	Questions

