
 SSQ, WS 15/16

Systeme hoher Qualität und Sicherheit
Universität Bremen WS 2015/2016

Christoph Lüth Jan Peleska Dieter Hutter

Lecture 07 (23-11-2015)

Detailed Specification with SysML

 SSQ, WS 15/16

Where are we?

01: Concepts of Quality

02: Legal Requirements: Norms and Standards

03: The Software Development Process

04: Hazard Analysis

05: High-Level Design with SysML

06: Formal Modelling with SysML and OCL

07: Detailed Specification with SysML

08: Testing

09 and 10: Program Analysis

11: Model-Checking

12: Software Verification (Hoare-Calculus)

13: Software Verification (VCG)

14: Conclusions

 SSQ, WS 15/16

Detailed Specification in the Development Cycle

 SSQ, WS 15/16

Why detailed Specification?

Detailed specification is the specification of single
modules making up our system.

This is the „last“ level both in abstraction and detail
before we get down to the code – in fact, some
specifications at this level can be automatically
translated into code.

Why not write code straight away?

 We want to stay platform-independent.

 We may not want to get distracted by details of our target
platform.

 At this level, we have a better chance of finding errors or
proving safety properties.

4

 SSQ, WS 15/16

Levels of Detailed Specification

We can specify the basic modules

By their (external) behaviour:

 Which operations can be called, what are their
pre/post-conditions and effects.

 This can be modelled using OCL.

 Alternatively, we can model the system‘s internal
states by a state machine, which has states and
guarded transitions between them.

By their (internal) structure:

 Modelling the control flow by flow charts aka.
activity charts.

 There are also a variety of action languages
(platform-independent programming languages) for
UML, but these are not standard for SysML.

5

 SSQ, WS 15/16

State Diagrams: Basics

State diagrams are a particular form of (hierarchical)
finite state machines.

 A finite state machine is given by 𝑀 = Σ, → where

 Σ is a finite set of states, and

 → ⊆ Σ × Σ is a transition relation which is left-total.

Example: a simple coffee machine.

We will explore FSMs in detail later.

In hierarchical state machines, a state may contain
another FSM (with initial/final states).

State Diagrams in SysML are taken unchanged from
UML.

6

 SSQ, WS 15/16

Basic Elements of State Diagrams

States

 Initial/Final

Transitions

Events (Triggers)

Guards

Actions (Effects)

7

 SSQ, WS 15/16

What is an Event?

„The specification of a noteworthy occurence which has a
location in time and space.“ (UML Reference Manual)

SysML knows:

 Signal events event name/

 Call events operation name/

 Time events after(t)/

 Change event when(e)/

 Entry events Entry/

 Exit events Exit/

8

 SSQ, WS 15/16

State Diagram Elements (SysML Ref. §13.2)

Choice pseudo state

Composite state

Entry point

Exit point

Final state

History pseudo states

Initial pseudo state

Junction pseudo state

Receive signal action

Send signal action

Action

9

Region

Simple state

State list

State machine

Terminate node

Submachine state

 SSQ, WS 15/16

Activity Charts: Foundations

The activity charts of SysML (UML) are a variation of old-
fashioned flow charts.

 Standardised as DIN 66001 (ISO 5807)

Flow charts can
describe programs
(right example) or
non-computational
activities (left exam-
ple)

SysML activity charts
are extensions of
UML activity charts.

11

Quelle: Erik Streb, via Wikipedia

Quelle: Wikipedia

 SSQ, WS 15/16

Basics of Activity Diagrams

Activities model the sequence and conditions for low-
level behaviours:
“An activity is the specification of parameterized behaviour
as the coordinated sequencing of subordinate unites whose
individual elements are actions.” (UML Ref. §12.3.4)

This is performed by means of control flow and object
flow models

Control flow allows to disable and enable (sub-)
activities using these two enumeration values.

An activity execution results in the execution of a set of
actions in some specific order.

Activity executions may comprise several logical
execution threads.

12

 SSQ, WS 15/16

What is an Action?

A terminating basic behaviour, such as

 Changing variable values [UML Ref. §11.3.6]

 Calling operations [UML Ref. §11.3.10]

 Calling activities [UML Ref. §12.3.4]

 Creating and destroying objects, links, associations

 Sending or receiving signals

 Raising exceptions .

Actions are part of a (potentially larger, more complex)
behaviour

Inputs to actions are provided by ordered sets of pins

 A pin is a typed element, associated with a multiplicity

 Input pins transport typed elements to an action

 Actions deliver outputs consisting of typed elements on
output pins

13

 SSQ, WS 15/16

Elements of Activity Diagrams (SysML Ref. §11.2.1)

Paths (arrows):

 Control flow

 Object flow

 Probability and rates

Activities in BDDs

Partitions

Interruptible Regions

Structured activities

14

Nodes:

 Action nodes

 Activities

 Decision nodes

 Final nodes

 Fork nodes

 Initial nodes

 Local pre/post-conditions

 Merge nodes

 Object nodes

 Probabilities and rates

 SSQ, WS 15/16

Behavioural Semantics

Semantics is based on token flow – similar to Petri Nets,
see [UML Ref. pp. 326]

 A token can be an input signal, timing condition,
interrupt, object node (representing data), control
command (call, enable) communicated via input pin,
…

 An executable node (action or sub-activity) in the
activity diagram begins its execution, when the
required tokens are available on their input edges.

 On termination, each executable node places tokens
on certain output edges, and this may activate the
next executable nodes linked to these edges.

16

 SSQ, WS 15/16

Activity Diagrams – Links With BDDs

Block definition diagrams may show

 Blocks representing activities

 One activity may be composed of other activities –
composition indicates parallel execution threads of the
activities at the “part end”

 One activity may contain several blocks representing
object nodes (which represent data flowing through the
activity diagram).

17

 SSQ, WS 15/16

SysML Diagrams Overview

19

Structural Diagrams

Package Diagram

Internal Block Diagram Parametric Diagram

Block Definition Diagram

Behavioural Diagrams

Use Case Diagram *

State Machine Diagram Sequence Diagram

Activity Diagram

Requirement Diagram *

* Not considered further.

 SSQ, WS 15/16

Sequence Diagrams

Sequence Diagrams describe the flow of messages
between actors.

Extremely useful, but also extremely limited.

We may consider concurrency further later on.

20

Quelle:
IBM developerWorks

 SSQ, WS 15/16

Summary

Detailed specification means we specify the internal
structure of the modules in our systems.

Detailed specification in SysML:

 State diagrams are hierarchical finite state machines
which specify states and transitions.

 Activity charts model the control flow of the program.

More behavioural diagrams in SysML:

 Sequence charts model the exchange of messages
between actors.

 Use case diagrams describe particular uses of the system.

21

