=

Systeme hoher Qualitat und Sicherheit
Universitat Bremen WS 2015/2016

Lecture 09 (07-12-2015)

Static Program Analysis

Christoph LUth)Jan Peleska Dieter Hutter

@ Universitat Bremen

Where are we?

01: Concepts of Quality

02: Legal Requirements: Norms and Standards
03: The Software Development Process

04: Hazard Analysis

05: High-Level Design with SysML

06: Formal Modelling with SysML and OCL

07: Detailed Specification with SysML

08: Testing

09: Static Program Analysis

10 and 11: Software Verification (Hoare-Calculus)
12: Model-Checking

13: Concurrency

14: Conclusions

¥ ¥ Y ¥ ¥ Y ¥YVYY¥YVvVVYYY

SSQ, WS 15/16 < 1Y

Today: Static Program Analysis

» Analysis of run-time behavior of programs without
executing them (sometimes called static testing)
» Analysis is done for all possible runs of a program
(i.e. considering all possible inputs)
» Typical tasks
= Does the variable x have a constant value ?
= Is the value of the variable x always positive ?
= Can the pointer p be null at a given program point ?
= What are the possible values of the variable y ?
» These tasks can be used for verification (e.g. is there any
possible dereferencing of the null pointer), or for
optimisation when compiling.

SSQ, WS 15/16 = Y

Program Analysis in the Development Cycle

E/E/PES safety
roquirements Il
specification

Software safety
requirements
specification

" software

Integration testing
(components, subsystems
and programmable
electronics)

Module

Module
design ~- 1 testing

SSQ, WS 15/16 =i Y

Usage of Program Analysis

Optimising compilers

» Detection of sub-expressions that are evaluated multiple times
» Detection of unused local variables

» Pipeline optimisations

Program verification

» Search for runtime errors in programs

» Null pointer dereference

» Exceptions which are thrown and not caught

» Over/underflow of integers, rounding errors with floating point
numbers

» Runtime estimation (worst-caste executing time, wcet)
» In other words, specific verification aspects.

SSQ, WS 15/16 = Y

Program Analysis: The Basic Problem

» Basic Problem:
All interesting program properties are undecidable.

» Given a property P and a program p, wesayp E PifaP
holds for p. An algorithm (tool) ¢ which decides P is a
computable predicate ¢:p - Bool. We say:

= ¢ issoundif whenever ¢(p) thenp E P.
= ¢ is safe (or complete) if whenever p = P then ¢(p).

» From the basic problem it follows that there are no

sound and safe tools for interesting properties.

= In other words, all interesting tools must either under- or
overapproximate.

SSQ, WS 15/16 =il Y

Program Analysis: Approximation

Computable
» Underapproximation only finds correct Not
programs but may miss out some computable
= Useful in optimising compilers \ .
= Optimisation must respect semantics [/~ ™\)\

of program, but may optimise.

<>
. .) Correct Errors
» Overapproximation finds all errors but

may find non-errors (false positives)
= Useful in verification. - J)

= Safety analysis must find all errors, All progf&ms
but may report some more. 3
= Too high rate of false positives may Underapproximation
hinder acceptance of tool.
«—

Overapproximation

SSQ, WS 15/16 2 1Y

Program Analysis Approach

» Provides approximate answers
= yes/no/don’t know or
= superset or subset of values

» Uses an abstraction of program’s behavior
= Abstract data values (e.g. sign abstraction)

= Summarization of information from
execution paths e.g. branches of the if-else statement

» Worst-case assumptions about environment's behavior
= e.g. any value of a method parameter is possible
» Sufficient precision with good performance

SSQ, WS 15/16 <19

Flow Sensitivity

Flow-sensitive analysis
» Considers program's flow of control

» Uses control-flow graph as a representation of the
source

» Example: available expressions analysis

Flow-insensitive analysis

» Program is seen as an unordered collection of
statements

» Results are valid for any order of statements
e.g. S1,52vs. 52,51

» Example: type analysis (inference)

SSQ, WS 15/16 < 1Y

Context Sensitivity

Context-sensitive analysis

» Stack of procedure invocations and return values of
method parameters

» Results of analysis of the method M depend on the caller
of M

Context-insensitive analysis

» Produces the same results for all possible invocations of
M independent of possible callers and parameter values.

SSQ, WS 15/16 < 1Y

Intra- vs. Inter-procedural Analysis

Intra-procedural analysis
» Single function is analyzed in isolation

» Maximally pessimistic assumptions about parameter
values and results of procedure calls

Inter-procedural analysis

» Whole program is analyzed at once
» Procedure calls are considered

SSQ, WS 15/16 = Y

Data-Flow Analysis

Focus on questions related to values of variables and their lifetime

Selected analyses:
» Available expressions (forward analysis)
= Which expressions have been computed already without
change of the occurring variables (optimization) ?
» Reaching definitions (forward analysis)
= Which assignments contribute to a state in a program point?
(verification)
» Very busy expressions (backward analysis)

= Which expressions are executed in a block regardless which
path the program takes (verification) ?

» Live variables (backward analysis)

= Is the value of a variable in a program point used in a later part
of the program (optimization) ?

SSQ, WS 15/16 2<1Y

Our Simple Programming Language

» In the last lecture, we introduced a very simple language
with a C-like syntax.

» Synposis:

Arithmetic operators given by
a s=x|n|a op,a,
Boolean operators given by
b := true | false |[not b | byop, b,| a,0p, a,
opy € {and, or}, 0p, € {=,<,<,>, >, #}

Statements given by

S =

[x = a]* | [skip]* | S1; S, | if [b]' {S;} else {Sz}| while [b]* {S}

SSQ, WS 15/16 = Y

Computing the Control Flow Graph

» To calculate the cfg, we define some functions on the
abstract syntax:
= The initial label (entry point) init: S — Lab
= The final labels (exit points) final: S - P(Lab)
= The elementary blocks block: S —» P(Blocks)
where an elementary block is
» an assignment [x:= al,
» or [skip],
» oratest[b]
= The control flow flow: S - P(Lab X Lab) and reverse
control flowR: S —» P(Lab x Lab).
» The control flow graph of a program S is given by
= elementary blocks block(S) as nodes, and
= flow(S) as vertices.

SSQ, WS 15/16 <Y

Labels, Blocks, Flows: Definitions

finul([x = a]l) ={l}

final ([skip]l) ={}

final (Sy; S,) = final (S;)

final(if [b]*{ Si}else {S,}) = final (Sy) U final (S;)
finul(while [b] {S}) ={l}

init([x = a]') =1
init([skip]') =1

init (8y;5,) = init (S;)

init (if [b]' { S1} else {S,} =1
init (while [b]' {S} =1

o N —
ik o Ll Flowk(5) = (1, DI (.1 € flow(s))
flow (815 S,) = flow (S1) U flow (S,) U {(l, init(S,)) | | € final(S;)}
flow (if [b]* {S}else (S, }) = flow (S1) U flow(S,) U {(L, init(Sy)), (, init(S,))}
flow (while ([b]* {8}) = flow(S) U {(L, init ($))} U (', D|U' € final(S)}

labels(S) = {l| [B]" € blocks(S)}

FV(a) = free variables in a

Aexp(S) = non-trival subexpressions
in S (variables and
constants are trivial)

blocks([x = a]') = {[x = a]"}
blocks([skip]") = { [skip]'}
blocks(Sy; S;) = blocks(S,) U blocks(S,)
blocks(if [b]" {S;} else {Sz])

= {[b]' } U blocks(S;) U blocks(S,)
blocks(while [b] {S}) = {[b]'} U blocks(S)

SSQ, WS 15/16 2 1Y

An Example Program
P = [x := a+b]}; [y := a*b]% while [y > a+b]? { [a:=a+1]%; [x:= a+b]® }

init(P) =1
final(P) = {3}
blocks(P) =
{[x:=a+b]', [y := a*bl? [y > a+b]3, [a:=a+1]4, [x:= a+b]5}
flow(P) = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 3)}
flowR(P) = {(2, 1), (3, 2), (4, 3), (5, 4), (3, 5)}
labels(P)={1, 2, 3,4, 5)

FV(a + b)={a, b}
FV(P) ={a, b, x, y}
Aexp(P) = {a+b, a*b, a+1}

SSQ, WS 15/16 <Y

Available Expression Analysis

» The available expression analysis will
determine:

For each program point, which
expressions must have already been
computed, and not modified, on all
paths to this program point.

SSQ, WS 15/16

Available Expression Analysis

gen([x:=a]') = {a’ € Aexp(a)| x & FV('a)}
gen([skip]') =@
gen([b]') = Aexp(b)
kill([x :=a]') = {a’ € Aexp(S)| x € FV('a)}
Kill([skip]') = @
Kill([o]') = @
(0 it/ € init(S)
AB(1) = { N{AEye () |1, 1) € Flow(S)}, otherwise
AEqy (1) = (AEw() \ kill(B')) U gen(BY), where B! € blocks(S)

| kill(l) gen() | AE;, AE,,

1 ? {a+b} 1 (4] {a+b}

2 ? {a*b} 2 {a+h} {a+b, a*b}
3] {a+h} 3 {at+b} {a+b}

4 {atb, a*b, a+1} 1] 4 {a+b} 1]

5 [0] {ath} 5 0] {at+b}

SSQ, WS 15/16

Reaching Definitions Analysis

» Reaching definitions (assignment)
analysis determines if:

An assignment of the form [x := a]'
may reach a certain program point k
if there is an execution of the
program where x was last assigned a
value at | when the program point k
is reached

SSQ, WS 15/16

Reaching Definitions Analysis

gen([x:=a]') = { (x,)} Kill(8') gen(B)

I
gen([skip]') = @ 1 {(x?2), 1,065} {(x D}
gen([b]') =9 g {02, ()82),(%4)) ((be))
L 4 {2), 3204 4
s =0 : pnagee g
kill([b]') = @
kill([x :=a]') = {(x,?)} U { (x, k)| B¥ is an assigment in S}
RD.(1) = {((x,?)|x € FV(s) if | € init(S)
n(1)= U{ RDoe (NI, 1) € flow(S) otherwise
RDqy (1) = (RDin () \ kill(BY)) U gen(B') where B! € blocks(S)
RDin RDau(
{x?), 2} {x.1), (v.2)}
{x1), 2} {(x.1), (v.2)}

1), (x5), (%.2), (4}
{0 1), (x5).(v:4)}
{(x5).(.4)}

{x1), (x5), (%2), (¥4}

|
1
2
i {062), (%5), (%.2), (4}
5 {061), (65).(v:4)}

SSQ, WS 15/16

Live Variables Analysis

» A variable x is live at some program
point (label I) if there exists if there
exists a path from | to an exit point that
does not change the variable.

» Live Variables Analysis determines:
For each program point, which

variables may be live at the exit
from that point.

» Application: dead code elemination.

Live Variables Analysis

gen([x:=a]') = FV(a)
gen([skip]') = @
gen([b]') = FV(b)

Kill([x :=a]') = {x} S:
Kill([skip]') = @
Kkill([o]') = @
(@ if / € final(S)
Wou(1) = {U{LVm(l')I(l', 1) € flowR(S)} otherwise
Vi (1) = (LVoue@) \ kill(B')) U gen(B') where B' € blocks(S)

| Kill(l) gen(l) I LV, Wy
1 o [1 [[

2 {v} [} 2 [{}
3 x} (] 3 {v} x, v}
4 [x v} 4 x v} {}
5 {z} {v} 5 v} {z}
6 {z} v} 6 {} {z}
7 {xt {z} 7 {z} [0}

SSQ, WS 15/16 = Y SSQ, WS 15/16 =l v
First Generalized Schema Partial Order
) _(EV iflLEE » L = (M,E) is a partial order iff o
» Analysis. (/)= . N R = p
{ ofAnalysis, (I') |(I,1) € Flow(S)} otherwise - Reflexivity: Vx € M.x € x
» Analysis, (1) = fi (Analysis.(/)) = Transitivity: Vx,y,ZzE .XEyAyEz=>xEz
= Anti-symmetry: Vx,y EM.xEyAyCx=>x=y
With:
» O is either Uor N .
= C c
» EV is the initial / final analysis information »letl (M’ ©) be a partial order, § . M
» Flow is either flow or flowR = yEM fs upper bound for S (S £ y). iffvxeSxcy
» Eis either {init(S)} or final(S) = yeMislowerboundforS(ycS)iffvxeS.ycx
» f,is the transfer function associated with B! € blocks(S) * Least upper bound LIX € M of X < M:
XCEUXAVyeEM.XCE X C
Backward analysis: Flow = flowR, e = IN, . = OUT " u Y y=U Y
- _ ~ _ = Greatest lower bound n X of X € M:
Forward analysis: Flow = flow, e = OUT, . = IN
» NXEXAVYyEM.yEX=>yE NX
SSQ, WS 15/16 = Y SSQ, WS 15/16 =l v

Lattice
A lattice (“Verbund") is a partial order L = (M, E) such that
» LUX and nX exist forall X M

» Unique greatest element T = UM = Ng@
» Unique least element L =M = U@

SSQ, WS 15/16 < 1Y

Transfer Functions

» Transfer functions to propagate information along the execution
path (i.e. from input to output, or vice versa)

» Let L = (M,C) be a lattice. Let F be the set of transfer functions of
the form
f;: L > L with / being a label

» Knowledge transfer is monotone
" VxyxBy=fi)EAG)

» Space F of transfer functions
= F contains all transfer functions f,
= F contains the identity function id: vx € M.id(x) = x
= F isclosed under composition:V f,g € F.(geo f) € F

SSQ, WS 15/16 2 LY

The Generalized Analysis

» Analysis.(/) = u {Analysis, (/) | (I'l) € Flow()} U {5}
E

: , _ (EV ifl e
with ¢ = {J_ otherwise

» Analysis, (/)= fi(Analysis.(/))

With:

» L property space representing data flow information with
(L,E) alattice

» Flow is a finite flow (i.e. flow or flowR)

» EV is an extremal value for the extremal labels E (i.e. {init(S)} or
final(S)

» transfer functions f; of a space of transfer functions F

SSQ, WS 15/16 = Y

Summary

» Static Program Analysis is the analysis of run-time
behavior of programs without executing them
(sometimes called static testing).

» Approximations of program behaviours by analyzing the
program'’s cfg.

» Analysis include

= available expressions analysis,

= reaching definitions,

= live variables analysis.
» These are instances of a more general framework.
» These techniques are used commercially, e.g.

= AbsInt aiT (WCET)

= Astrée Static Analyzer (C program safety)

SSQ, WS 15/16 =i Y

