)=

Systeme hoher Qualitat und Sicherheit
Universitat Bremen WS 2015/2016

Lecture 08 (30-11-2015)

Testing

Christoph LUth)Jan Peleska Dieter Hutter

@ Universitat Bremen

Where are we?

01: Concepts of Quality

02: Legal Requirements: Norms and Standards
03: The Software Development Process

04: Hazard Analysis

05: High-Level Design with SysML

06: Formal Modelling with SysML and OCL

07: Detailed Specification with SysML

08: Testing

09: Program Analysis

10 and 11: Software Verification (Hoare-Calculus)
12: Model-Checking

13: Concurrency

14: Conclusions

¥ ¥ Y ¥ ¥Y ¥ ¥Y VY Y¥YVvVVv¥YYY

SSQ, WS 15/16 2 LY

Your Daily Menu

What is testing?

» Different kinds of tests.

» Different test methods: black-box vs. white-box.
» The basic problem: cannot test all possible inputs.

» Hence, coverage criteria: how to test enough.

SSQ, WS 15/16 3 = Y

Testing in the Development Cycle

Software safety
requirements
specification

E/EIPES safety
roquirements. I
specification

" software

Integration testing
(components, subsystems
and programmable
electronics)

Integration
testing
(module)

design

Module

Module
design - testing

SSQ, WS 15/16 =i Y

What is Testing?

Testing is the process of executing a program or
system with the intent of finding errors.

Myers, 1979

» In our sense, testing is selected, controlled program
execution.
» The aim of testing is to detect bugs, such as

= derivation of occurring characteristics of quality
properties compared to the specified ones;

= inconsistency between specification and implementation;

= or structural features of a program that cause a faulty
behavior of a program.

Program testing can be used to show the presence of
bugs, but never to show their absence.
E.W. Dijkstra, 1972

SSQ, WS 15/16 5 = Y

The Testing Process

» Test cases, test plan, etc.
» System-under-test (s.u.t.)

» Warning -- test literature is quite expansive:

Testing is any activity aimed at evaluating an attribute
or capability of a program or system and determining
that it meets its required results.

Hetzel, 1983

SSQ, WS 15/16 6 =il Y

Test Levels

» Component tests and unit tests: test at the interface
level of single components (modules, classes)

» Integration test: testing interfaces of components fit
together

» System test: functional and non-functional test of the
complete system from the user’s perspective

» Acceptance test: testing if system implements contract
details

SSQ, WS 15/16 2 1Y

Test Methods

» Static vs. dynamic:
= With static tests, the code is analyzed without being run.
We cover these methods as static program analysis later.
= With dynamic tests, we run the code under controlled
conditions, and check the results against a given
specification.
» The central question: where do the test cases come
from?
= Black-box: the inner structure of the s.u.t. is opaque, test
cases are derived from specification only;
= Grey-box: some inner structure of the s.u.t. is known, eg.
Module architecture;

= White-box: the inner structure of the s.u.t. is known, and
tests cases are derived from the source code;

SSQ, WS 15/16 8 2 1Y

Black-Box Tests

» Limit analysis:
= If the specification limits input parameters, then values
close to these limits should be chosen.

= ldea is that programs behave continuously, and errors
occur at these limits.

» Equivalence classes:

= If the input parameter values can be decomposed into
classes which are treated equivalently, test cases have to
cover all classes.

» Smoke test:
= “Run it, and check it does not go up in smoke.”

SSQ, WS 15/16 9 < 1Y

Example: Black-Box Testing

Example: A Company Bonus System

The loyalty bonus shall be computed depending on the
time of employment. For employes of more than three
years, it shall be 50% of the monthly salary, for
employees of more than five years, 75%, and for
employees of more than eight years, it shall be 100%.

» Equivalence classes or limits?

Example: Air Bag

The air bag shall be released if the vertical acceleration
a, equals or exceeds 15 ™/,. The vertical acceleration
will never be less than zero, or more than 40 ™/, .

» Equivalence classes or limits?

SSQ, WS 15/16 2 LY

Black-Box Tests

» Quite typical for GUI tests, or functional testing.

» Testing invalid input: depends on programming
language — the stronger the typing, the less testing for
invalid input is required.

= Example: consider lists in C, Java, Haskell.

= Example: consider ORM in Python, Java.

SSQ, WS 15/16 1 = Y

Other approaches: Monte-Carlo Testing

» In Monte-Carlo testing (or random testing), we generate
random input values, and check the results against a
given spec.

» This requires executable specifications.

» Attention needs to be paid to the distribution values.

» Works better with high-level languages (Java, Scala,
Haskell) where the datatypes represent more
information on an abstract level.

= ScalaCheck, QuickCheck for Haskell

» Example: consider list reversal in C, Java, Haskell

= Executable spec:

» Reversal is idempotent.

» Reversal distributes over concatenation.
= Question: how to generate random lists?

SSQ, WS 15/16 12 =i Y

White-Box Tests

» In white-box tests, we derive test cases based on the
structure of the program (structural testing)
= To abstract from the source code (which is a purely
syntactic artefact), we consider the control flow graph
of the program.

Def: Control Flow Graph (cfg)

* Nodes are elementary statements (e.g. assignments,
return, break, . . .), and control expressions (eg. in
conditionals and loops), and

« there is a vertex from n to m if the control flow can reach
node m coming from n.

» Hence, paths in the cfg correspond to runs of the

A Very Simple Programming Language

» In the following, we use a very simple language with a C-

like syntax.
» Arithmetic operators given by

a 2=x|n|a; op, a,

with x a variable, n a numeral, op,arith. op. (e.g. +, -, *)

» Boolean operators given by
b := true | false [not b | byopy, b,| a;0p, a,

with op;, boolean operator (e.g. and, or) and op, a

relational operator (e.g. =, <)
» Statements given by

S =

[x = a]* | [skip]* |51;Sz | if [b] {S;} else {Sz}| while [b]* {S}
We may write the labels als comments

rogram. .
prog x:=a+ 10; /* 14 if (y < 3) F 2 ¥ {x:=x+1; [*3*/ }else {y:=y+1; [* 4%}
SSQ, WS 15/16 2<1Y SSQ. WS 15/16 =y
Example: Control-Flow Graph Coverage
if (x<0)/*1%{ (l‘ » Statement coverage: Each node in the cfg is visited at
X=X 2% A least once.
} : i / An execution path is » Branch coverage: Each vertex in the cfg is traversed at
21 3% D a path though the least once.
while’(x >0) 44 {) cfg. » Decision coverage: Like branch coverage, but specifies
ek how often conditions (branching points) must be
z=zry 5 Ex?r;ﬂ4p7le§: evaluated.
- A . 1347,) .
X=x-1,167 . {1,2,3,417,151 » Path coverage: Each path in the cfg is executed at least
} - [1234,564,7,E] once.
return z /¢ 74 + [1,3,4,564,56,4,7,E]
2
\ l J
(=)
\ =/
SSQ, WS 15/16 = v SSQ, WS 15/16 16 =l Y

Example: Statement Coverage

. - ° » Which (minimal) path
if(x<0) 17/ covers all statements?
Xi==X/[*2% Q
2 p=1[1.2345,6,47,E]
z:=1;*3% ’
while (x > 0) /*4*/ { ‘ » Which state generates p?
z:=z2*y; [*5%
Xi=x-1/6%) X;n-1
. y any
3
zan
returnz /* 7% ’ y

SSQ, WS 15/16 < 1Y

Example: Branch Coverage

» Which (minimal) path

if (x<0)/*1/{ covers all vertices?
Xi==x/*2% = [1,2,3,4,5,6,4,7,E]
2 pz =[13,4,7,E]
z:=1,/*3%
while (x > 0) /*4*/ { » Which states generate
z:=2%y; 5% p1,P2?
X:=x=1/%6% P1 P2
} X -1 0
y any any

% *
returnz /* 7%/ z any any

» Note p; (x= 1) does not
add coverage.

SSQ, WS 15/16 2 LY

Example: Path Coverage

» How many paths are

if (x<0) /1% there?

X.I:—X/*Z*/ blet ¢ =[1,2,3]

}' qz2 = [113]
z:=1; 3% p = [45,6]
while (x > 0) /*4* { r =[4,7,E]

z:=2%y; 5% then all paths are

X:=x-1/6% P=(qlq2) p"r
%
returnz /* 7%/ » Number of possible

paths:
|P| =2 Maxint — 1
SSQ, WS 15/16 Y

Statement, Branch and Path Coverage

» Statement Coverage:

= Necessary but not sufficient, not suitable as only test
approach.

= Detects dead code (code which is never executed).
= About 18% of all defects are identified.

» Branch coverage:
= Least possible single approach.

= Detects dead code, but also frequently executed program
parts.

= About 34% of all defects are identified.
» Path Coverage:

= Most powerful structural approach;

= Highest defect identification rate (100%);

= But no practical relevance.

SSQ, WS 15/16 =i Y

Decision Coverage

» Decision coverage is more then branch coverage, but
less then full path coverage.

» Decision coverage requires that for all decisions in the
program, each possible outcome is considered once.

» Problem: cannot sufficiently distinguish boolean
expressions.

= For A||B, the following are sufficient:
A B Result

false false false
true false true

= But this does not distinguish A|| B from A; B is effectively
not tested.

SSQ, WS 15/16 21 = Y

Decomposing Boolean Expressions

» The binary boolean operators include conjunction x Ay,
disjunction x v y, or anything expressible by these (e.g.
exclusive disjunction, implication).

Elementary Boolean Terms
An elementary boolean term does not contain binary
boolean operators, and cannot be further decomposed.

» An elementary term is a variable, a boolean-valued
function, a relation (equality =, orders <, <,>,>, etc), or
a negation of these.

» This is a fairly syntactic view, e.g. x < y is elementary, but
x < yVx =yisnot, even though they are equivalent.

» In formal logic, these are called literals.

SSQ, WS 15/16 =il Y

Simple Condition Coverage

» In simple condition coverage, for each condition in the
program, each elementary boolean term evaluates to
True and False at least once.

» Note that this does not say much about the possible
value of the condition.

» Examples and possible solutions:

if (temperature > 90 && pressure > 120) {...
C1 c2 Result
True True True
True False False
False True False
False False False
SSQ, WS 15/16 = Y

Modified Condition Coverage

» It is not always possible to generate all possible combi-
nations of elementary terms, e.g. 3<=x&&x<5.

» In modified (or minimal) condition coverage, all
possible combinations of those elementary terms the
value of which determines the value of the whole
condition need to be considered.

» Example:

3<=x8&&x<5

False False False <« notneeded
False True False

True False False

True True True

» Another example: (x>18&&!p) |l q

SSQ, WS 15/16 2 LY

Modified Condition/Decision Coverage

» Modified Condition/Decision Coverage (MC/DC) is
required by DO-178B for Level A software.

» It is a combination of the previous coverage criteria
defined as follows:

= Every point of entry and exit in the program has been
invoked at least once;

= Every decision in the program has taken all possible

How to achieve MC/DC

» Not: Here is the source code, what is the minimal set of
test cases?

» Rather: From requirements we get test cases, do they
achieve MC/DC?
» Example:

= Test cases: Source Code:

Z:=(A|IB)&&(C|ID)

outcomes at least once; Testcase |1 |2 |8 |4 |5
= Every condition in a decision in the program has taken all MputA |F |F T |FIT
possible outcomes at least once; nputB |F |T |F T |F Question: do test cases
= Every condition in a decision has been shown to Input€ | T |F |F|T|T achieve MC/DC?
independently affect that decision’s outcome. InputD | F |T |F |F|F
ResultZ |F [T |F |T|T
Source: Hayhurst et al, A Practical Tutorial
on MC/DC. NASA/TM2001-210876
SSQ, WS 15/16 2<1Y SSQ, WS 15/16 6 =l Y
Summary

» (Dynamic) Testing is the controlled execution of code,
and comparing the result against an expected outcome.

» Testing is (traditionally) the main way for verification

» Depending on how the test cases are derived, we
distinguish white-box and black-box tests.

» In black-box tests, we can consider limits and
equivalence classes for input values to obtain test
cases.

» In white-box tests, we have different notions of
coverage: statement coverage, path coverage, condition
coverage, etc.

» Next week: Static testing aka. static program analysis.

SSQ, WS 15/16 27 = v

