)=

Systeme hoher Qualitat und Sicherheit
Universitat Bremen WS 2015/2016

Lecture 07 (23-11-2015)

Detailed Specification with SysML

Christoph LUth)Jan Peleska Dieter Hutter

@ Universitat Bremen

Where are we?

01: Concepts of Quality

02: Legal Requirements: Norms and Standards
03: The Software Development Process
04: Hazard Analysis

05: High-Level Design with SysML

06: Formal Modelling with SysML and OCL
07: Detailed Specification with SysML

08: Testing

09 and 10: Program Analysis

11: Model-Checking

12: Software Verification (Hoare-Calculus)
13: Software Verification (VCG)

14: Conclusions

¥ ¥ ¥ ¥ Y ¥ V¥ Y V¥ Vv¥YVYVYY

SSQ, WS 15/16

< 1Y

Detailed Specification in the Development Cycle

Software safety
requirements
specification

i
Software
architecture

H
Software systom|
desi

fffff

E/E/PES safety
roquirements. JIIp
specification

" software

Integration testing

E/EPES (components, subsystems
architecture and programmable

electronics)

Integration
testing
{module)

Why detailed Specification?

» Detailed specification is the specification of single
modules making up our system.

» This is the ,last” level both in abstraction and detail
before we get down to the code - in fact, some
specifications at this level can be automatically
translated into code.

» Why not write code straight away?

= We want to stay platform-independent.

= We may not want to get distracted by details of our target

platform.

= At this level, we have a better chance of finding errors or

proving safety properties.

SSQ, WS 15/16 = Y SSQ, WS 15/16 =l Y
Levels of Detailed Specification State Diagrams: Basics
» We can specify the basic modules » State diagrams are a particular form of (hierarchical)
» By their (external) behaviour: finite state machines.
= Which operations can be called, what are their
pre/post-conditions and effects. A finite state machine is given by M = (%, -) where
= This can be modelled using OCL. = X is afinite set of states, and
= Alternatively, we can model the system'’s internal = - CIxZIisa transition relation which is left-total.
states by a state machine, which has states and
guarded transitions between them. .)
o . » Example: a simple coffee machine.
» By their (internal) structure: We will | FSMs in detail lat
= Modelling the control flow by flow charts aka. e YVI exp ore sn 6_3 all fater. .
activity charts. » In hierarchical state machines, a state may contain
= There are also a variety of action languages another FSM (with initial/final states).
(platform-independent programming languages) for » State Diagrams in SysML are taken unchanged from
UML, but these are not standard for SysML. UML.
SSQ, WS 15/16 LY SSQ. WS 15/16 =y

Basic Elements of State Diagrams

stmBasic State Machine J

» States
= Initial/Final
» Transitions
» Events (Triggers)
» Guards
» Actions (Effects)

-_—

State B

Event [Guard]/ Action

SSQ, WS 15/16 2 1Y

What is an Event?

» , The specification of a noteworthy occurence which has a
location in time and space.”
» SysML knows:
= Signal events
= Call events

(UML Reference Manual)

event name/
operation name/

= Time events after(t)/
= Change event when (e)/
= Entry events Entry/

= Exit events Exit/

SSQ, WS 15/16

LY

State Diagram Elements (SysML Ref. §13.2)

» Choice pseudo state » Region
» Composite state » Simple state
» Entry point » State list

» State machine
» Terminate node
» Submachine state

» Exit point

» Final state

» History pseudo states
» Initial pseudo state

» Junction pseudo state
» Receive signal action
» Send signal action

» Action

SSQ, WS 15/16 9 < 1Y

Activity Charts: Foundations

» The activity charts of SysML (UML) are a variation of old-

fashioned flow charts.
= Standardised as DIN 66001 (ISO 5807)

» Flow charts can
describe programs
(right example) or
non-computational
activities (left exam-
ple)

» SysML activity charts
are extensions of
UML activity cha rts Quelle: Erik Streb, via Wikipedia
: Quelle: Wikipedia
SSQ, WS 15/16 1Y

Basics of Activity Diagrams

» Activities model the sequence and conditions for low-
level behaviours:
“An activity is the specification of parameterized behaviour
as the coordinated sequencing of subordinate unites whose
individual elements are actions.” (UML Ref. §12.3.4)
» This is performed by means of control flow and object
flow models

» Control flow allows to disable and enable (sub-)
activities using these two enumeration values.

» An activity execution results in the execution of a set of
actions in some specific order.

» Activity executions may comprise several logical
execution threads.

SSQ, WS 15/16 12 = Y

What is an Action?

» A terminating basic behaviour, such as
= Changing variable values
= Calling operations [UML Ref. 811.3.10]
= Calling activities [UML Ref. §12.3.4]
= Creating and destroying objects, links, associations
= Sending or receiving signals
= Raising exceptions .

» Actions are part of a (potentially larger, more complex)

behaviour

» Inputs to actions are provided by ordered sets of pins
= Apinis atyped element, associated with a multiplicity
= Input pins transport typed elements to an action
= Actions deliver outputs consisting of typed elements on

output pins
SSQ, WS 15/16 13 = v

[UML Ref. 811.3.6]

Elements of Activity Diagrams (SysML Ref. §11.2.1)

» Nodes: » Paths (arrows):
= Action nodes = Control flow
= Activities = Object flow
= Decision nodes = Probability and rates
= Final nodes
= Fork nodes
= Initial nodes

» Activities in BDDs
» Partitions

= Local pre/post-conditions » Interruptible Regions
= Merge nodes

= Object nodes
= Probabilities and rates

» Structured activities

SSQ, WS 15/16 14 = Y

Behavioural Semantics

» Semantics is based on token flow - similar to Petri Nets,
see [UML Ref. pp. 326]

= Atoken can be an input signal, timing condition,
interrupt, object node (representing data), control
command (call, enable) communicated via input pin,

= An executable node (action or sub-activity) in the
activity diagram begins its execution, when the
required tokens are available on their input edges.

= On termination, each executable node places tokens
on certain output edges, and this may activate the
next executable nodes linked to these edges.

SSQ, WS 15/16 16 =1 Y

Activity Diagrams - Links With BDDs

» Block definition diagrams may show
= Blocks representing activities

bdd

<activity»
activity name

“aciiviy ‘
aciny name
[4 L] [4 3

action / action \ action

aaaaa

activity» activity activity»
activity name activity name activity name

= One activity may be composed of other activities -
composition indicates parallel execution threads of the
activities at the “part end”

= One activity may contain several blocks representing
object nodes (which represent data flowing through the
activity diagram).

SSQ, WS 15/16 17 2 1Y

SysML Diagrams Overview

| Requirement Diagram * ‘

Structural Diagrams

l Package Diagram | l Block Definition Diagram |

l Internal Block Diagram || Parametric Diagram |

Behavioural Diagrams

l Use Case Diagram * | l Activity Diagram |

l State Machine Diagram | l Sequence Diagram |

* Not considered further.

SSQ, WS 15/16 19 2 1Y

Sequence Diagrams

» Sequence Diagrams describe the flow of messages
between actors.

» Extremely useful, but also extremely limited.

[o= | = | = |

getavailableReports () |

getsecurityClearance (userid)

userClearance.

determineAvailableReports ()

T
|
I
T
|
|
I
| |
| |
[— I

Quelle:

IBM developerWorks

» We may consider concurrency further later on.

SSQ, WS 15/16 20

Summary

» Detailed specification means we specify the internal
structure of the modules in our systems.

» Detailed specification in SysML:

= State diagrams are hierarchical finite state machines
which specify states and transitions.

= Activity charts model the control flow of the program.

» More behavioural diagrams in SysML:

= Sequence charts model the exchange of messages
between actors.

= Use case diagrams describe particular uses of the system.

SSQ, WS 15/16 21

