)= Where are we?
» 01: Concepts of Quality
» 02: Legal Requirements: Norms and Standards
Systeme hoher Qualitat und Sicherheit » 03:The Software Development Process
Universitat Bremen WS 2015/2016 » 04: Hazard Analysis
» 05: High-Level Design with SysML
Lecture 06 (1 6-11-201 5) » 06: Formal Modelling with SysML and OCL
» 07: Detailed Specification with SysML
» 08: Testing
Formal Modelling with SysML and OCL » 09 and 10: Program Analysis
» 11: Model-Checking
Christoph Liith Jan Peleska Dieter Hutter » 12:Software Verification (Hoare-Calculus)
» 13: Software Verification (VCG)
» 14: Conclusions
@ Universitat Bremen ss0.ws 15716 S—
Formal Modelling in the Development Cycle What is OCL?

Software safety
requirements
specification

E/E/PES safety
roquirements. JIIp
specification

" software

EEPES Integration testing
architecture | <D

electronics)

Integration
tosting
(module)

Meodule Module
design e testing

SSQ, WS 15/16 = Y

» OCL is the Object Constraint Language.
» What is OCL?

= ,Aformal language used to describe expressions on UML
models. These expressions typically specify invariant
conditions that must hold for the system being modeled or
queries over objects described in a model.” (ocL standard, §7)

» Why OCL?

= ,AUML diagram, such as a class diagram, is typically not
refined enough to provide all the relevant aspects of a
specification. There is, among other things, a need to
describe additional constraints about the objects in the
model. “ (OCL standard, §7.1)

SSQ, WS 15/16 A =i Y

Characteristics of the OCL

» OCL is a pure specificication language.

= OCL expressions do not have side effects.
» OCL is not a programming language.

= Expressions are not executable (though some may be).
» OCL is typed language

= Each expression has type; all expressions must be well-
typed.

= Types are classes, defined by class diagrams.

SSQ, WS 15/16 5 = Y

OCL can be used for the following:

» as a query language
» to specify invariants on classes and types in the class
» to specify type invariant for Stereotypes

» to describe pre- and post conditions on Operations and
Methods

» to describe Guards
» to specify target (sets) for messages and actions
» to specify constraints on operations

» to specify derivation rules for attributes for any
expression over a UML model.
(OCL standard, §7.1.1)

SSQ, WS 15/16 6 =il Y

Example: A Flight-Booking System

» Flight destinations are given by
= anl|ATAd, and a string
» Aflight is given by

= Source and destination, arrival and departure date,
capacity and free seats

» A query asks for

= aflight from/to at a given time and number of free seats
» Operations:

= Query

= Book a flight

SSQ, WS 15/16 2 1Y

Example: A Flight-Booking System

Possible constraints:
» No more free seats than capacity
» Source and destination must be disjoint
» Query must return ,correct” flight
» Destination identifiers must be unique
» To book a flight:
= Possible if enough free seats
= Afterwards, number of free seats reduced
Possible extension:
» Query returns a schedule --- list of connecting flights

SSQ, WS 15/16 8 LY

Example: The Traffic Light

Button
counter: Integer

requesting()

2

1
TrafficLight

pedLight: Boolean

carLight: Boolean
request: Boolean

switchPedLight()
switchCarLight()

bution
light

Example: The Traffic Light

Button context requesting()
counter: Integer - - - - -| pre: tl.pedLight = false
post: tl.request = true
requesting() post: counter = counter@pre + 1
button | 2

light | | pre: request = true
- _-| post: pedLight != pedLight@pre
TrafficLight | _- post: request = false

context switchPedLight () T

pedLight: Boolean
carLight: Boolean | | context switchCarLight ()
request: Boolean post: carLight != carLight@pre

switchCarLight() carLight = true)

switchPedLight) |~~~ _[inv: not (pedLight = true and 'j

pedLight: False
carLight: True
request: False
counter:]
SSQ, WS 15/16 9 L o< 1Y SSQ, WS 15/16 10 L < 1Y
Example: The Traffic Light Example: The Traffic Light
Button context requesting() Button context requesting ()
counter: Integer |- - - - -| pre: tl.pedLight = false counter: Integer | - - - - pre: tl.pedLight = false
post: tl.request = true post: tl.request = true
) post: counter = counter@pre + 1 requesting() post: counter = counter@pre + 1
button | 2 - - button | 2 - -
N context switchPedLight () : context switchPedLight ()
light | | pre: request = true fight | 1 pre: request = true
I et | 7| e
pedLight: Boolean pedLight: Boolean
carLight: Boolean | | context switchCarLight () ‘j carLight: Boolean | | context switchCarLight () j
request: Boolean post: carLight != carLight@pre request: Boolean post: carLight != carLight@pre
switchPedLight() “~<_|inv: not(pedLight = true and switchPedLight() “~<_.|inv: not(pedLight = true and
T @ switchCarLight() carLight = true) I switchCarLight() carLight = true)
pedLight: False pedLight: False
carLight: True carLight: False
request: True request: True
counter: 1 counter: 1
SSQ, WS 15/16 1 =Y SSQ, WS 15/16 12 =Y
Example: The Traffic Light OCL Basics
Button Erre » The language is typed: each expression has a type.
counter: Integer |- - - - - 552?‘5"5233322 Dl guag yp P P
Deadlock 0 Gt Gamich & EmHeI ¢ @ » Three-valued logic (Kleene logic)
bt |2 T O = Actually, more like four-valued (null)
pre: request = true
TrafficLight | .-~ | Bost: pedlight 1o peduignitore » Expressions always live in a context:
pedLight: Boolean = Invariants on classes, interfaces, types.
carLight: Boolean | _ | context switchCarLight () 'j
request: Boolean post: carLight != carLight@pre
- switchPedLight() “~<_|inv: not(pedLight = true and context Class
T @ switchCarLight() carLight = true) inv Name: expr
pedLight: True = Pre/postconditions on operations or methods
carLight: False
request: False context Type :: op(al: Type) : Type
counter: 1 pre Name: expr
@ post Name: expr
SSQ, WS 15/16 13 L o< LY SSQ, WS 15/16 14 L o< LU
OCL Types Basic types and operations
» Basic types: » Integer (Z) OCL-Std. 811.5.2
" Boolean, Integer, Real, String » Real (R) OCL-Std. §11.5.1
® OclAny, OclType, OclVoid = Integer is a subclass of Real
= round, floor from Real to Integer
» Collection types:
» String (Zeichenketten) OCL-Std. §11.5.3
" Sequences, Bag, OrderedSet, Set = substring, toReal, toInteger, characters, etc.
» Model types » Boolean (Wahrheitswerte) OCL-Std. §11.5.4
= or, xor, and, implies
= Relationen auf Real, Integer, String
SSQ, WS 15/16 15 L o< LY SSQ, WS 15/16 16 L o< LY

Collection Types

» Sequence, Bag, OrderedSet, Set

» Operations on all collections:
* size, includes, count, isEmpty, flatten
= Collections are always ,flattened”
» Set
" union, intersection
» Bag
* union, intersection, count
» Sequence
= first, last, reverse, prepend, append

OCL-Std. 811.7

Collection Types: Iterators

» [terators are higher-order functions

» All iterators defined via iterate OCL-Std. 87.7.6

coll->iterate(elem: Type, acc: Type= expr | expr[el, acc])

iterate(e: T, acc: T= v)
{ acc= v;
for (Enumeration e= c.elements(); e.hasMoreElements();) {
e= e.nextElement();
acc.add (expr[e, acc]);
}

return acc;

SSQ, WS 15/16 < 1Y SSQ, WS 15/16 2 LY
Model types Undefinedness in OCL
» Model types are given by » Undefinedness is propagated OCL-Std §7.5.11
= attributes, = In other words, all operations are strict
= operations, and » Exceptions:
= Associations of the model = Boolean operators (and, or non-strict on both sides)
» Navigation along the association = Case distinction
= If cardinality is 1, type is of target type T = Test on definedness: oclIsUndefined with
. Other.|se, itis set '(T) ‘ ' ocllsUndefined(e) = {m[;e i’]:e =1
» User-defined operations in expressions have to be false otherwise
stateless (stereotype <<query>>)
» Resulting logic is three-valued (Kleene-Logic)
» In fact, four-valued: there is always null
» Iterators are “semi-strict”
SSQ, WS 15/16 219 SSQ. WS 15/16 =y
OCL Style Guide Summary

» Avoid complex navigation (,Loose coupling")
= Otherwise changes in models break OCL constraints

» Always choose adequate context
» ,Use of allInstances ()is discouraged”
» Split up invariants if possible

» Consider defining auxiliary operations if expressions
become too complex.

SSQ, WS 15/16 21

2 1Y

» OCL is a typed, state-free specification language which
allows us to denote constraints on models.

» We can define or models much more precise.
= Ideally: no more natural language needed.
» OCL is part of the more ,academic” side of UML/SysML.

= Tool support is not great, some tools ignore OCL, most
tools at least type-check OCL, hardly any do proofs.

» However, in critical system development, the kind of
specification that OCL allows is essential.

» Next week: detailed specification with SysML.
= Behavioural diagrams: state diagrams, sequence charts ...

SSQ, WS 15/16 22 =l v

