)=

Systeme hoher Qualitat und Sicherheit
Universitat Bremen WS 2015/2016

Lecture 03 (26.10.2015)

The Software Development Process

Christoph LUth)Jan Peleska Dieter Hutter

@ Universitat Bremen

Your Daily Menu

» Models of software development

= The software development process, and its role in safety-

critical software development.
= What kind of development models are there?

= Which ones are useful for safety-critical software
- and why?

= What do the norms and standards say?

» Basic notions of formal software development
= What is formal software development?
= How to specify: properties and hyperproperties
= Structuring of the development process

SSQ, WS 15/16

2 1Y

Where are we?

o
=

: Concepts of Quality

02: Legal Requirements: Norms and Standards
03: The Software Development Process
04: Hazard Analysis

05: High-Level Design with SysML

06: Formal Modelling with SysML

07: Detailed Specification with SysML

08: Testing

09 and 10: Program Analysis

11: Model-Checking

12: Software Verification (Hoare-Calculus)
13: Software Verification (VCG)

14: Conclusions

¥ ¥ Y ¥ ¥ ¥y Yv¥YY¥Y Y Y¥YYVYY

SSQ, WS 15/16 = Y

<,

Software Development Models

@U) Universitat Bremen

Software Development Process

» A software development process is the structure
imposed on the development of a software product.
» We classify processes according to models which specify
= the artefacts of the development, such as

» the software product itself, specifications, test documents,
reports, reviews, proofs, plans etc

= the different stages of the development,

= and the artefacts associated to each stage.
» Different models have a different focus:

= Correctness, development time, flexibility.
» What does quality mean in this context?

= What is the output? Just the sofware product, or more?
(specifications, test runs, documents, proofs...)

Agile Methods

» Prototype-driven development
= E.g. Rapid Application Development
= Development as a sequence of prototypes
= Ever-changing safety and security requirements

» Agile programming
= E.g. Scrum, extreme programming
= Development guided by functional requirements
= Process structured by rules of conduct for developers
= Less support for non-functional requirements
» Test-driven development

= Tests as executable specifications: write tests first
= Often used together with the other two

SSQ, WS 15/16 = v SSQ, WS 15/16 =il Y
Waterfall Model (Royce 1970) Spiral Model (B6hm, 1986)
» Classical top-down sequential workflow with strictly » Incremental development guided by risk factors
separated phases. » Four phases:
. = Determine objectives ety L i
Requirement . —
Desi = Analyse risks
SE) } = Development and test
Implementation) = Review, plan next iteration ...
Verification ’ »See e.g.
Maintenance = Rational Unified Process (RUP)
» Unpractical as actual workflow (no feedback between > Dravx{ba-cks: o - o
phases), but even early papers did not really suggest = Risk identification is the key, and can be quite difficult
this.
SSQ, WS 15/16 = v SSQ, WS 15/16 =l Y

Model-Driven Development (MDD, MDE)

» Describe problems on abstract level using a modelling language
(often a domain-specific language), and derive implementation by
model transformation or run-time interpretation.

» Often used with UML (or its DSLs, eg. SysML)

[cm —[PM |—>{ PSM |—>{ Code |

» Variety of tools:
= Rational tool chain, Enterprise Architect, Rhapsody, Papyrus,
Artisan Studio, MetaEdit+, Matlab/Simulink/Stateflow*

= EMF (Eclipse Modelling Framework)
» Strictly sequential development
» Drawbacks: high initial investment, limited flexibility

* Proprietary DSL - not related to UML

V-Model

» Evolution of the waterfall model:

= Each phase is supported by a corresponding testing
phase (verification & validation)

= Feedback between next and previous phase
» Standard model for public projects in Germany
= ...butalso a general term for models of this ,shape”

Ohgoing

Review/Test

Requirements | Operational
Analysis Testing

High Level (o
Design

Detailed Unit
Specifications Testing

SSQ. WS 15/16 9 < 1Y SSQ, WS 15/16 1Y
Software Development Models .:':'
2| (Prototype-based Agile
3 developments Methods
5
w
Development Models for
Spiral model oy
Critical Systems
model Model-driven
developement
Structure
from S. Paulus: Sichere Software
@ Universitat Bremen
SSQ, WS 15/16 1 = v 12

Development Models for Critical Systems

» Ensuring safety/security needs structure.

= ...but too much structure makes developments
bureaucratic, which is in itself a safety risk.

= Cautionary tale: Ariane-5
» Standards put emphasis on process.
= Everything needs to be planned and documented.
= Key issues: auditability, accountability, traceability.
» Best suited development models are variations of the V-
model or spiral model.
» A new trend?
= V-Model for initial developments of a new product

= Agile rr]odels (e.g. SCRUM) for maintenance and product Operation
extensions .) _
E/E/PES: Electrical/Electronic/Programmable Electronic Safety-related Systems
SSQ, WS 15/16 13 = Y SSQ, WS 15/16 14 =l v

Planning

Realisation

¥
Overal planning
Overat

i
operaton and satety n an
{3 maintenance vaidation [commissi soning
piarving plannng I

Development Model in IEC 61508

» |[EC 61508 prescribes certain activities for each phase of
the life cycle.

» Development is one part of the life cycle.

» |[EC 61508 recommends V-model.

Validation Validation Validated

software

SSQ, WS 15/16 15 =1 Y

Development Model in DO-178B

» DO-178B defines different processes in the SW life cycle:
= Planning process
= Development process, structured in turn into
» Requirements process
» Design process
» Coding process
» Integration process
= Verification process
= Quality assurance process
= Configuration management process
= Certification liaison process

» There is no conspicuous diagram, but the Development Process has
sub-processes suggesting the phases found in the V-model as well.

= Implicit recommendation of the V-model.

SSQ, WS 15/16 16 = v

Traceability

» The idea of being able to follow requirements (in
particular, safety requirements) from requirement spec
to the code (and possibly back).

» On the simplest level, an Excel sheet with (manual) links
to the program.

» More sophisticated tools include DOORS.
= Decompose requirements, hierarchical requirements

= Two-way traceability: from code, test cases, test
procedures, and test results back to requirements

= Eg. DO-178B requires all code derives from requirements

SSQ, WS 15/16 20 2 1Y

Artefacts in the Development Process

Planning:

« Document plan Possible formats:

« V&V plan + Word documents

+ QM plan « Excel sheets

« Testplan « Wiki text

» Project manual « Database (Doors)

Specifications: N .| . UML/SysML di
Safety requirement specd | Formalylsan ua'ai':_’ms
System specification =/ .7z HOLgetcg :

« Detail specification =7 . S%ated;arts. or

» User document (safety (=) J similar diagrams
reference manual) [g

Implementation: « Source code

+ Code

Verification & validation: . .
Cod A | Documents must be identified and

: T° e review protgco S reconstructable.
a?wsdt f::te:ésﬁjl?sce ures, + Revision control and configuration

g management mandatory.
+ Proofs g .
SSQ, WS 15/16 =y

<,

Basic Notions of Formal
Software Development

@ Universitit Bremen

Formal Software Development

» In formal development, properties are stated in a rigorous way with
a precise mathematical semantics.

» These formal specifications can be proven.
» Advantages:

= Errors can be found early in the development process, saving
time and effort and hence costs.

= There is a higher degree of trust in the system.

= Hence, standards recommend use of formal methods for high
SILs/EALs.

» Drawback:

= Higher effort

= Requires qualified personnel (that would be you).
» There are tools which can help us by

= finding (simple) proofs for us, or

= checking our (more complicated) proofs.

SSQ, WS 15/16 23 =l v

Formal Software Development

informal specification
O

O

abstract o L =z
Q
specification 5
» Horizontal = g
1
g
3
o EB ER 3
o
= = = 2

‘ Proofs
é 3
3
ggﬁ g (-} LC]
Implemen- §
tation 3
& s 5
oQ

e/ 24 AU

A General Notion of Properties

» Defn: a property is a
set of infinite execution traces
(i.e. infinite sequences of states)

» Trace t satisfies property P,

writtent E P, ifft € P)
t O—0—0—0—

. b: O—®
»b<tiff At".t=b-t
= i.e. bis a finite prefix of t r:0—8
SSQ, WS 15/16 25 =il Y

Safety and Liveness Properties

. Alpen & Schneider (1985, 1987)
» Safety properties

= Nothing bad happens

= partial correctness, program safety, access control
» Liveness properties

= Something good happens

= Termination, guaranteed service, availability

» Theorem: V P. P =Safe, n Live,

= Each property can be represented as a combination
of safety and liveness properties.

SSQ, WS 15/16 26 1Y

Safety Properties

» Safety property S: ,Nothing bad happens”
» A bad thing is finitely observable and irremediable
» S is a safety property iff
= Vt.t¢S - (3b.finitebAb<t >Vub<u-ue¢s)
t: O—0—0—0—

b: O—0—0
= a finite prefix b always causes the bad thing
» Safety is typically proven by induction.

= Safety properties may be enforced by run-time monitors.
= Safety is testable (i.e. we can test for non-safety)

SSQ, WS 15/16 2 2<1Y

Liveness Properties

» Liveness property L: ,Good things will happen”

» A good thing is always possible and possibly infinite:

t: —0—0

» L is a liveness property iff 4. 00 —0—8

= Vt finitet >3g.t<gAg€EL

= i.e. all finite traces t can be extended to a trace gin L.

» Liveness is typically proven by well-foundedness.

SSQ, WS 15/16 28 =Y

Underspecification and Nondeterminism

» A system S is characterised by a set of traces, [[S]

» A system S satisfies a property P, written
SEPIff [SJcP
» Why more than one trace? Difference between:

= Underspecification or loose specification -
we specify several possible implementations, but each
implementation should be deterministic.

= Non-determinism - different program runs might result
in different traces.

» Example: a simple can vending machine.
= Insert coin, chose brand, dispense drink.
= Non-determinisim due to internal or external choice.

SSQ, WS 15/16 29 < 1Y

Security Policies

Many security policies are not properties!

» Examples:
= Non-Interference (Goguen & Meseguer 1982)

» Commands of high users have no effect on observations of
low users

= Average response time is lower than k.

» Security policies are examples of hyperproperties.
» A hyperproperty H is a set of properties

= j.e.aset of set of traces.

= System S satisfies H, S = H, iff [S] € H.

SSQ, WS 15/16 31 = Y

Structuring the Development

@ Universitat Bremen
36

Structure in the Development

» Horizontal structuring
= Modularization into components
= Composition and Decomposition
= Aggregation

» Vertical structuring

= Abstraction and refinement
from design specification to implementation

= Declarative vs. imparative specification
= Inheritence

» Layers / Views
= Adresses multiple aspects of a system

= Behavioral model, performance model, structural model,
analysis model(e.g. UML, SysML)

SSQ, WS 15/16 37 = v

Horizontal Structuring (informal)

» Composition of components
= Dependent on the individual layer of abstraction
= E.g. modules, procedures, functions,...

» Example:

SSQ, WS 15/16 38 a< LY

Horizontal Structuring: Composition

» Given two systems Sy, S,, their sequential composition is defined as
S8y ={s - tIs € [Si].t € [S.}
All traces from S, followed by all traces from S,.

» Given two traces s, t, their interleaving is defined (recursively) as
<>|t=t
sli<>=s
a-slb-t={a-ulu€es llb-t}u{b -u|lu€ea-s |t}
» Given two systems Sy, S,, their parallel composition is defined as
SilSy={s It |se[S]telS]}

Traces from S, interleaved with traces from S,.

SSQ, WS 15/16 =1 Y

Vertical Structure - Refinement

» Data refinement
= Abstract datatype is ,implemented” in terms of the
more concrete datatype
= Simple example: define stack with lists
» Process refinement
= Process is refined by excluding certain runs

= Refinement as a reduction of underspecification by
eliminating possible behaviours

» Action refinement
= Action is refined by a sequence of actions

= E.g. astub for aprocedure is refined to an executable
procedure

SSQ, WS 15/16) =l U

Refinement and Properties
» Refinement typically preserves safety properties.

= This means if we start with an abstract specification
which we can show satisfies the desired properties, and
refine it until we arrive at an implementation, we have a
system for the properties hold by construction:

SP w» SPy w» SP, ws ... w Imp

» However, security is typically not preserved by
refinement nor by composition!

SSQ, WS 15/16 43 =l v

Security and Composition

Only complete bicycles are allowed to pass the gate.

Secure! Secure!

SSQ, WS 15/16 14 =l Y

Security and Composition

Only complete bicycles are allowed to pass the gate.

Insecure !

SSQ, WS 15/16 45 < KU

A Formal Treatment of Refinement

» Def: Tis a refinement of Sif SET & [T] < [S]
= Remark: a bit too general, but will do here.

» Theorem: Refinement preservers properties:
IfSEPandSET,thenT E P.
= Proof:Recall SEP & [S] €P,and SCT & [T] < [S],
hence [T € P& T EP.

» However, refinement does not preserve hyperproperties.
= Why? S E H & [S] € H, but H not closed under subsets.

SSQ, WS 15/16 a6 =l v

Conclusion & Summary

» Software development models: structure vs. flexibility
» Safety standards such as IEC 61508, DO-178B suggest
development according to V-model.

= Specification and implementation linked by verification
and validation.

= Variety of artefacts produced at each stage, which have to
be subjected to external review.

» Properties: sets of traces
hyperproperties: sets of properties
» Structuring of the development:
= Horizontal - e.g. composition
= Vertical - refinement (data, process and action ref.)

= Refinement preserves properties (safety), but not
hyperproperties (security).

SSQ, WS 15/16 a7 = v

