
Systeme Hoher Qualität und Sicherheit
Vorlesung 13 vom 27.01.2014: Concluding Remarks

Christoph Lüth & Christian Liguda

Universität Bremen

Wintersemester 2013/14

Rev. 2447 1 [17]



Where are we?
I Lecture 1: Concepts of Quality
I Lecture 2: Concepts of Safety and Security, Norms and Standards
I Lecture 3: Quality of the Software Development Process
I Lecture 4: Requirements Analysis
I Lecture 5: High-Level Design & Formal Modelling
I Lecture 6: Detailed Specification, Refinement & Implementation
I Lecture 7: Testing
I Lecture 8: Static Program Analysis
I Lecture 9: Verification with Floyd-Hoare Logic
I Lecture 10: Verification Condition Generation
I Lecture 11: Model-Checking with LTL and CTL
I Lecture 12: NuSMV and Spin
I Lecture 13: Concluding Remarks

2 [17]



Summary I

I This lecture series was about developing systems of high quality and
high safety.

I Quality is measured by quality criteria, which guide improvement the
development process.

I Safety is “freedom from unacceptable risks”.

I Both high quality and safety can be achieved by the means described
in this lecture series.

I Moreover, there is the legal situation: the machinery directive and other
laws require (indirectly) you use these techniques where appropriate.

3 [17]



Quality in the Software Development Process

I Requirements analysis

I High-level specifications and
formal modelling
I The Z specification language

I Low-level specification
I Z, refinement

I Testing
I Static Program Analysis
I Floyd-Hoare Logic
I Model-Checking

4 [17]



Quality in the Software Development Process

I Requirements analysis
I High-level specifications and

formal modelling
I The Z specification language

I Low-level specification
I Z, refinement

I Testing
I Static Program Analysis
I Floyd-Hoare Logic
I Model-Checking

4 [17]



Quality in the Software Development Process

I Requirements analysis
I High-level specifications and

formal modelling
I The Z specification language

I Low-level specification
I Z, refinement

I Testing
I Static Program Analysis
I Floyd-Hoare Logic
I Model-Checking

4 [17]



Quality in the Software Development Process

I Requirements analysis
I High-level specifications and

formal modelling
I The Z specification language

I Low-level specification
I Z, refinement

I Testing

I Static Program Analysis
I Floyd-Hoare Logic
I Model-Checking

4 [17]



Quality in the Software Development Process

I Requirements analysis
I High-level specifications and

formal modelling
I The Z specification language

I Low-level specification
I Z, refinement

I Testing
I Static Program Analysis

I Floyd-Hoare Logic
I Model-Checking

4 [17]



Quality in the Software Development Process

I Requirements analysis
I High-level specifications and

formal modelling
I The Z specification language

I Low-level specification
I Z, refinement

I Testing
I Static Program Analysis
I Floyd-Hoare Logic

I Model-Checking

4 [17]



Quality in the Software Development Process

I Requirements analysis
I High-level specifications and

formal modelling
I The Z specification language

I Low-level specification
I Z, refinement

I Testing
I Static Program Analysis
I Floyd-Hoare Logic
I Model-Checking

4 [17]



Lecture 01: Concepts of quality

I What is quality? What are quality criteria?

I What could be useful quality criteria?

I What is the conceptual difference between ISO 9001 and CMM?

5 [17]



Lecture 02: Concepts of Safety and Security

I What is safety?

I Norms and Standards:

I Legal situation

I What is the machinery directive?

I Norm landscape: First, second, third-tier norms

I Important norms: IEC 61508, ISO 26262, DIN EN 50128, DO-178B, ISO
15408

I Risk analysis:

I What is a SIL? Target SIL?

I How do we obtain a SIL? What does it mean for the development?

6 [17]



Lecture 03: Quality of the Software Development
Process

I Which software development models did we encounter?

I Waterfall, spiral, agile, MDD, V-model:
I How does it work?
I What are the advantages and disadvantages?

I Which models are appropriate for safety-critical developments?

I What are the typical artefacts (and where do they occur)?
I Formal software development:

I What is it, and how does it work?
I How can we define properties, what kind of properties are there, how are

they defined?
I Development structure: horizontal vs. vertical, layers and views

7 [17]



Lecture 03: Quality of the Software Development
Process

I Which software development models did we encounter?
I Waterfall, spiral, agile, MDD, V-model:

I How does it work?
I What are the advantages and disadvantages?

I Which models are appropriate for safety-critical developments?

I What are the typical artefacts (and where do they occur)?
I Formal software development:

I What is it, and how does it work?
I How can we define properties, what kind of properties are there, how are

they defined?
I Development structure: horizontal vs. vertical, layers and views

7 [17]



Lecture 04: Requirements Analysis

I What is hazard analysis?

I Where (in the development process) is it used?

I Basic approaches: bottom-up vs. top-down, and what do they mean?

I Which methods did we encounter?

I FMEA, FTA, Event traces — how do they work,
advantages/disadvantages?

I What are the prime verification techniques?

8 [17]



Lecture 04: Requirements Analysis

I What is hazard analysis?

I Where (in the development process) is it used?

I Basic approaches: bottom-up vs. top-down, and what do they mean?

I Which methods did we encounter?

I FMEA, FTA, Event traces — how do they work,
advantages/disadvantages?

I What are the prime verification techniques?

8 [17]



Lecture 05: High-level Design & Formal Modelling

I High-level specification and modelling:

I What is it, where in the development process does it take place, what
formalisms are useful?

I What is Z?

I Basic elements of Z:

Axioms, Schema, Mathematical Toolkit

9 [17]



Lecture 05: High-level Design & Formal Modelling

I High-level specification and modelling:

I What is it, where in the development process does it take place, what
formalisms are useful?

I What is Z?

I Basic elements of Z: Axioms, Schema, Mathematical Toolkit

9 [17]



Lecture 06: Detailed Specification, Refinement &
Implementation

I What is refinement? How is it used in the development process?

I What kind of refinements did we encounter?

I What does refinement preserve?

I How do we do refinements in Z?

I How do we go from implementation to code — in general, and in Z?

10 [17]



Lecture 07: Testing

I What is testing, and what are the aims? What can it achieve, what
not?

I What are test elevels?

I What is a black-box test? How are test cases chosen?

I What is a white-box test?

I What is the control-flow graph of a program?

I What kind of coverages are there, and how are they defined?

11 [17]



Lecture 08: Static Program Analysis

I Is what? Where in the development process is it used? What is the
difference to testing?

I What is the basic problem, and how is circumvented?

I What does it mean when we say an analysis is sound, or safe?

I What are false positives?

I Did we consider inter- or intraprocedural analysis?

I What examples for forward/backward analysis did we encounter?

12 [17]



Lecture 09: Verification with Floyd-Hoare Logic

I What is Floyd-Hoare logic, what does it do (and what not), and where
is used in the development process?

I How does it work?

I What do the notations {P} p {Q} and [P] p [Q] mean

I What rules does the Floyd-Hoare logic have?

I How are they used?

I Which properties does it have?

13 [17]



Lecture 10: Verification Condition Generation

I What does VCG do?

I How is it related to Floyd-Hoare logic?

I What is a weakest precondition, and how do we calculate it?

I What are program annotations? Why are they used? How are they
used?

I Which tools do VCG?

14 [17]



Lecture 11: Model-Checking with LTL and CTL

I What is model-checking, and how is it used? How does it compare
with Floyd-Hoare logic?

I What is the basic question?

M |= φ

I What do we use for M, φ, and do we prove it?

I What is a finite state machine, and what is temporal logic?
I LTL, CTL:

I What are the basic operators, when does a formula hold, and what kind of
properties can we formulate?

I Which one is more powerful?
I Which one is decidable, and with which complexity?

I What is the basic problem (and limitation) of model-checking?
I Which tools did we see to model-check LTL/CTL?

15 [17]



Lecture 11: Model-Checking with LTL and CTL

I What is model-checking, and how is it used? How does it compare
with Floyd-Hoare logic?

I What is the basic question? M |= φ

I What do we use for M, φ, and do we prove it?

I What is a finite state machine, and what is temporal logic?
I LTL, CTL:

I What are the basic operators, when does a formula hold, and what kind of
properties can we formulate?

I Which one is more powerful?
I Which one is decidable, and with which complexity?

I What is the basic problem (and limitation) of model-checking?
I Which tools did we see to model-check LTL/CTL?

15 [17]



Module Exams (Modulprüfungen)

I You may select two of the following areas:

I Lectures 1– 4: Quality, Norms and Standards, Development Processes,
Requirements Analysis

I Lecture 5 – 6: Formal Modelling and Refinement, Z

I Lecture 7 – 8: Testing and Static Program Analysis

I Lecture 9 – 10: Floyd-Hoare Logic and Verification Condition Generation

I Lecture 11 – 12: Model-Checking with LTL and CTL

I Questions will come from all lectures, but we will concentrate on your
chosen areas.

16 [17]



Assessments (Fachgespräche)

I Questions will pertain to exercises.

I You may try to improve your grade; in this case, expect questions
about the lecture material as well.

17 [17]


