
Systeme Hoher Qualität und Sicherheit
Vorlesung 11 vom 13.01.2014: Modelchecking with LTL and CTL

Christoph Lüth & Christian Liguda

Universität Bremen

Wintersemester 2013/14

Rev. 2432 1 [23]

Organisatorisches

I Noch ein Übungsblatt?

I Prüfungen — KW 06 (4./5. Feb.)

2 [23]

Where are we?
I Lecture 1: Concepts of Quality
I Lecture 2: Concepts of Safety and Security, Norms and Standards
I Lecture 3: Quality of the Software Development Process
I Lecture 4: Requirements Analysis
I Lecture 5: High-Level Design & Formal Modelling
I Lecture 6: Detailed Specification, Refinement & Implementation
I Lecture 7: Testing
I Lecture 8: Program Analysis
I Lecture 9: Verification with Floyd-Hoare Logic
I Lecture 10: Verification Condition Generation
I Lecture 11: Model-Checking with LTL and CTL
I Lecture 12: NuSMV and Spin
I Lecture 13: Conclusions

3 [23]

Introduction

I Last lectures: verifying program properties with the Floyd-Hoare
calculus

I In the Floyd-Hoare calculus, program verification is reduced to a
deductive problem by translating the program into logic (specifically,
state change becomes substitution).

I Model-checking takes a different approach: the system is modelled
directly by a finite-state machine, and properties are expressed in some
logic for FSM. Program verification reduces to state enumeration,
which can be done automatically.

I The logics we will considere here are temporal logic: linear temporal
logic (LTL) and branching temporal logic (CTL)

4 [23]

The Model-Checking Problem

The Basic Question
Given a modelM, and a property φ, we want to know whether

M |= φ

I What isM?

I What is φ?

I How to prove it?

5 [23]

The Model-Checking Problem

The Basic Question
Given a modelM, and a property φ, we want to know whether

M |= φ

I What isM? Finite state machines

I What is φ?

I How to prove it?

5 [23]

The Model-Checking Problem

The Basic Question
Given a modelM, and a property φ, we want to know whether

M |= φ

I What isM? Finite state machines

I What is φ? Temporal logic

I How to prove it?

5 [23]

The Model-Checking Problem

The Basic Question
Given a modelM, and a property φ, we want to know whether

M |= φ

I What isM? Finite state machines

I What is φ? Temporal logic

I How to prove it? Enumerating states — model checking

5 [23]

Finite State Machines

Finite State Machine (FSM)
A FSM is given byM = 〈Σ,→〉 where
I Σ is a finite set of states, and
I → ⊆ Σ× Σ is a transition relation, such that → is left-total:

∀s ∈ Σ.∃s ′ ∈ Σ. s → s ′

I Many variations of this definition exists, e.g. sometimes we have state
variables or labelled transitions.

I Note there is no final state, and no input or output (this is the key
difference to automata).

I If → is a function, the FSM is deterministic, otherwise it is
non-deterministic.

6 [23]

The Railway Crossing

Train

Car

Gates

7 [23]

Modelling the Railway Crossing

States of the train:

xing

away

lvngappr

gate= closd

States of the car:

xing

away

lvngappr

gate= open gate = closed

States of the gate:

closdopen

train = appr

train = lvng
train = lvngtrain= appr

8 [23]

The FSM

I The states here are a map from variables Car, Train, Gate to the
domains

ΣCar = {appr, xing, lvng, away}
ΣTrain = {appr, xing, lvng, away}
ΣGate = {open, clsd}

or alternatively, a three-tuple S ∈ Σ = ΣCar × ΣTrain × ΣGate.

I The transition relation is given by e.g.

〈away, open, away〉 → 〈appr, open, away〉
〈appr, open, away〉 → 〈xing, open, away〉
. . .

9 [23]

Railway Crossing — Safety Properties

I Now we want to express safety (or security) properties, such as the
following:
I Cars and trains never cross at the same time.
I The car can always leave the crossing
I Approaching trains may eventually cross.
I There are cars crossing the tracks.

I We distinguish safety properties from liveness properties:
I Safety: something bad never happens.
I Liveness: something good will (eventually) happen.

I To express these properties, we need to talk about sequences of states
in an FSM.

10 [23]

Linear Temporal Logic (LTL) and Paths

I LTL allows us to talk about paths in a FSM, where a path is a
sequence of states connected by the transition relation.

I We first define the syntax of formula,

I then what it means for a path to satisfy the formula, and

I from that we derive the notion of a model for an LTL formula.

Paths
Given a FSMM = 〈Σ,→〉, a path inM is an (infinite) sequence
〈s1, s2, s3, . . .〉 such that si ∈ Σ and si → si+1 for all i .

I For a path p = 〈s1, s2, s3, . . .〉, we write pi for si (selection) and pi for
〈si , si+1, . . .〉 (the suffix starting at i).

11 [23]

Linear Temporal Logic (LTL)

φ ::= > | ⊥ | p — True, false, atomic
| ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 −→ φ2 — Propositional formulae
| X φ — Next state
| Fφ — Some Future State
| Gφ — All future states (Globally)
| φ1 U φ2 — Until

I Operator precedence: Unary operators; then U; then ∧, ∨; then −→.
I An atomic formula p above denotes a state predicate. Note that

different FSMs have different states, so the notion of whether an
atomic formula is satisfied depends on the FSM in question. A different
(but equivalent) approach is to label states with atomic propositions.

I From these, we can define other operators, such as φ R ψ (release) or
φW ψ (weak until).

12 [23]

Satifsaction and Models of LTL
Given a path p and an LTL formula φ, the satisfaction relation p |= φ
is defined inductively as follows:

p |= True
p 6|= False
p |= p iff p(p1)
p |= ¬φ iff p 6|= φ

p |= φ ∧ ψ iff p |= φ and p |= ψ
p |= φ ∨ ψ iff p |= φ or p |= ψ
p |= φ −→ ψ iff whenever p |= φ then p |= ψ

p |= X φ iff p2 |= φ
p |= Gφ iff for all i , we have pi |= φ
p |= Fφ iff there is i such that pi |= φ
p |= φ U ψ iff there is i pi |= ψ and for all j = 1, . . . , i − 1, pj |= φ

Models of LTL formulae
A FSMM satisfies an LTL formula φ,M |= φ, iff every path p inM
satisfies φ.

13 [23]

The Railway Crossing
I Cars and trains never cross at the same time.

G¬(car = xing ∧ train = xing)

I A car can always leave the crossing:

G(car = xing −→ F(car = lvng))

I Approaching trains may eventually cross:

G(train = appr −→ F(train = xing))

I There are cars crossing the tracks:

F(car = xing) means something else!

I Can not express this in LTL!

14 [23]

The Railway Crossing
I Cars and trains never cross at the same time.

G¬(car = xing ∧ train = xing)

I A car can always leave the crossing:

G(car = xing −→ F(car = lvng))

I Approaching trains may eventually cross:

G(train = appr −→ F(train = xing))

I There are cars crossing the tracks:

F(car = xing) means something else!

I Can not express this in LTL!

14 [23]

The Railway Crossing
I Cars and trains never cross at the same time.

G¬(car = xing ∧ train = xing)

I A car can always leave the crossing:

G(car = xing −→ F(car = lvng))

I Approaching trains may eventually cross:

G(train = appr −→ F(train = xing))

I There are cars crossing the tracks:

F(car = xing) means something else!

I Can not express this in LTL!

14 [23]

The Railway Crossing
I Cars and trains never cross at the same time.

G¬(car = xing ∧ train = xing)

I A car can always leave the crossing:

G(car = xing −→ F(car = lvng))

I Approaching trains may eventually cross:

G(train = appr −→ F(train = xing))

I There are cars crossing the tracks:

F(car = xing) means something else!

I Can not express this in LTL!

14 [23]

The Railway Crossing
I Cars and trains never cross at the same time.

G¬(car = xing ∧ train = xing)

I A car can always leave the crossing:

G(car = xing −→ F(car = lvng))

I Approaching trains may eventually cross:

G(train = appr −→ F(train = xing))

I There are cars crossing the tracks:

F(car = xing) means something else!

I Can not express this in LTL!
14 [23]

Computational Tree Logic (CTL)

I LTL does not allow us the quantify over paths, e.g. assert the
existance of a path satisfying a particular property.

I To a limited degree, we can solve this problem by negation: instead of
asserting a property φ, we check wether ¬φ is satisfied; if that is not
the case, φ holds. But this does not work for mixtures of universal and
existential quantifiers.

I Computational Tree Logic (CTL) is an extension of LTL which allows
this by adding universal and existential quantifiers to the modal
operators.

I The name comes from considering paths in the computational tree
obtained by unwinding the FSM.

15 [23]

CTL Formulae

φ ::= > | ⊥ | p — True, false, atomic
| ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | φ1 −→ φ2 — Propositional formulae
| AX φ | EX φ — All or some next state
| AFφ | EFφ — All or some future states
| AGφ | EGφ — All or some global future
| A[φ1 U φ2] | E[φ1 U φ2] — Until all or some

16 [23]

Satifsfaction

I Note that CTL formulae can be considered to be a LTL formulae with
a ’modality’ (A or E) added on top of each temporal operator.

I Generally speaking, the A modality says the temporal operator holds
for all paths, and the E modality says the temporal operator only holds
for all least one path.

I Of course, that strictly speaking is not true, because the arguments of the
temporal operators are in turn CTL forumulae, so we need recursion.

I This all explains why we do not define a satisfaction for a single path
p, but satisfaction with respect to a specific state in an FSM.

17 [23]

Satisfaction for CTL

Given an FSMM = 〈Σ,→〉, s ∈ Σ and a CTL formula φ, then
M, s |= φ is defined inductively as follows:

M, s |= True
M, s 6|= False
M, s |= p iff p(s)
M, s |= φ ∧ ψ iffM, s |= φ andM, s |= ψ
M, s |= φ ∨ ψ iffM, s |= φ orM, s |= ψ
M, s |= φ −→ ψ iff wheneverM, s |= φ thenM, s |= ψ
. . .

18 [23]

Satisfaction for CTL (c’ed)
Given an FSMM = 〈Σ,→〉, s ∈ Σ and a CTL formula φ, then
M, s |= φ is defined inductively as follows:

. . .
M, s |= AX φ iff for all s1 with s → s1, we have M, s1 |= φ
M, s |= EX φ iff for some s1 with s → s1, we haveM, s1 |= φ
M, s |= AGφ iff for all paths p with p1 = s,

we haveM, pi |= φ for all i ≥ 2
M, s |= EGφ iff there is a path p with p1 = s and

we haveM, pi |= φ for all i ≥ 2
M, s |= AFφ iff for all paths p with p1 = s

we haveM, pi |= φ for some i
M, s |= EFφ iff there is a path p with p1 = s and

we have;M, pi |= φ for some i
M, s |= A[φ U ψ] iff for all paths p with p1 = s, there is i

withM, pi |= ψ and for all j < i ,M, pj |= φ
M, s |= E[φ U ψ] iff there is a path p with p1 = s and there is i

withM, pi |= ψ and for all j < i ,M, pj |= φ
19 [23]

Patterns of Specification

I Something bad (p) cannot happen: AG¬p

I p occurs infinitly often: AG(AF p)

I p occurs eventually: AF p

I In the future, p will hold eventually forever: AFAG p

I Whenever p will hold in the future, q will hold eventually:
AG(p −→ AF q)

I In all states, p is always possible: AG(EF p)

20 [23]

LTL and CTL

I We have seen that CTL is more expressive than LTL, but (surprisingly),
there are properties which we can formalise in LTL but not in CTL!

I Example: all paths which have a p along them also have a q along
them.

I LTL: F p −→ F q

I CTL: Not AF p −→ AF q (would mean: if all paths have p, then all
paths have q), neither AG(p −→ AF q) (which means: if there is a p,
it will be followed by a q).

I The logic CTL∗ combines both LTL and CTL (but we will not consider
it further here).

21 [23]

State Explosion and Complexity
I The basic problem of model checking is state explosion.
I Even our small railway crossing has
|Σ| = |ΣCar × ΣTrain × ΣGate| = |ΣCar| · |ΣTrain| · |ΣGate| = 4 · 4 · 2 = 32
states. Add one integer variable with 232 states, and this gets
intractable.

I Theoretically, there is not much hope. The basic problem of deciding
wether a particular formula holds is known as the satisfiability problem,
and for the temporal logics we have seen, its complexity is as follows:
I LTL without U is NP-complete.
I LTL is PSPACE -complete.
I CTL is EXPTIME -complete.

I The good news is that at least it is decidable. Practically, state
abstraction is the key technique. E.g. instead of considering all
possible integer values, consider only wether i is zero or larger than
zero.

22 [23]

Summary

I Model-checking allows us to show to show properties of systems by
enumerating the system’s states, by modelling systems as finite state
machines, and expressing properties in temporal logic.

I We considered Linear Temporal Logic (LTL) and Computational Tree
Logic (CTL). LTL allows us to express properties of single paths, CTL
allows quantifications over all possible paths of an FSM.

I The basic problem: the system state can quickly get huge, and the
basic complexity of the problem is horrendous. Use of abstraction and
state compression techniques make model-checking bearable.

I Next lecture: practical experiments with model-checkers (NuSMV
and/or Spin)

23 [23]

