Systeme hoher Qualitat und Sicherheit
Universitat Bremen, WS 2013/14

Lecture 08 (09.12.2013)

Static Program Analysis

Christoph Luth
Christian Liguda

@ Universitat Bremen

Where are we?

» Lecture 01: Concepts of Quality

» Lecture 02: Concepts of Safety and Security, Norms and Standards
» Lecture 03: Quality of the Software DevelopmentProcess
» Lecture 04: Requirements Analysis

» Lecture 05: High-Level Design & Formal Modelling

» Lecture 06: Detailed Specification

» Lecture 07/: Testing

» Lecture 08: Static Program Analysis

» Lecture 09: Model-Checking

» Lecture 10 and 11: Software Verification (Hoare-Calculus)
» Lecture 12: Concurrency

» Lecture 13: Conclusions

b -
SQS, WS 13/14 2 ' : J@

Today: Static Program Analysis

» Analysis of run-time behavior of programs without
executing them (sometimes called static testing)

» Analysis is done for all possible runs of a program
(i.e. considering all possible inputs)

» Typical tasks
Does the variable x have a constant value ?
Is the value of the variable x always positive ?
Can the pointer p be null at a given program point ?
What are the possible values of the variable y ?

» These tasks can be used for verification (e.g. is there any

possible dereferencing of the null pointer), or for
optimisation when compiling.

b -
SQS, WS 13/14 ' : J@

Static Program Analysis in the Development Cycle

Validation
testing

Validated

E/E/PES safety - Software safety Validation
| software

requirements requirements
specification specification

Software

E/E/PES
[architecture “ arch |tecture --------------------------------

and programmable
electronics)

Integration testing
(components, subsystems

Software system|------------------—-- Integration
design g

Module
testing

CODING

SQS, WS 13/14

Usage of Program Analysis

Optimising compilers
» Detection of sub-expressionsthat are evaluated multiple times
» Detection of unused local variables

» Pipeline optimisations

Program verification

» Search for runtime errors in programs

» Null pointerdereference

» Exceptionswhich are thrown and not caught

» Over/underflow of integers, rounding errors with floating point
numbers

» Runtime estimation (worst-caste executing time, wcet; Abs/nt tool)

) |
SQS, WS 13/14 ' .

Program Analysis: The Basic Problem

» Basic Problem:

All interesting program properties are undecidable.

» Given a property P and a program p,wesayp = PifaP
holds for p. An algorithm (tool) ¢ which decides P is a
computable predicate ¢:p — Bool. We say:

¢ is sound if whenever ¢(p) then p E P.
¢ is safe (or complete) if whenever p = P then ¢(p).

» From the basic problem it follows that there are no
sound and safe tools for interesting properties.

In other words, all tools must either under- or
overapproximate.,

- B d -
SQS, WS 13/14 ' : J@

Program Analysis: Approximation

» Underapproximation only finds correct
programs but may miss out some

Useful in optimising compilers

Optimisation must respect semantics Not
o Computable
of program, but may optimise. o
» Overapproximationfinds all errors but
may find non-errors (false positives)
Useful in verification. Correct Errors
Safety analysis must find all errors,
but may report some more. —_—
Too high rate of false positives may Underapproximation
hinder acceptance of tool.
T

Overapproximation

=Y
SQS, WS 13/14 2

Program Analysis Approach

» Provides approximate answers
yes / no / don't know or
superset or subset of values
» Uses an abstraction of program'’s behavior

Abstract data values (e.g. sign abstraction)

Summarization of information from
execution paths e.g. branches of the if-else statement

» Worst-case assumptions about environment's behavior
e.g. any value of a method parameter is possible

» Sufficient precision with good performance

" R
SQS, WS 13/14 ' : ;I@

Flow Sensitivity

Flow-sensitive analysis
» Considers program's flow of control

» Uses control-flow graph as a representation of the
source

» Example: available expressions analysis

Flow-insensitive analysis

» Program is seen as an unordered collection of
statements

» Results are valid for any order of statements
e.g. S1,52vs.S52; 51

» Example: type analysis (inference)

SQS, WS 13/14

Context Sensitivity

Context-sensitive analysis

» Stack of procedure invocations and return values of
method parameters
then results of analysis of the method M depend on the
caller of M

Context-insensitive analysis

» Produces the same results for all possible invocations of
M independent of possible callers and parameter values

=y
SQS, WS 13/14 2

Intra- vs. Inter-procedural Analysis

Intra-procedural analysis
» Single function is analyzed in isolation

» Maximally pessimistic assumptions about parameter
values and results of procedure calls

Inter-procedural analysis

» Whole program is analyzed at once
» Procedure calls are considered

e (&)
SQS, WS 13/14 7€

Data-Flow Analysis

Focus on questionsrelated to values of variables and their lifetime

Selected analyses:
» Available expressions (forward analysis)

= Which expressions have been computed already without
change of the occurringvariables (optimization)?

» Reaching definitions (forward analysis)

= Which assignments contribute to a statein a program point?
(verification)

» Very busy expressions (backward analysis)

= Which expressions are executed in a block regardless which
path the program takes (verification)?

» Live variables (backward analysis)

= |Isthevalue of a variablein a program pointused in a later part
of the program (optimization)?

=y
SQS, WS 13/14 2

A Very Simple Programming Language

» In the following, we use a very simple language with

Arithmetic operators given by

a :=x|n|a opya,
with x a variable, n a numeral, op,arith. op. (e.g. +, -, *)
Boolean operators given by
b := true | false |not b | b;op,, b,| a,0p, a,

with op, boolean operator (e.g. and, or) and op, a

relational operator (e.g. =, <)

Statements given by

S =

[x = a]* | [skip]® | Sy; S, | if [b]'then S;else S, | while [b]'do S
» An Example Program:

[x := a+b]";
ly := a*b];
sas ws1aa While [y > a+b]® do ([a:=a+1]%; [x:= a+b]°) = 'I@

1
A

The Control Flow Graph

» We define some functions on the abstract syntax:
The initial label (entry point) init: S — Lab
The final labels (exit points) final: S — P(Lab)

The elementary blocks block: S — P(Blocks)
where an elementary block is

an assignment[x:= a],
or [skip],
or a test [b]

The control flow flow:S - P(Lab X Lab) and reverse
control flow®: S - P(Lab X Lab).

» The control flow graph of a program S is given by
elementary blocks block(S) as nodes, and
flow(S) as vertices.

- B d -
SQS, WS 13/14 ' : J@

Labels, Blocks, Flows: Definitions

final([x:=a]’)={1}

final([skip]))={/}

final(S4; S,) = final(S,)

final(if [b]'then S, else S,) = final(S;) U final(S,)
final(while [b] do S) ={/}

flow([x :=a]') =0
flow([skip]') = 0

init([x :=a])’) =1

init([skip]’') =/

init(S4; S,) = init(S4)

init(if [p]' then S, else S,) =/
init(while [b]’ do S) =1

flowR(S) = {(I", 1) | (I, I') € flow(S)}

flow(if [b] then S, else S,) = flow(S,) U flow(S,) U { (1, init(S,), (/, init(S,) }
flow(while [b]' do S) = flow(S) U { (/, init(S)} U{(I,)| I € final(S) }

(
(
flow(Sq; S,) = flow(S,) U flow(S,) U {(/, init(S,)) | I € final(S,) }
(
(

blocks([x:=a]')={[x:=a] }
blocks([skip]’) = { [skip]'}
blocks(S4; S,) = blocks(S4) U blocks(S,)
blocks(if [b]'then S, else S,)

={[b]'} U blocks(S;) U blocks(S,)
blocks(while [b] do S) = { [b]'} U blocks(S)

SQS, WS 13/14

labels(S) = { /| [B])'c blocks(S)}

FV(a) = free variables in a

Aexp(S) = nontrivial
subexpressions of S

=Y

Another Example

P = [x:=a+b]'; [y := a*b]% while [y > a+b]® do ([a:=a+1]*; [x:= a+b]®)

init(P) = 1 x:=a+b
final(P) = {3} l
blocks(P) =
{[x := a+b]", [y = a*b], [y > a+b]3, [a:=a+ 114, [x:= a+b] } yi=a*b
flow(P) = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 3)} |
flowR(P) ={(2, 1), (3, 2), (4, 3), (5, 4), (3, 5)} v no
labels(P) = {1, 2,3, 4, 5) y>a+b —
FV(a + b) = {a, b} lyes
a:=a+1)
X:=a+b >
|

=Y
SQS, WS 13/14 2

Available Expression Analysis

» The avaiable expression analysis will
determine:

For each program point, which
expressions must have already been
computed, and not later modified, on
all paths to this program point.

SQS, WS 13/14

Available Expression Analysis

gen([x:=a])={a‘ € Aexp(a) | xgFV(a‘) }
gen([skip]') =

gen([b]") = Aexp(b)

kill([x :=a]’) = { a* € Aexp(S) | x € FV(a) }
Kill([skip]’) = ()

kill([b]') =

AE;n(1)
AEi(1)
AEqy (1

= 0 ,ifl€init(S) and
= ﬂ {AEout (1) (I]) € flow(S) } , otherwise
)= (AE, (/) \Kkill(B")) Ugen(B')where B’ € blocks(S)

X :=a+b
2
y:=a*b
v no

kill(/) gen(/) AE;, AE,t

SQS, WS 13/14

4
a:=a+1
X:=a+b

|
=y

Available Expression Analysis

gen([x:=a]')={a‘' € Aexp(a) | xeFV(a') } S:
gen([skip]') =0 - 1
gen([b]') = Aexp(b) X:=a+b
kill([x :=a]') = { a' € Aexp(S) | x € FV(a') } l
Kill([skip]’) = () 5
kill([b]') = y:=a*b
AE.(1)= 0 ,ifl €init(S) and |
AE (/)= ﬂ {AEout (1) (I]) e flow(S) } ,otherwise v no
AE, . (1)=(AE;(/)\Kill(B"))uUgen(B')where B' € blocks(S) y>a+b 3_)
/ Kill() gen() / AE, AE, . lyes
1 0 {a+b} 1 0 {a+b} a=a+1 :
2 0 {a*b} 2 {a+b} {a+b, a*b}
3 0 {a+b} 3 {a+b} {a+b} l
4 {a+b, a*b, a+1} 0 4 {a+b} 0
5 0 {a+b} 5 0 {a+b} X'=g+b S

|

=Y
SQS, WS 13/14 1€

Reaching Definitions Analysis

» Reaching definitions (assignment)
analysis determines if:

An assignment of the form [x := a]'

may reach a certain program point k
if there is an execution of the
program where x was last assigned a

value at | when the program point k
is reached

SQS, WS 13/14

X

<

()]

<

X

X

D X e X e Ve e—
1

—

—_—

<
D

*

<

—_—

oY

-_—

» N
S

(%)

E

Reaching Definitions Analysis

gen([x:=a])={(x, 1)} / kill(B') gen(B')
gen([skip]') = T {(x?), 1,5} {(x 1)}
gen([b]") = ?, {(y,?), (3%2),(3/,4)} {(y,@2)}

- - 4 {(y.?), (v.2).(y,4)} {(y, 4)}
Kill([skip]') =0
ill([b]') = 0 5 {(x7?), (x,1),(x,5)} {(x,)}
kill([x:=a]')={(x, ?) } U{ (x, k) | BKis an assignmentto x in S }
RD,(/)={(x, ?)|xe FV(S)} ,ifl€init(S) and
RD,(/)= U{R DOut (I')]| (IV]) € flow(S)} , otherwise
RD,. (/)= (RD;(/)\kill(B")) U gen(B’') where B’ € blocks(S)

RD;,

RDout

a b~ WON | —

SQS, WS 13/14

X
]
&)
-

<
-

<
N

%
n

}

1N

*

<

1
LN
A

D X e X e Ve e—
<
D
()]

€

Reaching Definitions Analysis

gen([x:=a]') = { (x,)} / kill(B') gen(B/)
gen([sk|p]’) T {(x?), (x,1),(x,9)} {(x, 1)}
gen([b]") = ?, {(y,?), (3%2),(3/,4)} {(y,@ 2)}

- : 4 {(y.?), (v.2).(y,4)} {(y, 4)}
Kill([skip]') =0
ill([b]') = 0 5 {(x?), (x1),(x5)} {(x, 5)}
kill([x:=a]')={(x, ?) } U{ (x, k) | BKis an assignmentto x in S }
RD,(/)={(x, ?)|xe FV(S)} ,ifl€init(S) and
RD,(/)= U{R DOut (I')]| (IV]) € flow(S)} , otherwise
RD,. (/)= (RD;(/)\kill(B")) U gen(B’') where B’ € blocks(S)
/ RDin RDout

1 {x.?), (y,?)} {x.1), (y.?)}

2 {x,1), (v,?)} {(x,1), (v.2)}

3 {x,1), (x5), (v.2), (y,:4)} {(x,1), (x5), (v.2), (v.4)}

4 {x,1), (x5), (v,2), (v,4)} {(x,1), (x,5),(y,4)}

S {(x,1), (x,5),(y,4)} {(x,5).(y,4)}

SQS, WS 13/14

Live Variables Analysis

» A variable x is live at some program
point (label |) if there exists if there

exists a path from | to an exit point that
does not change the variable.

» Live Variables Analysis determines:

For each program point, which

variables may be live at the exit
from that point.

» Application: dead code elemination.

SQS, WS 13/14

P
]
N
-_—

T

<
N

<« || «—

<
\
X

Live Variables Analysis

gen([x:=a]') = FV(a) kill(Ix -=al') = S:
gen([skip]") = @ k:”E Fs(kip?’]))= @{X} _ 5 1
gen([b]') = FV(b) kill([b]) = 0 X-=

é——

LV,.(/)= 0 ,ifl e final(S) and
LV, 1) = ULV, (I°)] (5]) € flowR(S)} , otherwise
LVi, (1)=(LV (/) \Kill(B")) U gen(B") where B’ € blocks(S)

<
N
D
N

1

x:=13
I Kill(/) gen(/) I LV, LV, ¢ 4

y > X
1 1
2 2 yes no
3 3 5 % 6
4 4 zZ.=y zZ:=yty
5 2 \/

7

6 7 =
7 X.=Z

=Y
SQS, WS 13/14 1<

Live Variables Analysis

gen([x:=a]') = FV(a) kill([x :=al) = {x S:
gen([skip]') =0 kiIIE Eskip]’]))= (2){ } o]
gen([b]') = FV(b) ill([b]') = X =2
out([)= 0 ,ifl < final(S) and l -
Voul 1) =U {LVm (1) (I51) € flowR(S) } , otherwise y =4
Vi (1)=(LV (1) \Kill(B")) U gen(B') where B’ € blocks(S) l
x =13
I Kill(/) gen(/) I LV, LV, l 4
>
1)] i]] L
2 {y} 0 2 0 {y} yes no
3 {x} 0 3 {v} {x v} 5| [.6
4 0 {x, y} 4 {x, y}) z:=y zZ:=yty
5 e) 5 iy} 2 \/
6 {z {y} 6 {y} {Z .
7 {x} {z} 7 {2} 0 Y=

=y
SQS, WS 13/14 1€

First Generalized Schema

» Analyse.(/)= EV ,if/ € E and
» Analyse.(/)= L { Analyse, (/") | (I,]) € Flow(S) }, otherwise

» Analyse, (/)= f,(Analyse.(/))

With:

» LIis eitherJ or N

» EVis theinitial/ final analysisinformation

» Flow is either flow or flowR

» E is either {init(S)} or final(S)

» f, is the transfer function associated with B/ € blocks(S)

Backward analysis: F =flowR, e =N, .= OUT
Forward analysis: F =flow, e = OUT, .= IN

SQS, WS 13/14

Partial Order

»L=(M, C)is apartial order iff
Reflexivity: V x € M. X E X /

Transitivity: VXy,z€ M. XEYyAYyEZ=>XEZ \ /
Anti-symmetry: Vxy €c MMXEYAYyEX=>X=Yy

» LetL=(M, E)be a partial order, S < M.
y € Mis upper bound forS(SEy)iffvxeS.xCy

y € M is lower bound for S (yE S)iff Y x € S. y E x T
Least upper bound UX € Mof X M

XEUXAVYeEM:XEy= UXEY /\
Greatest lower bound NX € M of X € M:
MXEXAVYEM:yEX=yEnX \/

=Y
SQS, WS 13/14 2

Lattice

A lattice ("Werbund”) is a partial order L = (M, E) such that
» LUX and nNX exist for all X M

» Unique greatest element T = UM = nNg@
» Unique least element L =M = U@

-
SQS, WS 13/14 ' 1

Transfer Functions

» Transfer functionsto propagate information along the execution
path

(i.e. from input to output, or vice versa)

» Let L =(M, E) be alattice. Set F of transfer functions of the form
f;: L— Lwith/beinga label

» Knowledge transferis monotone
VXy. XEy=f(X)Ef(y)

» Space F of transfer functions
F containsall transfer functionsf,
F containstheidentityfunctionid, i.e. V x € M. id(x) = X
F is closed under composition,i.e.Vf,ge F. (f°eg)e F

j |
SQS, WS 13/14) =

The Generalized Analysis

» Analyse.(/) = LI {Analyse, (/') | (I,]) € Flow(S) } LI /¢
with J/c=EV if /€ E and
Je=1 otherwise

» Analyse, (/)= f,(Analyse.(/))

With:

» L property space representing data flow information with
(L, U) being a lattice

» Flow is a finite flow (i.e. flow or flowR)

» EV is an extremal value for the extremal labels E (i.e. {init(S)}or
final(S))

» transfer functionsf, of a space of transfer functions F

=Y
SQS, WS 13/14 2

Summary

» Static Program Analysis is the analysis of run-time
behavior of programs without executing them
(sometimes called static testing).

» Approximations of program behaviours by analyzing the
program’s cfg.
» Analysis include
available expressions analysis,
reaching definitions,
live variables analysis.
» These are instances of a more general framework.
» These techniques are used commercially, e.g.
AbsInt aiT (WCET)
Astrée Static Analyzer (C program safety)

T P
SQS, WS 13/14 =< ()

