
Systeme Hoher Qualität und Sicherheit
Vorlesung 5 vom 18.11.2013: High-Level Specification and

Modelling

Christoph Lüth & Christian Liguda

Universität Bremen

Wintersemester 2013/14

Rev. 2351 1 [21]

Where are we?
I Lecture 1: Concepts of Quality
I Lecture 2: Concepts of Safety and Security, Norms and Standards
I Lecture 3: Quality of the Software Development Process
I Lecture 4: Requirements Analysis
I Lecture 5: High-Level Design & Formal Modelling
I Lecture 6: Detailed Specification, Refinement & Implementation
I Lecture 7: Testing
I Lecture 8: Program Analysis
I Lecture 9: Verification with Floyd-Hoare Logic
I Lecture 10: Verification Condition Generation
I Lecture 11: Model-Checking with LTL and CTL
I Lecture 12: NuSMV and Spin
I Lecture 13: Conclusions

2 [21]

Your Daily Menu

I High-Level Specification and Modelling

I The Z Notation as an example of a modelling language

I Basics, Schema Calculusm, Mathematical Library

I Canonical Example: the Birthday Book

I Running Example OmniProtect

I Modelling the safe robot

3 [21]

High-Level Specification and Modelling

I Here, we want to be able to express high-level requirements
abstractly, precisely and without regards for the implementation.

4 [21]

Why look at Z?

I Z is a good example of a modelling language.

I It allows us to model high-level specifications in a mathematically
precise fashion, unambigious and exact.

I Z is easy to grasp, as opposed to other mechanisms — we quickly get
off the ground.

I Alternatives would be UML (in particular, class diagrams plus OCL),
but that is on the one hand already geared towards implementation,
and on the other hand there is less tool support for OCL. UML support
is more geared towards code generation, not so much abstract
modelling as appropriate in this phase of the design process.

5 [21]

The Z Notation

I Z is a notation based on typed set theory.

I That means everything is described in terms of set (sets are types)

I There is a lot of syntactic convention (“syntactic sugar”)

I It is geared towards the specification of imperative programs

I State and state change built-in

I Developed late 80s (Jean-Claude Abrial, Oxford PRG; IBM UK)

I Used industrially (IBM, Altran Praxis ex. Praxis Critical Systems))

I LATEX-Notation and tool support (Community Z Tools, ProofPower)

6 [21]

Introducing the Birthday Book

I The birthday book is a well-known example introducing the main
concepts of the Z language. It can be found e.g. in the Z reference
manual (freely available, see course home page).

I It models a birthday calendar, where one can keep track of birthdays
(of family, acquaintances, business contacts . . . )

I Thus, we have names and dates as types, and operations to

I add a birthday,

I find a birthday,

I and get reminded of birthdays.

7 [21]

Birthday Book: Types

I We start by declaring the types for names and date. We do not say
what they are:

[NAME , DATE ]

I In Z, we define operations in terms of state transitions.

I We start with defining the state space of our birthday book system.
This is our abstract view of the system state.

I The system state should contain names and birthdays, and they
should be related such that we can map names to birthdays.

8 [21]

http://czt.sourceforge.net/


Birthday Book: The System State
I The system state is specified in form of a Z schema. A schema

consists of two parts: variable declarations and axioms.

BirthdayBook
known : PNAME
birthday : NAME 7→ DATE

known = dom birthday

I This says that there is a set known of names, and a partial map from
names to dates. (Z has a library, called the Mathematical Toolkit, of
predefined types and operations, such as the power set and partial map
used here.)

I The axiom is an invariant (meaning it has to be preserved by all
operations). It says that the set of known names is the domain of the
birthday map.

9 [21]

Schema Operations: Pre- and Poststate
I Operations are defined as schemas as well.
I Operations have a prestate (before the operation is applied) and a

poststate (after the operation has been applied). The poststate is
denoted by dashed variables.

I Here is an operation which just adds my name, cxl, to a set of known
names:

AddMe
known : PNAME
known′ : PNAME

known′ = known ∪ {cxl}

I In order to minimise repetition, schemas can comprise other schemas.
We can also dash whole schemas. Further, the schema operator ∆S
is shorthand for ∆S def

= S ∧ S ′, or “include S and S ′”.
10 [21]

Birthday Book: First Operation
I As a first operation, we want to add a birthday.
I This requires a name and a birthday as input variables.

AddBirthday
∆BirthdayBook
name? : NAME
date? : DATE

name? /∈ known
birthday ′ = birthday ∪ {name? 7→ date?}

I Input variables are only defined in the prestate. (Similary, output
variables, written as name!, are only defined in the poststate.)

I The Birthday invariant holds both in pre- and poststate. From this, we
can show that the following sensible property holds:

known′ = known ∪ {name?}

11 [21]

Birthday Book: Finding a birthday
I Finding a birthday gives the name as input, and a date as output:

FindBirthday
ΞBirthdayBook
name? : NAME
date! : DATE

name? ∈ known
date! = birthday(name?)

I This introduces the Ξ operator. It is shorthand for
ΞS def

= (∆S ∧ S = S ′) (or, “for schema S, nothing changes”.)
I The FindBirthday operation has a precondition (the name must be in

the set of known names); only if that holds, the postcondition is
guaranteed to hold as well.

12 [21]

Birthday Book: Reminders
I A reminder takes a date as input, and returns the names of entries

with this birthday.
Remind
ΞBirthdayBook
today? : DATE
cards! : PNAME

cards! = {n : known | birthday(n) = today?}

RemindOne
ΞBirthdayBook
today? : DATE
card ! : NAME

card ! ∈ known
birthday card ! = today?

I A variation of this schema just selects one name. It is an example of a
non-deterministic operation.

13 [21]

Birthday Book: Putting it all together

I We need an initial state. It does not say explicitly that birthday ′ is
empty, but that is implicit, because its domain is empty.

InitBirthdayBook
BirthdayBook ′

known′ = {}

I And we put it all together by conjoining the schemas:

System == InitBirthdayBook ∧ (AddBirthday ∧ FindBirthday ∧ Remind)

14 [21]

Case Study: the OmniProtect Project

I The objective of the OmniProtect project is to develop a safety
module for omnimobile robots.

I These robots have a behaviour which is easily describable: they move
with a velocity which is given by a vector ~v (per time t).

I The velocity can be changed instanteneously, but we assume that
braking is linear.

I The shape of the robot is described by a convex polygon.

I We move the robot by moving the polygon by the given velocity ~v .

I We will first describe this movement, and the area covered by this
movement (modelling). We will then (next lecture) describe the actual
operations (high-level specification), and investigate how to implement
them (low-level specification).

15 [21]

Modelling the Safe Robot: Planar Movement

End position

v

Starting position

I Braking time and braking distance:

v(t) = v0 − abrkt s(t) = v0t − abrk
2 t2 T = v0

abrk
S =

v2
0

2abrk

I Modelling in Z: Calculating the braking distance

brk : N× N→ N

∀ v , a : N • brk (v , a) = (v ∗ v) div (2 ∗ a)

16 [21]



Mathematical Modelling: Points and Vectors
I Schema for points (vectors):

VEC
x : Z
y : Z

I Type für Polygons und segments:

POLY == {s : seq VEC | #s > 3 ∧ head s = last s}
SEG == VEC × VEC

I This introduces the type of sequents, seq, or finite lists, from the
Mathematical Toolkit. There are a number of useful predefined
functions on lists.

17 [21]

Mathematical Modelling: Vector Operations

I Addition and scalar multiplication of vectors

add : VEC × VEC → VEC
smult : R × VEC → VEC

∀ p, q : VEC • add(p, q) = (p.x + q.x , p.y + q.y)
∀ n : R; p : VEC • smult (n, p) = (n ∗ p.x , n ∗ p.y)

I We have slightly cheated here — Z does not really know real numbers.

18 [21]

More abouts Points and Vectors
I A segment defines a left half-plane (as a set of points)

left : SEG → PVEC

∀ a, b : VEC • left (a, b) = {p : VEC | (b.y − a.y) ∗ (p.x − b.x)−
(p.y − b.y) ∗ (b.x − a.x) < 0}

I The area of a (convex!) polygon is the intersection of the left
half-planes given by its sides.

sides : POLY → P SEG
area : POLY → PVEC

∀ p : POLY • sides p = {s : SEG | 〈s.1, s.2〉 in p}
∀ p : POLY • area p =

⋂
{s : SEG | s ∈ sides p • left s}

I We should make the restriction on convex explicit (next lecture).
19 [21]

Moving Polygons

Braking area End position

v

Starting position

I Moving a polygon by a vector:

move : POLY × VEC → POLY

∀ p : POLY ; v : VEC • move(p, v) = (λ x : VEC • add(x , v)) ◦ p

I Area covered by this movement

cov : POLY × VEC → PVEC

∀ p : POLY ; v : VEC •
cov (p, v) =

⋃
{τ : R | 0 ≤ τ ≤ 1 • area(move(p, smult(τ, v)))}

20 [21]

Summary

I Z is a modelling language based on typed set theory

I Its elements are
I axiomatic definitions
I schema and the schema calculus
I the Mathematical Toolkit (standard library)

I In Z, we start with modelling the system state(s), followed by the
operations (which are state transitions)

I The birthday book example can be found in the Z reference manual.

I We have started with modelling the robot.

I Next lecture: the safe robot, and its operations.

21 [21]


