Systeme hoher Qualitat und Sicherheit
Universitat Bremen, WS 2013/14

Lecture 03 (04.11.2013)
Quality of the Software Development
Process

Christoph Luth
Christian Liguda

@ Universitat Bremen

Your Daily Menu

» Models of Software Development

= The Software Development Process, and its role in safety-
critical software development.

= What kind of development models are there?

= Which ones are useful for safety-critical software
- and why?
= What do the norms and standards say?

» Basic Notions of Formal Software Development:

= How to specifiy: properties
= Structuring of the development process

SQS, WS 13/14

Where are we?

» Lecture 01: Concepts of Quality

» Lecture 02: Concepts of Safety and Security, Norms and Standards
» Lecture 03: Quality of the Software Development Process

» Lecture 04: Requirements Analysis

» Lecture 05: High-Level Design & Detailed Specification

» Lecture 06: Testing

» Lecture 07 and 08: Program Analysis

» Lecture 09: Model-Checking

» Lecture 10 and 11: Software Verification (Hoare-Calculus)

» Lecture 12: Concurrency
» Lecture 13: Conclusions

2<\Y

SQS, WS 13/14

Software Development Models

@ Universitat Bremen

Software Development Process

» A software development process is the structure
imposed on the development of a software product.
» We classify processes according to models which specify
= the artefacts of the development, such as

» the software productitself, specifications, test documents,
reports, reviews, proofs, plans etc

= the different stages of the development,

= and the artefacts associated to each stage.
» Different models have a different focus:

= Correctness, development time, flexibility.
» What does quality mean in this context?

= What is the output? Just the sofware product, or more?
(specifications, test runs, documents, proofs...)

Y

SQS,Ws13/14

Software Development Models

2 Prototype-based Agile
3 developments Methods
=
<IJ
[
Spiral model
V-model
Waterfall
model Model-driven
developement
Structure
from S. Paulus: Sichere Software|
S
SQs, WS 13/14] J@J)

Waterfall Model (Royce 1970)

» Classical top-down sequential workflow with strictly
separated phases.

Requirement
Design
Implementation
Verification
Maintenance

» Unpractical as actual workflow (no feedback between
phases), but even early papers did not really suggest
this.

Y

SQS,Ws13/14

Spiral Model (B6hm, 1986)

» Incremental development guided by risk factors
» Four phases: ——
= Determine objectives i | IR eanae
= Analyse risks
= Development and test
= Review, plan next iteration ..
»Seee.g.
= Rational Unified Process (F

\

a.Panta

» Drawbacks: resttmten
= Risk identification is the key, and can be quite difficult

Y

SQS, WS 13/14

Agile Methods

» Prototype-driven development
= E.g. Rapid Application Development
= Development as a sequence of prototypes
= Ever-changing safety and security requirements

» Agile programming
= E.g. Scrum, extreme programming
= Development guided by functional requirements
= Less support for non-functional requirements

» Test-driven development

= Tests as executable specifications: write tests first
= Often used together with the other two

=y

SQS, WS 13/14

Model-Driven Development (MDD, MDE)

» Describe problems on abstract level using a modelling
language (often a domain-specific language), and derive
implementation by model transformation or run-time
interpretation.

» Often used with UML (or its DSLs, eg. SysML)

[cm } | PIM_|—>{ PSM |—> Code |

» Variety of tools:
= Rational tool chain, Enterprise Architect
= EMF (Eclipse Modelling Framework)
» Strictly sequential development
» Drawbacks: high initial investment, limited flexibility

=y

SQS, WS 13/14

V-Model

» Evolution of the waterfall model:

= Each phase is supported by a corresponding testing
phase (verification & validation)

= Feedback between next and previous phase
» Standard model for public projects in Germany
= .. butalso a general term for models of this ,shape”

9nguing
Support,

Requirements Review/Test

Analysis

Operational
Testing

Detailed > Unit
Specifications Testing

SQS, WS 13/14

=Y

Development Models for Critical Systems

» Ensuring safety/security needs structure.

= ...but too much structure makes developments
bureaucratic, which is in itself a safety risk.

= Cautionary tale: Ariane-5

» Standards put emphasis on process.
= Everything needs to be planned and documented.

» Best suited development models are variations of the V-
model or spiral model.

SQS, WS 13/14

=Y

Planning

Realisation

« ning
¥
m Overal satety
Valdation

TN -

Operation

=Y

SQS,Ws13/14

Development Model in IEC 61508

» [EC 61508 prescribes certain activities for each phase of
the life cycle.

» Development is one part of the life cycle.
» IEC recommends V-model.

Validation

i Validated

software

SQS, WS 13/14

=y

Development Model in DO-178B

» DO-178B defines different processes in the SW life cycle:
= Planning process
= Development process, structured in turn into
» Requirements process
» Design process
» Coding process
» Integration process
= Integral process

» There is no conspicuous diagram, but these are the
phases found in the V-model as well.
= Implicit recommendation.

SQS,Ws13/14

=Y

Artefacts in the Development Process

Planning:

+ Document plan Possible formats:
« V&Vplan + Word documents
* QMplan + Excel sheets

« Test plan « Wiki text

+ Project manual

Specifications:

« Safety requirfement spec. =

« System specification ; g

- Detail speciicaton [E=nT . Formalangusges:

+ User document (safety . Siateck;arts: o
reference manual) similar diagrams

Implementation: « Source code
+ Code
Verification & validation:

« Code review protocols
» Tests and test scripts
» Proofs

Database (Doors)

» UML diagrams

Documents must be identified and
reconstructable.
« Revision control and configuration

management obligatory.
SQS, WS 13/14 ’ -':l@

Basic Notions of Formal
Software Development

@ Universitat Bremen

Formal Software Development

» In formal development, properties are stated in a rigorous way with
a precise mathematical semantics.

» These formal specifications can be proven.

» Advantages:

Errors can be found early in the developmentprocess, saving
time and effort and hence costs.

There s a higher degree of trustin the system.

Hence, standardsrecommend use of formal methods for high
SILs/EALs.

» Drawback:

Requires qualified personnel (that would be you).
» There are tools which can help us by

finding (simple) proofs for us, or

checking our (more complicated proofs).

SQS, WS 13/14) -‘:I@

Formal Software Development

informal specification
O

o

Properties

» A general notion of properties.
» Properties as set of infinite

—0— —0—

abstract [m = - z execution traces *—0—>0—0—
specification Horizontal = --,:g.,,,.-‘,: :B:Dr' (i.e. infinite sequences of states)
[3
l R) » Trace t satisfies property P,
o = % | i 3 written P = ¢, ifft € P et e
= = - e % . O
3] Proofs »b<tiff It. t=bet
éga éga . i.e. bis a finite prefix of t re—e
55 g g
Impl - o
égﬁ mfa;gwnen ggﬁ g
R .
—_— . QJ) SQS, WS 13/14 ' l. ;I@)
Safety and Liveness Properties Safety Properties

. Alpen & Schneider (1985, 1987)
» Safety properties

Nothing bad happens

partial correctness, program safety, access control
» Liveness properties

Something good happens

Termination, guaranteed service, availability

» Theorem: v P. P =Safe, n Livep

Each property can be represented as a combination
of safety and liveness properties.

SQS, WS 13/14 -.:I@_J)

» Safety property S: ,Nothing bad happens”
» A bad thing is finitely observable and irremediable
» S is a safety property iff
Vt.t ¢S — (3b.finite b Ab<t >Vub<u->ué¢s)
t: O—=0—0—0—

b: — —@

a finite prefix b always causes the bad thing

» Safety is typically proven by induction
Safety properties may be enforced by run-time monitors.

SQS, WS 13/14 o [

Liveness Properties

» Liveness property L: ,,Good things will happen”

» A good thing is always possible and possibly infinite:

. . . t: @
» L is a liveness property iff e

Vvt finitet -3g.t<gAgE€L

g: —— — —>
i.e. all finite traces t can be extended to a trace g in L.

» Liveness is typically proven by well-foundedness.

SQS,Ws13/14 r:l@)

Underspecification and Nondeterminism

» A system S is characterised by a set of traces.
» A system S satisfies a property P, written
SEPiffScp
(i.e. vt € S.t € P, all traces satisfy the property P).

» Why more than one trace? Difference between:
Underspecification or loose specification -
we specify several possible implementations.
Non-determinism - different program runs might result
in different traces.

» Example: a simple can vending machine.
Insert coin, chose brand, dispense drink.
Non-determinisim due to internal or external choice.

SQS, WS 13/14 ":I@)

Structure in the Development

» Horizontal structuring
= Modularizationinto components
= Composition and Decomposition
= Aggregation

» Vertical structuring
= Abstraction and refinement
from design specificationto implementation

= Declarativevs. imparative specification
= Inheritence

» Layers/ Views
= Adresses multiple aspects of a system

= Behavioral model, performance model, structural model,
analysis model(e.g. UML, SysML)

=Y

SQS, WS 13/14

Horizontal Structuring (informal)

» Composition of components
= Dependent on the individual layer of abstraction
= E.g. modules, procedures, functions,...

» Example:

SQS, WS 13/14 ' ":I@

Horizontal Structuring: Composition

» Given two systems Sy, S,, their sequential composition is defined as
S;8, ={s - tIseS,teS,}
= Alltraces from S_1, followed by all traces from S_2.
» Given two traces s, t, their interleaving is defined (recursively) as
<>lt=t
sl<>=s
a-sllb-t={a -ulues b -t}u{b -ulueca st}
» Given two systems Sy, S_2, their parallel composition is defined as

SISy ={s It |s€S;,teS,)

= Traces from S_1 interleaved with traces from S,.

2<\Y

SQS, WS 13/14

Vertical Structure - Refinement

» Data refinement
= Abstract datatype is ,implemented” in terms of the
more concrete datatype
= Simple example: define stack with lists
» Process refinement
= Process is refined by excluding certain runs

= Refinement as a reduction of underspecification by
eliminating possible behaviours

» Action refinement
= Action is refined by a sequence of actions

= E.g. astub for a procedure is refined to an executable
procedure

EAY

SQS, WS 13/14

Refinement and Properties

» Refinement typically preserves safety properties.
= This means if we start with an abstract specification
which we can show satisfies the desired properties, and
refine it until we arrive at an implementation, we have a
system for the properties hold by construction:

SP w» SP; w» SPy ws ... Imp

» However, security is typically not preserved by
refinement nor by composition!

Y

SQS,Ws13/14

Security and Composition

Only complete bicycles are allowed to pass the gate.

Secure!

Secure !

Y

SQS, WS 13/14

Security and Composition

Only complete bicycles are allowed to pass the gate.

Insecure !

Y

SQS,Ws13/14

Conclusion & Summary

» Software development models: structure vs. flexibility
» Safety standards such as IEC 61508, DO-178B suggest
development according to V-model.

= Specification and implementation linked by verification
and validation.

= Variety of artefacts produced at each stage, which have to
be subjected to external review.

» Properties include safety and liveness properties.
» Structuring of the development:

= Horizontal - e.g. composition

= Vertical - refinement (data, process and action ref.)

Y

SQS, WS 13/14

