
Christoph Lüth

Programmiersprachen

Wintersemester 2023/24

Lecture Notes

Last revision: December 21, 2023.

Lüth: Programmiersprachen

Vorlesung vom 19.10.2023: Auswertung von Ausdrücken

1 Preliminaries

1.1 Partial Maps

A finite partial map from X to Y , written f : X ⇀ Y , is a right-unique relations:

f ⊆ X ×Y such that (x,y) ∈ f ∧ (x,z) ∈ f =⇒ y = z

For f ∈ X ⇀ Y , x ∈ X we define

f (x) = y ⇐⇒ (x,y) ∈ f (1)

The right-uniquess makes f (x) well-defined (i.e. there is at most one y such that f (x) = y), but it may not
be defined. In this case, we write f (x) =⊥.

Notation: we write e.g. ⟨x 7→ 3,y 7→ 5,z 7→ 7⟩ for {(x,3),(y,5),(z,7)}.

The domain of f is the set of all x where f (x) is defined:

dom(f) = {x | ∃y.(x,y) ∈ f} (2)

We also define pointwise erasure and update (for a finite partial map f):

f \ x def
= {(y,a) | (y,a) ∈ f ∧ y ̸= x} (3)

f [x 7→ y] def
= (f \ x)∪{(x,y)} (4)

Note how the update removes any existing map of x. Clearly, if f is right-unique so is f \x for any x ∈ X .
Further, dom(f \ x) = dom f \{x}. Hence,if f is right-unique so is f [x 7→ y].

We also have the following equations between update, lookup and remove:

(f [x1 7→ y])(x2) =

{
y x1 = x2

f (x2) x1 ̸= x2
(5)

(f \ x1)(x2) =

{
f (x2) x1 ̸= x2

⊥ x1 = x2
(6)

(f [x1 7→ y])[x2 7→ z] =

{
(f [x2 7→ z])[x2 7→ y] x1 ̸= x2

f [x2 7→ z] x1 = x2
(7)

(8)

Readers are invited to find the equations describing the interaction between f [x 7→ y] and f \z, i.e. (f [x1 7→
y])\ x2 =? and (f \ x1)[x2 7→ y] =?.

Finally, the empty set /0 ⊆ X ×Y is the empty map which is undefined everywhere. It is obviously right-
unique, and dom(/0) = /0.

— 2 —

Lüth: Programmiersprachen

2 Expressions

2.1 Abstract Syntax

The set Exp of all expressions is given as

e ::= Z | l | true | false

| e1 + e2 | e1 − e2 | e1 ∗ e2 | e1/e2

| e1 == e2 | e1 < e2

| !e | e1 && e2 | e1 || e2

• This is abstract syntax, so there are not parentheses or operator precedences.

• We also allow the following as syntactic sugar (i.e. abbreviations):

e ::= e1 ̸= e2 | e1 ≤ e2 | e1 > e2 | e1 ≥ e2

with the obvious translations: 1

e1 ̸= e2
def
= !(e1 == e2)

e1 ≤ e2
def
= !(e2 < e1)

e1 > e2
def
= e2 < e1

e1 ≥ e2
def
= !(e1 < e2)

• We include denotations of literals directly into the syntax, i.e. we do not distinguish betwen the
character sequence 34755 und the number 34755 ∈ Z; similary, we take the set of boolean values
to be B= {true, false}.

• No function calls (yet).

• Note how terms in e can be represented as trees, so they always have a top symbol and (optionally)
child nodes.

2.2 Evaluation

• Evaluation takes a state σ and an expression e, and reduces it ultimately to a value v.

• Values are either integers, or booleans: V def
= Z⊎B.

• However, the set of all states is Σ = Idt ⇀ Z (we only habe integer-value variables in the state).

• Evaluation is defined inductively in Figure 1 as a relation →Exp⊆Exp×Σ×V, written as ⟨e,σ⟩→ v
iff ((e,σ ,v) ∈→Exp.

• Do all expressions evaluate?

• Evaluation can get “stuck”. This corresponds to undefined expressions.

1Note that these translations only evaluate their arguments once, as opposed to e.g. e1 ≤ e2
def
= e1 < e2 || e1 == e2.

— 3 —

Lüth: Programmiersprachen

i ∈ Z
⟨i,σ⟩ →Exp i

b ∈ B
⟨b,σ⟩ →Exp b

x ∈ Idt,x ∈ dom(σ),σ(x) = v
⟨x,σ⟩ →Exp v

⟨e1,σ⟩ →Exp n1 ⟨e2,σ⟩ →Exp n2 ni ∈ Z
⟨e1 + e2,σ⟩ →Exp n1 +n2

⟨e1,σ⟩ →Exp n1 ⟨e2,σ⟩ →Exp n2 ni ∈ Z
⟨e1 − e2,σ⟩ →Exp n1 −n2

⟨e1,σ⟩ →Exp n1 ⟨e2,σ⟩ →Exp n2 ni ∈ Z
⟨e1 ∗ e2,σ⟩ →Exp n1 ·n2

⟨e1,σ⟩ →Exp n1 ⟨e2,σ⟩ →Exp n2 ni ∈ Z,n2 ̸= 0
⟨e1/e2,σ⟩ →Exp n1 ÷n2

⟨e1,σ⟩ →Exp n1 ⟨e2,σ⟩ →Exp n2 ni ∈ Z,n1 = n2

⟨e1 == e2,σ⟩ →Lexp true

⟨e1,σ⟩ →Exp n1 ⟨e2,σ⟩ →Exp n2 ni ∈ Z,n1 ̸= n2

⟨e1 == e2,σ⟩ →Lexp false

⟨e1,σ⟩ →Exp n1 ⟨e2,σ⟩ →Exp n2 ni ∈ Z,n1 < n2

⟨e1 < e2,σ⟩ →Lexp true

⟨e1,σ⟩ →Exp n1 ⟨e2,σ⟩ →Exp n2 ni ∈ Z,n1 ≥ n2

⟨e1 < e2,σ⟩ →Lexp false

⟨e,σ⟩ →Lexp true
⟨!e,σ⟩ →Lexp false

⟨e,σ⟩ →Lexp false
⟨!e,σ⟩ →Lexp true

⟨e1,σ⟩ →Lexp false
⟨e1 && e2,σ⟩ →Lexp false

⟨e1,σ⟩ →Lexp true ⟨e2,σ⟩ →Lexp t
⟨e1 && e2,σ⟩ →Lexp t

⟨e1,σ⟩ →Lexp true
⟨e1 || e2,σ⟩ →Lexp true

⟨e1,σ⟩ →Lexp false ⟨e2,σ⟩ →Lexp t
⟨e1 || e2,σ⟩ →Lexp t

Figure 1: Rules to evaluate expressions

— 4 —

Lüth: Programmiersprachen

Γ ⊢ n : int
x ∈ dom(Γ),Γ(x) = T

Γ ⊢ x : T

Γ ⊢ e1 : int Γ ⊢ e2 : int
Γ ⊢ e1 + e2 : int

Γ ⊢ e1 : int Γ ⊢ e2 : int
Γ ⊢ e1 − e2 : int

Γ ⊢ e1 : int Γ ⊢ e2 : int
Γ ⊢ e1 ∗ e2 : int

Γ ⊢ e1 : int Γ ⊢ e2 : int
Γ ⊢ e1/e2 : int

Γ ⊢ e1 : int Γ ⊢ e2 : int
Γ ⊢ e1 == e2 : bool

Γ ⊢ e1 : int Γ ⊢ e2 : int
Γ ⊢ e1 < e2 : bool

Γ ⊢ e1 : bool Γ ⊢ e2 : bool
Γ ⊢ e1 && e2 : bool

Γ ⊢ e1 : bool Γ ⊢ e2 : bool
Γ ⊢ e1 || e2 : bool

Γ ⊢ e : bool
Γ ⊢ !e: bool

Figure 2: Typing judgements for expresssions

• Note conjunction and disjunction: if first argument evaluates to false (true) second argument is not
considered (short-circuit evaluation).

• Corresponds semantically to non-strictness in second argument: undefinedness is not propagated.

• The semantics is deterministic, i.e. a given expression evaluates to at most one value:

⟨e,σ⟩ → v1 ∧⟨e,σ⟩ → v2 =⇒ v1 = v2 (9)

2.3 Linear Notation

The mathematical notation to draw inference trees gets large very quickly, therefore we use a more spa-
tially economic linear notation, where the tree structure is represented by the indentation level.

⟨3,σ⟩ → 3
⟨2,σ⟩ → 2
⟨x,σ⟩ → 5

⟨2∗ x,σ⟩ → 2 ·5 = 7
⟨3+2∗ x,σ⟩ → 3+10 = 13

Vorlesung vom 23.10.2023: Simple Type Systems

2.4 Simple Type Systems

• Evaluation can get stuck for many reasons:

— 5 —

Lüth: Programmiersprachen

– Variables not defined.

– Wrong values, e.g. x+(y== z) or true = false.

– Division by zero

• We want to prevent this by typing before we run the program, so we split the evaluation of the
program into a static analysis which is decidable (and performed at compile time), and dynamic
evaluation, which corresponds to run-time.

• Typing associates expressions with types, presently only integers and booleans; we will later extend
this substantially. The set of all types is written as

Types def
= {int,bool}

• Typing needs a type context (to keep track of the types of the variables) C
def
= Idt ⇀ Types. At the

moment, the typing context is just given, later on it will be built from declarations (obviously).

• The typing relation :⊆C ×Exp×Types (yes, it is called :, funny name I know, blame the parents),
written as Γ ⊢ e : t for (Γ,e, t) ∈ :, is defined in Figure 2.

• Why does the following not hold (“Well-typed programs don’t go wrong.”):

∀Γ,σ ,e, t.Γ ⊢ e : t =⇒∃v.⟨e,σ⟩ → v (10)

• σ has to be well-typed, i.e. domΓ = domσ

• But even if σ is well-typed, this does not hold because of division by 0 — how to fix this?

• We will introduce error elements and exceptions later, but it is important to realize that partiality is
a feature, not a bug — Turing-equivalent languages have to be partial.

• We do not have (10), but we have the following.2

Γ ⊢ e : int∧⟨σ ,e⟩ → v =⇒v ∈ Z (11)

This means we do not have to keep track of types at run-time and is sometimes referred to as type
erasure.

2This can only be written so concisely if all variables are of type int; otherwise the context and the state would have to agree on
types.

— 6 —

Lüth: Programmiersprachen

Vorlesung vom 23.10.2023: Simple Types, Commands and Side Effects

3 A Simple Imperative Language: L0

3.1 Abstract Syntax

c ::= Idt := Exp | if (e) thenc1 else c2 | while (e) c | c1;c2 | nil

• Note we have concatenation and empty sequence – enough to build sequences, but easier.

3.2 Evaluation

• Evaluation of statement works with the same state as evaluation of expressions, Σ = Idt ⇀ V. But
the important difference is that evaluation of statements returns a new state, not a value.

• Thus, evaluation of statements is a relation →Stmt⊆ Stmt×Σ×Σ, written as ⟨s,σ⟩ →Stmt σ ′. It is
defined inductively in Figure 3.

• Assignment does not require the variable x to be in the domain of the state σ . This means either
variables in the state are created by assignment (as in Python), or we leave it to the type inference
(see below) to prevent this situation.

• In general, we have

∀σ ,c,σ ′.⟨c,σ⟩ →Stmt σ
′ =⇒ dom(σ)⊆ dom(σ ′)

(i.e. variables are not removed from the state).

• Evaluation may not terminate for the while loop. Moreover, it is undecidable wether the evaluation
will eventually terminate. This partiality is part and parcel of Turing-completeness, as opposed to
division by zero which we can work around (we will later see how).

• As given, evaluation is deterministic:

⟨c,σ⟩ →Stmt σ1 ∧⟨c,σ⟩ →Stmt σ2 =⇒ σ1 = σ2

In other words, a commands evaluates a state σ to at most one successor state σ ′. (This holds for
expressions as well.)

3.3 Typing

• Typing of statements is pretty basic, we just have to make sure that the arguments of if and while
are booleans. The type of statements is written unit; the rules are given in Figure 4.

• As given, we only allow integer variables, and we require variables to be declared before assign-
ment. How would we change the first rule so that we can create integer variables by just assigning
to them? And what would be needed to have variables of boolean type as well?

— 7 —

Lüth: Programmiersprachen

⟨e,σ⟩ →Exp n ∈ Z
⟨x := e,σ⟩ →Stmt σ [x 7→ n] ⟨σ ,nil⟩ →Stmt σ

⟨c1,σ⟩ →Stmt σ
′ ⟨c2,σ

′⟩ →Stmt σ
′′

⟨c1;c2,σ⟩ →Stmt σ
′′

⟨b,σ⟩ →Lexp true ⟨c1,σ⟩ →Stmt σ
′

⟨if (b) thenc1 else c2,σ⟩ →Stmt σ
′

⟨b,σ⟩ →Lexp false ⟨c2,σ⟩ →Stmt σ
′

⟨if (b) thenc1 else c2,σ⟩ →Stmt σ
′

⟨b,σ⟩ →Lexp false
⟨while (b) c,σ⟩ →Stmt σ

⟨b,σ⟩ →Lexp true ⟨c,σ⟩ →Stmt σ
′ ⟨while (b) c,σ ′⟩ →Stmt σ

′′

⟨while (b) c,σ⟩ →Stmt σ
′′

Figure 3: Rules to evaluate statements

x ∈ dom(Γ) Γ ⊢ e : int
Γ ⊢ x := e : unit

Γ ⊢ b : bool Γ ⊢ c : unit
Γ ⊢ while (b) c : unit

Γ ⊢ b : bool Γ ⊢ c1 : unit Γ ⊢ c2 : unit
Γ ⊢ if (b) thenc1 else c2 : unit

Γ ⊢ c1 : unit Γ ⊢ c2 : unit
Γ ⊢ c1;c2 : unit Γ ⊢ nil : unit

Figure 4: Typing rules for statements

— 8 —

Lüth: Programmiersprachen

3.4 Expressions with Side Effects

Many programming languages (except for Haskell) allow expressions with side effects. How do we model
evaluation of these?

In order to study this phenomenon, we need to alter our language slightly.

3.4.1 Abstract Syntax

e ::= Z | l | true | false

| e1 + e2 | e1 − e2 | e1 ∗ e2 | e1/e2

| e1 == e2 | e1 < e2

| !e | e1 && e2 | e1 || e2

| i := e

c ::= e | if (e) thenc1 else c2 | while (e) c | c1;c2 | nil

• Assignment is now an expression, and an expression is also a statement. So, all previous programs
are still valid.

3.4.2 Evaluation

• Evaluation of an expression gives a tuple of resulting value, and a new state: ⟨e,σ⟩ →Exp ⟨v,σ ′⟩.

• Possible rules are given in Figure 5. We need to add the state in all rules for the expression, we
need a rule for the assignment expression, and a new rule for an expression as a statement.

• The rules for the other statements stay as they are in Figure 3.

• Evaluating the assignment expressions changes the state as before, but returns the value of the
right-hand-side of the expression.

• This is like in C, and allows to write chain assignments as in a= b= c= 3*x+ 5. Interestingly, in
Rust assigments are an expression as well, but with type () (and value (), to make it impossible to
write chain assignments, and to keep the programmer from confusing = and ==.

• When evaluating an expression as a statement, we just discard the value of the expression; we
evaluate it purely for its side effect (the changed state σ ′).

• The rules in Figure 5 evaluate the arguments of binary operators and logical connectors left-to-
right. However, here different languages use different definitions. To evaluate right-to-left, the
state needs to be passed the other way around (we only show the addition rule here; the same
applies to subtraction, multiplication, division, and the two predicates == and <):

⟨e1,σ1⟩ →Exp ⟨n1,σ2⟩ ⟨e2,σ⟩ →Exp ⟨n2,σ1⟩ ni ∈ Z
⟨e1 + e2,σ⟩ →Exp ⟨n1 +n2,σ2⟩

The C language does not specify in which order operands are evaluated. To model this behaviour,
one takesq both rules, leading to a non-deterministic semantics.3

3The truth is even more complicated, C allows the side effects of the operands to be combined arbitrarily, so when we evaluate

— 9 —

Lüth: Programmiersprachen

i ∈ Z
⟨i,σ⟩ →Exp ⟨i,σ⟩

b ∈ B
⟨b,σ⟩ →Exp ⟨b,σ⟩

x ∈ Idt,x ∈ dom(σ),σ(x) = v
⟨x,σ⟩ →Exp ⟨v,σ⟩

⟨e1,σ⟩ →Exp ⟨n1,σ1⟩ ⟨e2,σ1⟩ →Exp ⟨n2,σ2⟩ ni ∈ Z
⟨e1 + e2,σ⟩ →Exp ⟨n1 +n2,σ2⟩

⟨e1,σ⟩ →Exp ⟨n1,σ1⟩ ⟨e2,σ1⟩ →Exp ⟨n2,σ2⟩ ni ∈ Z
⟨e1 − e2,σ⟩ →Exp ⟨n1 −n2,σ2⟩

⟨e1,σ⟩ →Exp ⟨n1,σ1⟩ ⟨e2,σ1⟩ →Exp ⟨n2,σ2⟩ ni ∈ Z
⟨e1 ∗ e2,σ⟩ →Exp ⟨n1 ·n2,σ2⟩

⟨e1,σ⟩ →Exp ⟨n1,σ1⟩ ⟨e2,σ1⟩ →Exp ⟨n2,σ2⟩ ni ∈ Z,n2 ̸= 0
⟨e1/e2,σ⟩ →Exp ⟨n1 ÷n2,σ2⟩

⟨e1,σ⟩ →Exp ⟨n1,σ1⟩ ⟨e2,σ1⟩ →Exp ⟨n2,σ2⟩ ni ∈ Z,n1 = n2

⟨e1 == e2,σ⟩ →Exp ⟨true,σ2⟩

⟨e1,σ⟩ →Exp ⟨n1,σ1⟩ ⟨e2,σ1⟩ →Exp ⟨n2,σ2⟩ ni ∈ Z,n1 ̸= n2

⟨e1 == e2,σ⟩ →Exp ⟨false,σ2⟩

⟨e1,σ⟩ →Exp ⟨n1,σ1⟩ ⟨e2,σ1⟩ →Exp ⟨n2,σ2⟩ ni ∈ Z,n1 < n2

⟨e1 < e2,σ⟩ →Exp ⟨true,σ2⟩

⟨e1,σ1⟩ →Exp ⟨n1,σ1⟩ ⟨e2,σ⟩ →Exp ⟨n2,σ2⟩ ni ∈ Z,n1 ≥ n2

⟨e1 < e2,σ⟩ →Exp ⟨false,σ2⟩

⟨e,σ⟩ →Exp ⟨true,σ1⟩
⟨!e,σ⟩ →Exp ⟨false,σ1⟩

⟨e,σ⟩ →Exp ⟨false,σ1⟩
⟨!e,σ⟩ →Exp ⟨true,σ1⟩

⟨e1,σ⟩ →Exp ⟨false,σ1⟩
⟨e1 && e2,σ⟩ →Exp ⟨false,σ1⟩

⟨e1,σ⟩ →Exp ⟨true,σ1⟩ ⟨e2,σ1⟩ →Exp ⟨t,σ2⟩
⟨e1 && e2,σ⟩ →Exp ⟨t,σ2⟩

⟨e1,σ⟩ →Exp ⟨true,σ1⟩
⟨e1 || e2,σ⟩ →Exp ⟨true,σ1⟩

⟨e1,σ⟩ →Exp ⟨false,σ1⟩ ⟨e2,σ1⟩ →Exp ⟨t,σ2⟩
⟨e1 || e2,σ⟩ →Exp ⟨t,σ2⟩

⟨e,σ⟩ →Exp ⟨n,σ ′⟩ n ∈ Z
⟨x := e,σ⟩ →Exp ⟨n,σ ′[x 7→ n]⟩

. . .

⟨e,σ⟩ →Exp ⟨v,σ ′⟩
⟨e,σ⟩ →Stmt σ

′

. . .

Figure 5: Rules to evaluate expressions with side effects.

— 10 —

Lüth: Programmiersprachen

the left (or right) operand, neither side effects may have taken place.

— 11 —

Lüth: Programmiersprachen

Vorlesung vom 30.10.2023: Variables and Memory Models

4 Names

We study local names in expressions first. This demonstrates how to handle names, and thus explores the
concept of scope, without mutability or any aspects of life-time.

4.1 Abstract Syntax

e ::= Z | i | true | false

| e1 + e2 | e1 − e2 | e1 ∗ e2 | e1/e2

| e1 == e2 | e1 < e2

| !e | e1 && e2 | e1 || e2

| i := e

| let x = e1 in e2

The typing is pretty easy: derive a type for e1, and give that type to x while typing e2.

Γ ⊢ e1 : α Γ[x 7→ α] ⊢ e2 : β

Γ ⊢ let x = e1 in e2 : β

Here, α,β ∈ Types are variables standing for arbitrary types (yes, both of them), so we allow names of
type int and bool.

4.2 Evaluation

The big difference between local names and (mutable) variables like below are that names can be handled
at the syntactic level. In other words, an expression like

let x = 4+2∗ y in y < x

should be evaluated as if we substitute 4+2∗ y for x in the expression y < x, yielding y < 4+2∗ y. This
substitution is written as (y < x)[4+2∗ y/x], or in general e1[e2/x] for “in the expression e1, substitute
the expression e2 for the variable x”.

• Do we evaluate first, and then substitute, or the other way around?

• How to define substitution? More delicate than it appears at first sight.

• Why? Consider

let x= 5 in
let y= 2*x in

(let x= 3 in x+y)+ x

— 12 —

Lüth: Programmiersprachen

FV(n) = /0
FV(x) = {x}

FV(true) = /0
FV(false) = /0

FV(e1 + e2) = FV(e1)∪FV(e2)

FV(e1 − e2) = FV(e1)∪FV(e2)

FV(e1 ∗ e2) = FV(e1)∪FV(e2)

FV(e1/e2) = FV(e1)∪FV(e2)

FV(e1 == e2) = FV(e1)∪FV(e2)

FV(e1 < e2) = FV(e1)∪FV(e2)

FV(!e) = FV(e)

FV(e1 && e2) = FV(e1)∪FV(e2)

FV(e1 || e2) = FV(e1)∪FV(e2)

FV(i := e) = FV(e)

FV(let x = e1 in e2) = FV(e1)∪ (FV(e2)\{x})

n[e/x] = n

y[e/x] =

{
e x = y
y otherwise

true[e/x] = true

false[e/x] = false

(e1 + e2)[e/x] = (e1[e/x])+(e2[e/x])

(e1 − e2)[e/x] = (e1[e/x])− (e2[e/x])

(e1 ∗ e2)[e/x] = (e1[e/x])∗ (e2[e/x])

(e1/e2)[e/x] = (e1[e/x])/(e2[e/x])

(e1 ===e2)[e/x] = (e1[e/x])==(e2[e/x])

(e1 <==e2)[e/x] = (e1[e/x])< (e2[e/x])

(!e1)[e2/x] = !(e1[e2/x])

(e1 && e2)[e3/x] = (e1[e3/x])&& (e2[e3/x])

(e1 || e2)[e3/x] = (e1[e3/x]) || (e2[e3/x])

(x := e1)[e2/y] = (x := (e1[e2/y]))

(let x = e1 in e2)[e3/y] =

let x = e1[e3/y] in e2 x = y
let x = e1[e3/y] in e2[e3/y] x ̸= y,x ̸∈ FV(e3)

let z = e1[e3/y] in (e2[z/x])[e3/y] x ̸= y,x ∈ FV(e3),z ̸∈ FV(e3)∪FV(e2)

Figure 6: Definition of the substitution function.

— 13 —

Lüth: Programmiersprachen

• This binding occurrences of x and y are the essence of local names and scope.

• This needs concept of free variables.

• Figure 6 shows definition of substitution, and definition of free variables.

• The z in the final clause is a “fresh” variable. We can pick any z that satisfies z ̸∈ FV(e3)∪FV(e2).
If follows that z ̸∈ FV(e3), and x ∈ FV(e3), hence z ̸= x (i.e. we cannot pick x).

• Note that variables on the left of assignments are considered completely different names. In other
words, in let x = 5 in x := x+5 the x in the rhs of the assignment is local name x, and the x on the
lhs is the mutable variable x; subsequently, this expression evaluates to 10, and sets x to that value,
rather than increasing the variable x by 5 and returning that value.

We can now define two rules which define the evaluation semantics of the names. Important: these are
alternatives, we can pick one or the other, but not both!

⟨e2[e1/x],σ⟩ →Exp ⟨v,σ ′⟩
⟨let x = e1 in e2,σ⟩ →Exp ⟨v,σ ′⟩

(12)

⟨e1,σ⟩ →Exp ⟨v1,σ
′⟩ ⟨e2[v1/x],σ ′⟩ →Exp ⟨v2,σ

′′⟩
⟨let x = e1 in e2,σ⟩ →Exp ⟨v2,σ

′′⟩
(13)

(14)

• (12) is non-strict; the effect is that e2 is evaluated when needed (maybe multiple times, but not at
all if not needed).

• (13) is strict: e1 is evaluated exactly once.

5 Variables and Memory Models

• In general, a memory is something mapping locations to values: Σ = Loc ⇀ V

• Faithful model of the machine/ISA level:

Loc = [0, . . . ,2W] V = [0, . . . ,28]

where W is the architecture word width (e.g. 32 bits).

• Slightly more abstract:
Loc = N,V = Z

• We will look at composite values (arrays, structures etc.) later. First, get the basics right.

• Memory model has to explain house-keeping of variables:

– Allocation

– Deallocation

– Life cycle

— 14 —

Lüth: Programmiersprachen

• When a variable is allocated, it does not (necessarily) have a value; we allow uninitialised memory
locations (like in C and Rust; in Java, every memory cell has a default value). So our values are
either integers, or a value ⊥ for “undefined”. This is written as Z⊥ = Z⊎{⊥}.

• Hence, our memory model is

Σ = Loc ⇀ V,Loc = N,V = Z⊥

• Note difference between “undefined” and “uninitialised”.

5.1 Abstract Syntax

We add a single command to declare new variables:

c ::= e

| if (e) thenc1 else c2

| while (e) c

| c1;c2

| nil
| new x : t in c

• Some languages distinguish declaration and commands (e.g. C), others do not (e.g. Java)

• Sequential declarations are syntactic sugar:

int x; int y; int z; ... = new x : int in new y : int in new z : int in . . .

• Simultaneous (collateral) declarations are not allowed (what would that mean?)

• Declaration with initializations are syntactic sugar:

new x : t = i in c = new x : t in x := i;c

5.2 Typing

Γ[x 7→ t] ⊢ c : unit
Γ ⊢ new x : t in c : unit

• Declarations introduce new variables into the environment.

5.3 Evaluation

• Identifiers at compile-time mapped to locations.

— 15 —

Lüth: Programmiersprachen

x ∈ Idt,x ∈ dom(Γ),σ(Γ(x)) = v
⟨x,σ⟩ →Exp ⟨v,σ⟩

Γ ⊢ ⟨e,σ⟩ →Exp ⟨n,σ ′⟩ n ∈ Z
Γ ⊢ ⟨x := e,σ⟩ →Stmt σ

′[Γ(x) 7→ n]

Γ ⊢ ⟨c1,σ⟩ →Stmt σ
′

Γ ⊢ ⟨c2,σ
′⟩ →Stmt σ

′′

Γ ⊢ ⟨c1;c2,σ⟩ →Stmt σ
′′

Γ ⊢ ⟨b,σ⟩ →Exp ⟨true,σ ′⟩ Γ ⊢ ⟨c1,σ
′⟩ →Stmt σ

′′

Γ ⊢ ⟨if (b) thenc1 else c2,σ⟩ →Stmt σ
′′

Γ ⊢ ⟨b,σ⟩ →Exp ⟨false,σ ′⟩ Γ ⊢ ⟨c2,σ
′⟩ →Stmt σ

′′

Γ ⊢ ⟨if (b) thenc1 else c2,σ
′′⟩ →Stmt s

Γ ⊢ ⟨b,σ⟩ →Exp ⟨false,σ ′⟩
Γ ⊢ ⟨while (b) c,σ ′⟩ →Stmt σ

′

Γ ⊢ ⟨b,σ⟩ →Exp ⟨true,σ ′⟩ Γ ⊢ ⟨c,σ ′⟩ →Stmt σ
′′

Γ ⊢ ⟨while (b) c,σ ′′⟩ →Stmt σ
′′′

Γ ⊢ ⟨while (b) c,σ⟩ →Stmt σ
′′′

Γ[x 7→ l] ⊢ ⟨c,σ [l 7→ ⊥]⟩ →Stmt σ
′ l ̸∈ dom(σ)

Γ ⊢ ⟨new x : t in c,σ⟩ →Stmt σ
′ \ l

Figure 7: Rules to evaluate statements.

— 16 —

Lüth: Programmiersprachen

• Rules to evaluate statements in presence of new memory model are given in Figure 7. Notation:

Γ =Idt ⇀ Loc
σ =Loc ⇀V

Γ ⊢⟨e,σ⟩ →Exp ⟨v,σ ′⟩
Γ ⊢⟨c,σ⟩ →Stmt σ

′

Γ is called a static environment. The rules for Γ ⊢ ⟨e,σ⟩→Exp ⟨v,σ ′⟩ have the environment Γ added
but apart from that are unchanged.

• Locations can be l-values or r-values, but if they appear as r-values, we refer to the value stored at
that location rather than the location itself (this occurs in first rule as σ(Γ(x)) = v.)

• Implicit assumption is that Γ ⊢ c : unit; this guarantees all identifiers are declared.

• There is an invariant on the state:

Γ ⊢ c : unit∧dom(σ)⊆ dom(Γ)∧Γ ⊢ ⟨c,σ⟩ →Stmt σ
′ =⇒ dom(σ ′)⊆ dom(Γ)

This guarantees the rules to handle identifiers as l-values and r-values always succeed for well-typed
programs.

• Most interesting is the rule for declarations which shows the memory management:

– l ̸∈ dom(σ) is a new (fresh) location, previously unused.
– Γ[x 7→ l] adds the map x to l to the environment. Note how Γ is not changed anywhere else.
– σ [l 7→ ⊥] adds the uninitialized location to the environment. Note that l ∈ dom(σ [l 7→ ⊥]),

but (σ [l 7→ ⊥])(l) ̸∈ Z.
– Hence, one problem which may still occur is access of unitialized variables. (We can fix this

later. Or not.)

• Note also how subsequent declarations will overshadow earlier ones, and how the scoping is mod-
elled by the way the environment Γ i handed down.

5.4 Dynamic Memory Management

• Our simple language cannot handle dynamic memory management, nor does it have to.

• In order to do so, we would need locations as values which we can handle (even store in memory).

• To sketch this, assume we have an operation alloc() which allocates a new location, and a statement
free(l) which deallocates the location. Obviously, alloc has a side effect, so it would need to b
evaluated as an expression with a side effect:

l ̸∈ dom(σ)

Γ ⊢ ⟨alloc(),σ⟩ →Exp ⟨l,σ [l 7→ ⊥]⟩

Γ ⊢ ⟨free(l),σ⟩ →Stmt σ \ l

• This neatly decomposes the new x : t in s rule into two rules.

— 17 —

Lüth: Programmiersprachen

Vorlesung vom Aggregate Types: 06.11.2023

6 Aggregate Types

Aggregate types (also known as compound or composite types) build structured values from simple types
(int and bool, which are as also called scalar types).

6.1 Abstract Language

We need more types, and corresponding operations:

t ::= int | bool | array n of t | struct(i : t)∗

l ::=i | l.i | l[e]

e ::= Z | true | false | l

| e1 + e2 | e1 − e2 | e1 ∗ e2 | e1/e2

| e1 == e2 | e1 < e2

| !e | e1 && e2 | e1 || e2

| l := e

| let x = e1 in e2

• L-values can now be more structured than just identifiers; they are denoted l above.

• The name is actual an misnomer, since they are l-expressions rather than values but the name is
traditional so we’ll stick with it.

• L-values can appear on the left side of an assignment, or inside an expression.

• The reader is invited to write down typing rules for the new l-values.

We need a few auxiliary functions: size : Types → N returns the size of (an element) of type t in basic
memory units (we don’t call them bytes here but really they are bytes or at least you can think of them as
bytes):

size(int) = 1
size(bool) = 1

size(array n of t) = n · size(t)

size(struct(fi : ti)i=1,...,n) =
n

∑
i=1

size(ti)

For a structure type t = struct f1 : t1 . . . fn : tn and a label g which is contained in one of the labels f1, . . . , fn
(i.e. fl = g for 1 ≤ l ≤ n), we define the offset of the field g:

offsetstruct(fi:ti)i=1,...,n(g) =
l−1

∑
k=1

size(tk) fl = g

— 18 —

Lüth: Programmiersprachen

6.2 Operational Semantics

When defining the operational semantics, we have a lot of leeway. First, the memory model is pretty
clear: we can store integers, booleans and adresses. So our memory model is

Σ = Loc ⇀ V with Loc = N,V = (Z+B+N)⊥

L-values evaluate to addresses. They can evaluate with side effects, because array index expressions may
have a side effect (often seen in C as a[i++]= ...).

Γ . . .⟨l,σ⟩ →Lexp ⟨n,σ ′⟩

The main question here is what to do with expressions of aggregate type (structures and arrays). Here, we
evaluate expressions of aggregate types to references to the underlying structure or array. This is similar
to what is done in Java (Java has no structures, just objects), except that in Java a variable of object type
is a pointer to that object. Figure 8 shows the relevant rules. (This also means we cannot calculate with
arrays and structure, e.g. add or multiply them, as is possible in Python; readers are invited to devise their
own semantics which allow such constructions.)

When we declare a variable of aggregate types, we allocate as many memory cells as the size of the type
(size(t)); the auxiliary function mem_alloc(σ ,n,k) allocates k cells starting with cell n (by setting them
to ⊥).

Assignments l := e are handled differently depending on the type of the expression (and location). If the
expression is of aggregate type, its value n is the reference pointing to where the aggregate value is in
memory. Assignment copies the whole aggregate value (all structure fields, all arrays), using the auxiliary
function mem_cp(σ ,n,k,m) (which copies cells from addresses m, . . . ,m+ k−1 to n, . . . ,n+ k−1).

6.3 Reference Types

Alternatively, let us make references explicit:

t ::= int | bool | array n of t | struct(i : t)∗ | ref t

l ::= i | l.i | l[e] | &e

e ::= Z | true | false | l

| e1 + e2 | e1 − e2 | e1 ∗ e2 | e1/e2

| e1 == e2 | e1 < e2

| !e | e1 && e2 | e1 || e2

| l := e

| let x = e1 in e2

| ∗l

We introduce a new type, ref t for reference to t, and two operations ∗l which dereference an l-value and
&e which returns the address of an expression (turning an expression into an l-value). The rules for these
two operators are as follows:

— 19 —

Lüth: Programmiersprachen

Γ ⊢ ⟨l,σ⟩ →Lexp ⟨Γ(l),σ⟩

Γ ⊢ ⟨l,σ⟩ →Lexp ⟨n,σ ′⟩ Γ ⊢ l : array n of t Γ ⊢ ⟨e,σ ′⟩ →Exp ⟨v,σ ′′⟩,v ∈ Z
Γ ⊢ ⟨l[e],σ⟩ →Lexp ⟨l + size(t) · v,σ ′′⟩

Γ ⊢ ⟨l,σ⟩ →Lexp ⟨n,σ ′⟩ Γ ⊢ l : struct(f1 : t1 . . . fn : tn) ∃k. fk = i
Γ ⊢ ⟨l.i,σ⟩ →Lexp ⟨n+offsetstruct(f1:t1... fn:tn)(i),σ

′⟩

Γ ⊢ l : int or Γ ⊢ l : bool Γ ⊢ ⟨l,σ⟩ →Lexp ⟨n,σ ′⟩
Γ ⊢ ⟨l,σ⟩ →Exp ⟨σ ′(n),σ ′⟩

Γ ⊢ l : array n of t or Γ ⊢ l : struct Γ ⊢ ⟨l,σ⟩ →Lexp ⟨n,σ ′⟩
Γ ⊢ ⟨l,σ⟩ →Exp ⟨n,σ ′⟩

Γ ⊢ e : int or Γ ⊢ e : bool Γ ⊢ ⟨l,σ⟩ →Lexp ⟨n,σ ′⟩ Γ ⊢ ⟨e,σ⟩ →Exp ⟨v,σ ′⟩
Γ ⊢ ⟨l := e,σ⟩ →Exp ⟨v,σ ′[n 7→ v]⟩

Γ ⊢ e : t with t = array n of t1 or t = struct
Γ ⊢ ⟨l,σ⟩ →Lexp ⟨n1,σ

′⟩ Γ ⊢ ⟨e,σ⟩ →Exp ⟨n2,σ
′⟩

Γ ⊢ ⟨l := e,σ⟩ →Exp ⟨n2,mem_cp(σ ′,n1,size(t)n2,⟩)

Γ[x 7→ l] ⊢ ⟨c,mem_alloc(σ ′, l,size(t))⟩ →Stmt σ
′ {l, . . . , l + size(t)−1}∩dom(σ) = /0

Γ ⊢ ⟨new x : t in c,σ⟩ →Stmt σ
′ \{l, . . . , l + size(t)−1}

mem_cp(σ ,n,k,m) =

{
σ k ≤ 0
mem_cp(σ [n 7→ σ(m)],n+1,k−1,m+1) k > 0

mem_alloc(σ ,n,k) =

{
σ k ≤ 0
mem_alloc(σ [n 7→ ⊥],n+1,k−1) k > 0

Figure 8: Rules to handle variables of aggregate types, together with two auxiliary functions.

— 20 —

Lüth: Programmiersprachen

Γ ⊢ ⟨e,σ⟩ →Exp ⟨v,σ ′⟩ v ∈ N
Γ ⊢ ⟨&e,σ⟩ →Lexp ⟨v,σ ′⟩

Γ ⊢ ⟨l,σ⟩ →Lexp ⟨n,σ ′⟩ n ∈ N
Γ ⊢ ⟨∗l,σ⟩ →Exp ⟨n,σ ′⟩

References work best when combined with the dynamic memory management from subsection 5.4. This
is a more or less faithful representation of the C memory model — less faithful, because we do not deal
with issues such as memory alignment, and we do not have the many different scalar types (integers
signed and unsigned, short and long; floats and doubles; characters); but it captures the way C handles
references, and its memory management, and allows us to make the same mistakes that C allows, for
example refering to addresses in the memory which have become invalid:

int y;
ref int p;
new x: int in

p= & x;
y= 5+ *p; // (1)

At point (1), the address of x has become invalid, and the expression *p is not well-defined. This will
show up here as *p evaluating to n ∈ Loc such that n ̸∈ dom(σ) — try it!

— 21 —

Lüth: Programmiersprachen

x ∈ Idt,x ̸∈ dom(σ)

⟨x,σ⟩ →Exp E

Γ ⊢ ⟨e1,σ⟩ →Exp ⟨E,σ ′⟩
Γ ⊢ ⟨e1/e2,σ⟩ →Exp ⟨E,σ ′⟩

Γ ⊢ ⟨e2,σ⟩ →Exp ⟨0,σ ′⟩
Γ ⊢ ⟨e1/e2,σ⟩ →Exp ⟨E,σ ′⟩

Γ ⊢ ⟨e2,σ⟩ →Exp ⟨E,σ ′⟩
Γ ⊢ ⟨e1/e2,σ⟩ →Exp ⟨E,σ ′⟩

Γ ⊢ ⟨e1,σ⟩ →Exp ⟨E,σ ′⟩
Γ ⊢ ⟨e1 + e2,σ⟩ →Exp ⟨E,σ ′⟩

Γ ⊢ ⟨e2,σ⟩ →Exp ⟨E,σ ′⟩
Γ ⊢ ⟨e1 + e2,σ⟩ →Exp ⟨E,σ ′⟩

. . .

Γ ⊢ ⟨e1,σ⟩ →Exp ⟨E,σ ′⟩
Γ ⊢ ⟨e1 == e2,σ⟩ →Exp ⟨E,σ ′⟩

Γ ⊢ ⟨e2,σ⟩ →Exp ⟨E,σ ′⟩
Γ ⊢ ⟨e1 == e2,σ⟩ →Exp ⟨E,σ ′⟩

Γ ⊢ ⟨e1,σ⟩ →Exp ⟨E,σ ′⟩
Γ ⊢ ⟨e1 < e2,σ⟩ →Exp ⟨E,σ ′⟩

Γ ⊢ ⟨e2,σ⟩ →Exp ⟨E,σ ′⟩
Γ ⊢ ⟨e1 < e2,σ⟩ →Exp ⟨E,σ ′⟩

Γ ⊢ ⟨e1,σ⟩ →Exp ⟨E,σ ′⟩
Γ ⊢ ⟨!e1,σ⟩ →Exp ⟨E,σ ′⟩

Γ ⊢ ⟨e1,σ⟩ →Exp ⟨E,σ ′⟩
Γ ⊢ ⟨e1 && e2,σ⟩ →Exp ⟨E,σ ′⟩

Γ ⊢ ⟨e1,σ⟩ →Exp ⟨E,σ ′⟩
Γ ⊢ ⟨e1 || e2,σ⟩ →Exp ⟨E,σ ′⟩

Figure 9: Additional rules to handle runtime failure (undefinedness)

Vorlesung vom Errors and Exceptions: 13.11.2023

7 Errors and Exceptions

7.1 Runtime Errors

• A runtime error such as division by zero or illegal memory access results in evaluation to E.

• E is then propagated upwards: once evaluation produces a runtime error, further evaluation keeps
the runtime error4

• Question: what is the new semantics?

Σ ⇀(V×Σ)+E (15)
Σ ⇀(V+E)×Σ (16)

• What is the difference?
4Except for non-strict conjunction/disjunction and case distinction.

— 22 —

Lüth: Programmiersprachen

r ∈ {(),E}

Γ ⊢ ⟨σ ,nil⟩ →Stmt ⟨(),σ⟩

Γ ⊢ ⟨c1,σ⟩ →Stmt ⟨(),σ ′⟩ Γ ⊢ ⟨c2,σ
′⟩ →Stmt ⟨r,σ ′′⟩

Γ ⊢ ⟨c1;c2,σ⟩ →Stmt ⟨r,σ ′′⟩
Γ ⊢ ⟨c1,σ⟩ →Stmt ⟨E,σ ′⟩

Γ ⊢ ⟨c1;c2,σ⟩ →Stmt ⟨E,σ ′⟩

Γ ⊢ ⟨b,σ⟩ →Exp ⟨true,σ ′⟩ Γ ⊢ ⟨c1,σ⟩ →Stmt ⟨r,σ ′⟩
Γ ⊢ ⟨if (b) thenc1 else c2,σ⟩ →Stmt ⟨r,σ ′⟩

Γ ⊢ ⟨b,σ⟩ →Exp ⟨false,σ ′⟩ Γ ⊢ ⟨c2,σ⟩ →Stmt ⟨r,σ ′⟩
Γ ⊢ ⟨if (b) thenc1 else c2,σ⟩ →Stmt ⟨r,σ ′⟩

Γ ⊢ ⟨b,σ⟩ →Exp ⟨E,σ ′⟩
Γ ⊢ ⟨if (b) thenc1 else c2,σ⟩ →Stmt ⟨E,σ ′⟩

Γ ⊢ ⟨b,σ⟩ →Exp ⟨false,σ ′⟩
Γ ⊢ ⟨while (b) c,σ⟩ →Stmt ⟨(),σ ′⟩

Γ ⊢ ⟨b,σ⟩ →Exp ⟨E,σ ′⟩
Γ ⊢ ⟨while (b) c,σ⟩ →Stmt Eσ

′

Γ ⊢ ⟨b,σ⟩ →Exp ⟨true,σ1⟩ Γ ⊢ ⟨c,σ1⟩ →Stmt ⟨(),σ2⟩ Γ ⊢ ⟨while (b) c,σ2⟩ →Stmt ⟨r,σ3⟩
Γ ⊢ ⟨while (b) c,σ⟩ →Stmt ⟨r,σ3⟩

Γ ⊢ ⟨b,σ⟩ →Exp ⟨true,σ ′⟩ Γ ⊢ ⟨c,σ ′⟩ →Stmt ⟨E,σ ′′⟩
Γ ⊢ ⟨while (b) c,σ⟩ →Stmt ⟨E,σ ′′⟩

Figure 10: Rules to evaluate statements with runtime failure

— 23 —

Lüth: Programmiersprachen

• We choose (18), because it keeps the system state when the error occurs. This is what happens in
almost all programming languages.

• We augment the existing rules by more rules which handle the error case (see Figure 9). These
specify the propagation of E.

• What happens with statements? The same considerations apply, but we need a (token) value () to
pass along to signal “normal operation”.

Σ ⇀Σ+E (17)
Σ ⇀(()+E)×Σ (18)

• For statements, we need to add rules which define how E propagate (see Figure 10).

7.2 Exceptions

• We choose a simple approach where there is an (arbitrary, finite) set of predefined exceptions
X def
= X1, . . . ,Xn. This is sufficient to show the basic principle of exceptions and exception handling.

• Additionally, we have a set of runtime errors E = {E0,E1} where E0 is for division by zero, and E1
is for illegal memory access. (Both have been modelled by a single error value E above.)

• The reader is invited to extend the language so that the user can declare exceptions as an algebraic
data type, with arguments and everything like in Java, Haskell and Python. What are the problems
that arise?

• Exceptions are now essentially like the runtime errors from ??, except that we raise them explicitly.

7.2.1 Extending the Language

We would like to catch exceptions both at the exception and the statement level, but mainly the latter, so
we only have a catch statement. (Just like there is no case distinction expression, like e ? f : g in C or
Java); this would be a simple addition.

l ::= i | l.i | l[e]

e ::= Z | true | false | l

| e1 + e2 | e1 − e2 | e1 ∗ e2 | e1/e2

| e1 == e2 | e1 < e2

| !e | e1 && e2 | e1 || e2

| l := e

| throw(x)

c ::= e | if (e) thenc1 else c2 | while (e) c | c1;c2 | nil
| try c1 catch x → c2

— 24 —

Lüth: Programmiersprachen

7.2.2 Typing Rules

x ∈ X
Γ ⊢ throw(x) : α

Γ ⊢ c1 : unit Γ ⊢ c2 : unit x ∈ X +E
Γ ⊢ try c1 catch x → c2 : unit

7.2.3 Operational Semantics

• Same considerations as above apply.

• The semantic domains are:

– For expressions:
Σ ⇀ (V+F)×Σ

– For statements:
Σ ⇀ (()+F)×Σ

– where F = X +E in both cases.

• Those are a lot of rules! And we only give new ones. . .

• Still, I’d claim most of these are fairly stereotypical and the general mechanism is easy to under-
stand.

7.3 More Non-Linear Control Flow

Exceptions are an example of non-linear control flow, in other words we have “jumps” where the control
passes from one part of the porgram to another one, which is not adjacent (whatever that means precisely).
The semantic mechanism of exceptions can be used to implement a break statement, which jumps out of
a (nested) loop, or even return statements (as we shall see in the next section). This is in fact how it is
really implemented in the JVM.

Here is a short sketch how the break statement can be implemented as syntactic sugar for throw and catch:

label x in c ≡ try c catch x → nil
break x ≡ throw(x)

Here is an example how that works:

r := 1; x:= 0;
label x14 in
while (x< 99) {

i := 1;
while (i< 3) {

r := r* i;
if (r > 10) break x14;
i := i+1

}
x := x+ 1

}

— 25 —

Lüth: Programmiersprachen

Γ ⊢ ⟨l,σ⟩ →Lexp ⟨ f ,σ ′⟩ f ∈ X +E
Γ ⊢ ⟨l.i,σ⟩ →Lexp ⟨ f ,σ ′⟩

Γ ⊢ ⟨l,σ⟩ →Lexp ⟨ f ,σ ′⟩ f ∈ X +E
Γ ⊢ ⟨l[e],σ⟩ →Lexp ⟨ f ,σ ′⟩

Γ ⊢ ⟨e,σ⟩ →Exp ⟨ f ,σ ′⟩ f ∈ X +E
Γ ⊢ ⟨l[e],σ⟩ →Lexp ⟨ f ,σ ′⟩

Γ ⊢ l : int or Γ ⊢ l : bool Γ ⊢ ⟨l,σ⟩ →Lexp ⟨n,σ ′⟩ n ̸∈ dom(σ ′)

Γ ⊢ ⟨l,σ⟩ →Exp ⟨E1,σ
′⟩

Γ ⊢ ⟨e1,σ⟩ →Exp ⟨ f ,σ ′⟩ f ∈ X +E
Γ ⊢ ⟨e1/e2,σ⟩ →Exp ⟨ f ,σ ′⟩

Γ ⊢ ⟨e1,σ⟩ →Exp ⟨v,σ ′⟩,v ∈ Z Γ ⊢ ⟨e2,σ
′⟩ →Exp ⟨ f ,σ ′′⟩ f ∈ X +E

Γ ⊢ ⟨e1/e2,σ⟩ →Exp ⟨ f ,σ ′′⟩

Γ ⊢ ⟨e1,σ⟩ →Exp ⟨v,σ ′⟩,v ∈ Z Γ ⊢ ⟨e2,σ
′⟩ →Exp ⟨0,σ ′′⟩

Γ ⊢ ⟨e1/e2,σ⟩ →Exp ⟨E0,σ
′′⟩

Γ ⊢ ⟨e1,σ⟩ →Exp ⟨ f ,σ ′⟩ f ∈ X +E
Γ ⊢ ⟨e1 + e2,σ

′⟩ →Exp ⟨ f ,σ ′′⟩

Γ ⊢ ⟨e1,σ⟩ →Exp ⟨v,σ ′⟩,v ∈ Z Γ ⊢ ⟨e2,σ
′⟩ →Exp ⟨ f ,σ ′′⟩ f ∈ X +E

Γ ⊢ ⟨e1 + e2,σ⟩ →Exp ⟨ f ,σ ′′⟩
. . .

Γ ⊢ ⟨e1,σ⟩ →Exp ⟨ f ,σ ′⟩ f ∈ X +E
Γ ⊢ ⟨e1 == e2,σ⟩ →Exp ⟨ f ,σ ′⟩

Γ ⊢ ⟨e1,σ⟩ →Exp ⟨v,σ ′⟩v ∈ Z Γ ⊢ ⟨e2,σ
′⟩ →Exp ⟨ f ,σ ′′⟩ f ∈ X +E

Γ ⊢ ⟨e1 == e2,σ⟩ →Exp ⟨ f ,σ ′⟩
. . .

Γ ⊢ ⟨e1,σ⟩ →Exp ⟨ f ,σ ′⟩ f ∈ X +E
Γ ⊢ ⟨!e1,σ⟩ →Exp ⟨ f ,σ ′⟩

Γ ⊢ ⟨e1,σ⟩ →Exp ⟨ f ,σ ′⟩ f ∈ X +E
Γ ⊢ ⟨e1 && e2,σ⟩ →Exp ⟨ f ,σ ′⟩

Γ ⊢ ⟨e1,σ⟩ →Exp ⟨true,σ ′⟩ Γ ⊢ ⟨e2,σ
′⟩ →Exp ⟨ f ,σ ′′⟩ f ∈ X +E

Γ ⊢ ⟨e1 && e2,σ⟩ →Exp ⟨ f ,σ ′′⟩
. . .

x ∈ X
Γ ⊢ ⟨throw(x),σ⟩ →Exp ⟨x,σ⟩

Figure 11: Rules to handle exceptions in expressions. Only new rules are given, and rules for ∗, − and
<, || have been elided. — 26 —

Lüth: Programmiersprachen

Γ ⊢ ⟨σ ,nil⟩ →Stmt ⟨(),σ⟩

Γ ⊢ ⟨c1,σ⟩ →Stmt ⟨(),σ ′⟩ Γ ⊢ ⟨c2,σ
′⟩ →Stmt ⟨r,σ ′′⟩ r ∈ {()}+X +E

Γ ⊢ ⟨c1;c2,σ⟩ →Stmt ⟨r,σ ′′⟩

Γ ⊢ ⟨c1,σ⟩ →Stmt ⟨ f ,σ ′⟩ f ∈ X +E
Γ ⊢ ⟨c1;c2,σ⟩ →Stmt ⟨ f ,σ ′⟩

Γ ⊢ ⟨b,σ⟩ →Exp ⟨true,σ ′⟩ Γ ⊢ ⟨c1,σ⟩ →Stmt ⟨r,σ ′⟩
Γ ⊢ ⟨if (b) thenc1 else c2,σ⟩ →Stmt ⟨r,σ ′⟩

Γ ⊢ ⟨b,σ⟩ →Exp ⟨false,σ ′⟩ Γ ⊢ ⟨c2,σ⟩ →Stmt ⟨r,σ ′⟩
Γ ⊢ ⟨if (b) thenc1 else c2,σ⟩ →Stmt ⟨r,σ ′⟩

Γ ⊢ ⟨b,σ⟩ →Exp ⟨ f ,σ ′⟩
Γ ⊢ ⟨if (b) thenc1 else c2,σ⟩ →Stmt ⟨ f ,σ ′⟩

Γ ⊢ ⟨b,σ⟩ →Exp ⟨false,σ ′⟩
Γ ⊢ ⟨while (b) c,σ⟩ →Stmt ⟨(),σ ′⟩

Γ ⊢ ⟨b,σ⟩ →Exp ⟨ f ,σ ′⟩
Γ ⊢ ⟨while (b) c,σ⟩ →Stmt f σ

′

Γ ⊢ ⟨b,σ⟩ →Exp ⟨true,σ1⟩ Γ ⊢ ⟨c,σ1⟩ →Stmt ⟨(),σ2⟩ Γ ⊢ ⟨while (b) c,σ2⟩ →Stmt ⟨r,σ3⟩
Γ ⊢ ⟨while (b) c,σ⟩ →Stmt ⟨r,σ3⟩

Γ ⊢ ⟨b,σ⟩ →Exp ⟨true,σ ′⟩ Γ ⊢ ⟨c,σ ′⟩ →Stmt ⟨ f ,σ ′′⟩
Γ ⊢ ⟨while (b) c,σ⟩ →Stmt ⟨ f ,σ ′′⟩

Γ ⊢ ⟨c1,σ⟩ →Stmt ⟨(),σ ′⟩
Γ ⊢ ⟨try c1 catch x → c2,σ⟩ →Stmt ⟨(),σ ′⟩

Γ ⊢ ⟨c1,σ⟩ →Stmt ⟨ f ,σ ′⟩ e ̸= f
Γ ⊢ ⟨try c1 catch e → c2,σ⟩ →Stmt ⟨ f ,σ ′⟩

Γ ⊢ ⟨c1,σ⟩ →Stmt ⟨e,σ ′⟩ Γ ⊢ ⟨c2,σ
′⟩ →Stmt ⟨r,σ ′′⟩

Γ ⊢ ⟨try c1 catch e → c2,σ⟩ →Stmt ⟨r,σ ′′⟩

Figure 12: Rules to handle exceptions in statements.

— 27 —

Lüth: Programmiersprachen

Vorlesung vom 20.11.2023: Procedures and Functions

8 Procedures and Functions

8.1 Syntax: Definition

• General format:
fun f (x1, . . . ,xn) = c

where c is a command.

• A program is just a collection of function definitions:

φ ≡ fun f1(x1,1, . . . ,x1,n1) = b1
fun f2(x2,1, . . . ,x2,n2) = b2
. . .
fun fm(xm,1, . . . ,xm,nm) = bm

(19)

• Need to turn φ into an environment Γ, which maps function names (fi above) to the paramters
xi,1, . . . ,xi,ni .

• Better to introduce a new syntactic primitive: parameterized blocks

pb ::= λ i.pb | c

A parameterized block has either a formal parameter i, or it is just a command. Multiple parameters
can be written as λx1.λx2. . . .λxn. c (we write this as λx1,x2, . . . ,xn.c).

• We define the function # (which returns the number of parameters) as

#(λx.b) = 1+#(b)
#(c) = 0

• Parameterization is like the let-construct from earlier on, and in fact is the more basic construction.
We shall see anon now to express let via parameterization, but we need substitution first. It is
defined precisely like before, except it is now a statement rather than expression.

• The full definition is given in Figure 14. Compare it to the one in Figure 6 — where are the
differences?

8.2 Semantics

• The definition of a function in itself does not have any operational semantics.

• Firstly, a program definition like (20) above is written more precisely like

φ ≡ fun f1 = λx1,1, . . . ,x1,n1 .b1
fun f2 = λx2,1, . . . ,x2,n2 .b2
. . .
fun fm = λxm,1, . . . ,xm,nm .bm

(20)

— 28 —

Lüth: Programmiersprachen

FV(n) = /0
FV(x) = {x}

FV(true) = /0
FV(false) = /0

FV(e1 + e2) = FV(e1)∪FV(e2)

FV(e1 − e2) = FV(e1)∪FV(e2)

FV(e1 ∗ e2) = FV(e1)∪FV(e2)

FV(e1/e2) = FV(e1)∪FV(e2)

FV(e1 == e2) = FV(e1)∪FV(e2)

FV(e1 < e2) = FV(e1)∪FV(e2)

FV(!e) = FV(e)

FV(e1 && e2) = FV(e1)∪FV(e2)

FV(e1 || e2) = FV(e1)∪FV(e2)

FV(i := e) = FV(e)

FV(nil) = /0
FV(c1;c2) = FV(c1)∪FV(c2)

FV(if (b) thenc1 else c2) = FV(b)∪FV(c1)∪FV(c2)

FV(while (b) c) = FV(b)∪FV(c)

FV(λx.c) = FV(c\{x})

Figure 13: The function FV returns the free variables in am expression, statement or parameterized block.

— 29 —

Lüth: Programmiersprachen

n[e/x] = n

y[e/x] =

{
e x = y
y otherwise

true[e/x] = true

false[e/x] = false

(e1 + e2)[e/x] = (e1[e/x])+(e2[e/x])

(e1 − e2)[e/x] = (e1[e/x])− (e2[e/x])

(e1 ∗ e2)[e/x] = (e1[e/x])∗ (e2[e/x])

(e1/e2)[e/x] = (e1[e/x])/(e2[e/x])

(e1 == e2)[e/x] = (e1[e/x])==(e2[e/x])

(e1 < e2)[e/x] = (e1[e/x])< (e2[e/x])

(!e1)[e2/x] = !(e1[e2/x])

(e1 && e2)[e3/x] = (e1[e3/x])&& (e2[e3/x])

(e1 || e2)[e3/x] = (e1[e3/x]) || (e2[e3/x])

(x := e1)[e2/y] = (x := (e1[e2/y]))

nil[e/x] = nil
(c1;c2)[e/x] = (c1[e/x]);(c2[e/x])

(if (b) thenc1 else c2)[e/x] = if (b[e/x]) thenc1[e/x] else c2[e/x]

(while (b) c)[e/x] = while (b[e/x]) (c[e/x])

(λy.c)[e/x] =

λy.c x = y
λy.(c[e/x]) x ̸= y,y ̸∈ FV(e)
λ z.((c[z/y])[e/x]) x ̸= y,y ∈ FV(e),z ̸∈ FV(e)∪FV(c)

Figure 14: Definition of the substitution function.

— 30 —

Lüth: Programmiersprachen

• Thus, a program is a list of pairs (fi, pbi) where fi is an identifier and pbi is a parameterized block.

• The function environment Γfun is a map Idt ⇀ pb which maps function names to parameterized
blocks. For a program φ = (fi, pbi)i=1,...,n as above, we define Γfun(φ) = {(fi, pbi) | (fi, pbi) ∈ φ}.
This is all a very roundabout way of saying we keep track which block the name fi refers to.

• Note we do not distinguish between function names and variable names (just like Haskell), as this
just complicates things in this simple exposition.

• I’ve forgotten to annotate the parameters xi, j above, and the function body with a type! This is not
needed for the operational semantics, but for the type check (obviously).

8.3 Returning Values

• Before we can define the semantics of a function call, we need to be able to return a value. How
would that work?

• A return statement breaks sequential program flow, just like an exception. And it returns to the
point where the function was called, just like a catch statement! This suggests to model return by
exception.

• We could not do that before, as exceptions could not contain a value, they were just flat values; and
that was because we could not access the value when catching it.

• We extend the set E of exceptions as follows:

E = {ER}×V∪{E0,E1}

What does that mean? Exceptions are either constants E0 or E1 (for division by zero and illegal
memory access), or pairs (ER,v) where ER is a constant and v is a value; these pairs signal a function
returning value v

8.4 Extending the Languge

We extend our language with a function call statement (can also be a procedure call if it occurs as an
expression statement), and a return statement.

l ::= i | l.i | l[e]

e ::= Z | true | false | l

| e1 + e2 | e1 − e2 | e1 ∗ e2 | e1/e2

| e1 == e2 | e1 < e2

| !e | e1 && e2 | e1 || e2

| l := e | throw(x)

| f (e1, . . . ,en)

c ::= e | if (e) thenc1 else c2 | while (e) c | c1;c2 | nil | try c1 catch x → c2

| return e

pb ::= λ i. pb | c

— 31 —

Lüth: Programmiersprachen

• Parameterized blocks pb do not have a semantics, as they are never evaluated. (In functional pro-
gramming, unevaluated parameterized blocks such as these are refered to a as “chunks”.) Their
parameters x1, . . . ,xn are first substituted with the correct number of arguments, and then the result-
ing command b is evaluated; this is what the function call rules will be doing.

We first look at function calls with one parameter. We get call-by-value if the argument is first evaluated
to a value, which is then substituted for the parameter:

Γ(f) = λx.b Γ ⊢ ⟨e,σ⟩ →Exp ⟨v1,σ
′⟩ ⟨b[v1/x],σ ′⟩ →Stmt ⟨(ER,v2),σ

′⟩ v1,v2 ∈ V
Γ ⊢ ⟨ f (e),σ⟩ →Exp ⟨v2,σ

′′⟩
(21)

Remember from Figure 8 that if e is of aggregate type, it evaluates to the address n ∈ Loc in memory
where the aggregate type (array, structure) is located, so this is very much like Java does it, and the way
C handles arrays as parameters. We get call-by-need if the arguments are substituted as they are:

Γ(f) = λx.b ⟨b[e/x],σ⟩ →Stmt ⟨(ER,v),σ ′⟩ v ∈ V
Γ ⊢ ⟨ f (e),σ⟩ →Exp ⟨v,σ ′⟩

(22)

If we want to have multiple parameters, we have to evaluate the arguments successively, passing along
the state as we do so:

Γ(f) = λx1. . . .λxn.b Γ ⊢ ⟨ei,σi−1⟩ →Exp ⟨vi,σi⟩
Γ ⊢ ⟨(b[v1/x1]) . . . [vn/xn],σn⟩ →Stmt ⟨(ER,w),σ ′⟩ i = 1, . . . ,n,vi ∈ V

Γ ⊢ ⟨ f (e1, . . . ,en),σ0⟩ →Exp ⟨w,σ ′⟩
(23)

Γ(f) = λx1. . . .λxn.b Γ ⊢ ⟨(b[e1/x1]) . . . [en/xn],σ⟩ →Stmt ⟨(ER,v),σ ′⟩
Γ ⊢ ⟨ f (e1, . . . ,en),σ⟩ →Exp ⟨v,σ ′⟩

(24)

What is missing here? Well, what happens when the function body does not return a value? That might
happen if the control flow reaches the end of function body without a return statement; we can check that
statically and make sure it does not happen, so we can omit that. But what happens if another exception
is raised? Easy, we just pass it through (here only for cbv):

Γ(f) = λx1. . . .λxn.b Γ ⊢ ⟨ei,σi−1⟩ →Exp ⟨vi,σi⟩
Γ ⊢ ⟨(b[v1/x1]) . . . [vn/xn],σn⟩ →Stmt ⟨ f ,σ ′⟩ i = 1, . . . ,n,vi ∈ V, f ∈ {E0,E1}+X

Γ ⊢ ⟨ f (e1, . . . ,en),σ0⟩ →Exp ⟨ f ,σ ′⟩

Finally, for cbv we have to handle the possiblity that an exception occurs when one of the arguments are
evaluated. This reads like this (and is only needed for call-by-value):

Γ(f) = λx1. . . .λxn.b Γ ⊢ ⟨ei,σi−1⟩ →Exp ⟨vi,σi⟩
Γ ⊢ ⟨ek,σk−1⟩ →Exp ⟨ f ,σk⟩ i = 1, ldots,k,k < leqn,vi ∈ V, f ∈ E +X

Γ ⊢ ⟨ f (e1, . . . ,en),σ0⟩ →Exp ⟨ f ,σk⟩

Here, if the k-th argument (for some k ≤ n) evaluates to an exception f (and note this exception can be
an ER, meaning we return a value when passing an argument to another function — a strange thing to do,
but entirely possible), then the whole function call evaluates to that exception, and the function body is

— 32 —

Lüth: Programmiersprachen

left untouched (unevaluated). Obviously, call-by-need does not need a rule like that (but you may want
to ponder where exceptions raised when evaluating arguments can be handled — hint, not necessarily in
the body).

The eagle-eyed reader may have spotted a minor inconsistency here: since () ̸∈ V, we cannot return unit
values the way we have written things— we’d need E = {ER × (Loc∪{()})}, but that is easy to fix.

8.5 Implementation Considerations

The rules above use substitution on the syntactic level. Surely, a Real Programming LanguageT M (apart
from Haskell) would not (and in fact, could not, once the function has been compiled to machine code)
do that? Well, what happens in these langauges is expressed in our language as follows. A function

f (x1 : t1, . . . ,xn : tn){b}

in C or Java is modelled in our language as

fun f = λy1, . . . ,yn. new x1 : tn = y1 in . . .new xn : tn = yn in b

where y1, . . . ,yn ̸∈ FV(b). This is precisely how C describes parameter passing: function parameters are
local variables, initialised with the value that is passed to the function when it is called. Note that the
parameters y1, . . . ,yn do not appear in b, so b[vi/yi] = b (for any vi; and if vi is just a value, it will have no
free variables, so we do not need to worry about the ominuous third clause in Figure 14.

The reader is invited to write down the (simplified) version of rules (21) and (22) for these functions like
these.

— 33 —

Lüth: Programmiersprachen

Vorlesung vom 27.11.2023: Fortgeschrittene Typsysteme

9 Type Inference

We study type inference with a very simple language first. This follows very closely the classical exposi-
tion in [3]. For a more accessible introduction, see [1].

9.1 A Very Simple Language

9.1.1 Expressions

e ::= Idt | e1(e2) | λx.e | let x = e1 in e2

9.1.2 Types and Type Schemes

τ ::= α | ι | τ1 → τ2

σ ::= τ | ∀α.σ

• α are type variables, ι are predefined Types (e.g. int, bool, but also [α])

• Type schemes always look like σ = ∀α1, . . .αn.τ , i.e. a bunch of quantifiers around a type τ .

• FV(σ) are the free variables in a type scheme σ (i.e. the variables in τ minus the α1, . . . ,αn)

9.1.3 Substitutions

• A substitution is given by S = [τ1/α1] . . . [τn/αn], substituting variables for types.

• The empty substitution /0 acts as the identity. Substitutions can be composed, S2 . S1 applies S2
to all substituting terms in S1 and also adds those variables which where not in the domain of S1.
Composing with the empty substitution gives the identity, i.e. /0 . S = S . /0 = S, and τ(S2 . S1) =
(τS2)S1.

• It acts on type scheme σ , written σS, by replacing αi with τi, renaming bound variables as neces-
sary (we know how this works from above).

• Example:

σ = ∀α. [al pha]→ (β → α)

S = [α → int/β]

σS = ∀γ. [gamma]→ ((α → int)→ γ)

• σS is called instance of σ .

— 34 —

Lüth: Programmiersprachen

(x,σ) ∈ Γ

Γ ⊢ x : σ
[TAUT]

Γ ⊢ e : σ σ < σ
′

Γ ⊢ e : σ
[INST]

Γ ⊢ e : σ α ̸∈ FV(Γ)

Γ ⊢ e : ∀α.σ
[GEN]

Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1

Γ ⊢ e1(e2) : τ2
[COMB]

Γ+(x : τ1) ⊢ e : τ2

Γ ⊢ λx.e : τ1 → τ2
[ABS]

Γ ⊢ e1 : σ Γ+(x : σ) ⊢ e2 : τ

Γ ⊢ let x = e1 in e2 : τ
[LET]

Figure 15: Rules for Type Inference

• Given a type scheme σ = ∀α1, . . .αn.τ , a generic instance is σ ′ = ∀β1, . . . ,βm.τ
′ if τ ′ = τ[τi/αi] for

some τi and βi ̸∈ FVσ ; we write this as σ > σ ′. Note that generic instances act on bound variables,
whereas instances act on free variables.

9.1.4 Type Inference Rules

We infer type judgements of the form
Γ ⊢ e : σ (25)

where Γ is a context, e is an expression, and σ a type scheme.

The rules in Figure 15 allow us to infer judgements like (25). However, unlike the rules for the operational
semantics, they are not deterministic in the sense that it is always clear which rule to apply.

9.1.5 Type Unification

Given two types τ1,τ2, the type unification algorithm U calculates a substitution V such that

(i) τ1V = τ2V (V unifies τ1,τ2)

(ii) If there is a substitution S such that τ1S = τ2, then there is another substitution R such that S = R .V ,
i.e. S is an instance of V .

(iii) V only involves variables in τ1,τ2, dom(V)⊆ FV(τ1)∪FV(τ2)

The algorithm proceeds by case distinction on τ1 and τ2:

• Case τ1 ≡ α: if α ̸∈ FV(τ2), return S def
= [τ2/α], otherwise fail.

• Case τ2 ≡ α: if α ̸∈ FV(τ1), return S def
= [τ1/α], otherwise fail.

• Case τ1 ≡ ι and τ2 = ι : return S def
= /0

• Case τ1 ≡ τ11 → τ12 and τ2 ≡ τ21 → τ22: Calculate S1 = U(τ11,τ21) and S2 = U(τ12S1,τ22S1)

(either may fail; in that case, propagate failure). Then return S def
= S1 . S2.

• In all other cases fail.

— 35 —

Lüth: Programmiersprachen

9.1.6 Type Inference

This is the algorithm that drives type inference in Haskell and other languages with parametric polymor-
phism. First, the closure of a type τ with respect to a context Γ is given by

Γ(τ)
def
= ∀α1, . . . ,αn.τ

where α1, . . . ,αn ∈ FV(τ)\FV(Γ) (i.e. αi is free in τ but not in Γ); the closure is the result of applying
rule GEN as often as allowed to τ in the context Γ.

For context Γ and expression e, algorithm W computes

W (Γ,e) = (S,τ)

where S is a substutition, and τ a type such that ΓS ⊢ e : τ . It proceeds by case distinction on e:

• e ≡ x, (x : ∀α1, . . . ,αn.τ
′) ∈ Γ.

Then return S def
= /0, τ

def
= τ ′[β1/α1] . . . [βn/αn] where βi are fresh, i.e. βi ∈ FV(Γ).

• e ≡ e1(e2).

Then let

W (Γ,e1) = (S1,τ1)

W (Γ,e2) = (S2,τ2)

U(τ1S2,τ2 → β) =V with β ̸∈ FV(Γ)

Note all of these may fail; in that case, propagate failure.
If they do not fail, return S def

=V . S2 . S1,τ
def
= βV .

• e ≡ λx.e

Let W (Γ+(x : β),e1) = (S1,τ1) with β ̸∈ FV(Γ) (may fail; in that case, propagate failure).
Then return S def

= S1,τ
def
= βS → τ1.

• E ≡ let x = e1 in e2.

Let W (Γ,e1) = (S1,τ1) and W (ΓS1 +(x : ΓS1(τ1)),e2) = (S2,τ2) (may fail; you know what to do
by now). Then return S = S2 . S1,τ

def
= τ2.

The algorithm W is sound, i.e. if W (Γ,e) = (S,τ) then ΓS ⊢ e : τ , and it computes the principal type, i.e.
W (Γ,e) = (S,τ) and Γ ⊢ e : σ ′, then σ ′ = τS.

— 36 —

Lüth: Programmiersprachen

Vorlesung vom 27.11.2023: Datenabstraktion

10 Data Abstraction

The following development follows the slogan “Abstract types have existential type” [4, 2]. The main
observation is that just as parametric polymorphism is modelled by universal quantification over types, as
in the previous lecture, abstract datatypes are modelled by existential quantification.

No knowledge of formal logic is required to follow the lecture, but an intuitive understanding of what
∃x.φ(x) means will help.

10.1 Preliminaries

We generalize our types further to model abstract datatypes (note that we lose the type inference as we
do so). Wor types are now5

τ ::= α | ι | τ1 → τ2 | array τ | [τ] |
τ1 ∧ τ2 | ∀α.τ | ∃α.τ

More types mean more expressions:

e ::= Idt | e1(e2) | λx.e | let x = e1 in e2 |
⟨e1,e2⟩ | abstype α is e | open e1 in e2

Note we now have explicit tupels in our language. We will need these to model signatures, i.e. types of
modules. Essentially, our modules will be tuples of operations ⟨e1, . . . ,en⟩ and the type of the module
will be a type τ1 ∧ . . .∧ τn, with ei : τi. (We write n-tuples like that with the tacit understanding they are
just syntactic sugar for repeated binary tupels ⟨e1,e2⟩; I just do not want to have to type ellipses all the
time.)

10.2 Rules

Let’s get the boring stuff out of the way first. The rules for the product type are obvious:

Γ ⊢ e : σ Γ ⊢ f : τ

Γ ⊢ ⟨e, f ⟩ : σ ∧ τ

Γ ⊢ ⟨e, f ⟩ : σ ∧ τ

Γ ⊢ e : σ

Γ ⊢ ⟨e, f ⟩ : σ ∧ τ

Γ ⊢ f : τ

We use pattern matching to desconstruct tupels. Instead of introducing operations fst and snd to write,
e.g., λx. fst(x)+ snd(y) to calculate the sum of a tuple, we writeλ ⟨x,⟩.x+ y. To deconstruct tupels in the
context (assumptions), we use the (derived) rule

Γ+ x : σ + y : τ ⊢ t : ρ

Γ+ ⟨x,y⟩ : σ ∧ τ ⊢ t : ρ
[PRODL]

5We’ve added arrays and lists, as we need them for our examples below.

— 37 —

Lüth: Programmiersprachen

The rules for universal quantifications are straightforward:

Γ ⊢ t : σ α ̸∈ FV(Γ)

Γ ⊢ t : ∀α.σ

Γ ⊢ t : ∀α.σ

Γ ⊢ t : σ [τ/α]

If a type variable does not appear in the assumptions, we can quantify over it. Once we have quantified
over a type variable, we can replace it with any old type that we want. (For the definition of substitution
on types, see Section 9.1.3.)

The rules for the existential type quantifier create an abstract datatype, and let us use one (written as open,
corresponds to an “import” statement):

Γ ⊢ e : σ [τ/α]

Γ ⊢ abstype α is e : ∃α.σ
[EXI]

Γ ⊢ abstype p is e : ∃α.σ Γ+ e : σ [p/α] ⊢ f : ρ

Γ ⊢ open (abstype p is e) in f : ρ
[EXE]

When we import the abstrat datatype, the type variable α in the type is replaced with the constant p
(given by the name of the datatype); nothing can be assumed about p except for the operations available
in the abstract datatype. These are added to the assumptions (the context Γ) in the second premise of the
rule EXE, and can thus be used when typing f . Since an abstract datatype will always be a tuple of n
operations (the cases of n = 0 and n = 1 are possible, but rarely make sense), it makes sense to combine
rules EXE and PRODL into one rule:

Γ ⊢ abstype α is ⟨e1, . . . ,en⟩ : ∃α.σ1 ∧ . . .∧σn Γ+ x1 : σ1[p/α]+ . . .+ xn : σn[p/α] ⊢ f : ρ

Γ ⊢ open (abstype α is ⟨e1, . . . ,en⟩) in f : ρ
[EXE’]

Note how the only thing that is visible of the abstract datatype e from the outside is the type, i.e.. ∃α.τ
and if τ is a tuple σ1 ∧ . . .∧σn, we can refer to the components σi (we call them xi above, the original
names are lost behind the existential quantifier.)

10.3 Example Deriviations

10.3.1 Points

A classical example are points as an abstract datatype. To start with, let us model types as cartesian
tupels, and three operations mk_point, let and get_x. This can be wrapped in one big module expression
as follows:

Γ0 ⊢ let mk_point = λxy.⟨x,y⟩
len = λ ⟨x,y⟩. sqrt(x · x+ y · y)

get_x = λ ⟨x,y⟩.x
in ⟨mk_point, len,get_x⟩ : (R→ R→ R∧R)∧ (R∧R→ R)∧ (R∧R→ R)

We can now apply rule EXI and obtain an existential type:

Γ0 ⊢ let mk_point = λxy.⟨x,y⟩
len = λ ⟨x,y⟩. sqrt(x · x+ y · y)

get_x = λ ⟨x,y⟩.x
in ⟨mk_point, len,get_x⟩ : (R→ R→ R∧R)∧ (R∧R→ R)∧ (R∧R→ R)

≡ (R→ R→ α)∧ (α → R)∧ (α → R)[R∧R/α]

Γ0 ⊢ abstype pt is let mk_point = λxy.⟨x,y⟩
len = λ ⟨x,y⟩. sqrt(x · x+ y · y)

get_x = λ ⟨x,y⟩.x
in ⟨mk_point, len,get_x⟩ : ∃α.(R→ R→ α)∧ (α → R)∧ (α → R)

— 38 —

Lüth: Programmiersprachen

We can now use the datatype to type an operation len(mk_point(3)(4)) (this should evaluate to 5, but we
are only interested in the type for now). To use len and mk_point, we must import them (i.e. open the
datatype). Let us write P for the point ADT, then the above deriviation is

D
def
=

...
Γ0 ⊢ P : ∃α.(R→ R→ α)∧ (α → R)∧ (α → R)

(26)

We now want to infer the type of open P in len(mk_point(3)(4)) in the context Γ0. The first thing to
note is that the names, len and mkpoint are actually not visible from the outside of the datatype (from
the usability perspective, bit of a disaster); all we know is these are the second and third operation of the
datatype, they might as well be called foo and baz. Using rule EXE’ from above, we write

D
Γ1 ⊢ f2 : pt → R

Γ1 ⊢ f1 : R→ R→ pt Γ1 ⊢ 3 : R
Γ1 ⊢ f1(3) : R→ pt Γ1 ⊢ 4 : R

Γ1 ⊢ f1(3)(4) : pt
Γ1 ≡ Γ0 + f1 : R→ R→ pt + f2 : pt → R+ f3 : pt → R ⊢ f2(f1(3)(4)) : R

Γ0 ⊢ open P in f2(f1(3)(4)) : R

where D is the derivation from equation (26).

10.3.2 Stacks

Stacks are to abstract dataypes what escherichia coli is to microbiology — an obliging study object. We
briefly show two different implementations of stacks.

The first one is the functional implementation of stacks as lists:

Γ0 ⊢ ⟨[],hd, tail,cons,nil⟩ : [α]∧ ([α]→ α)∧ ([α]→ [α])∧ (α → [α]→ [α])∧ ([α]→ B)
Γ0 ⊢ abstype st is ⟨[],hd, tail,cons,null⟩ : ∃β .β ∧ (β → α)∧ (β → β)∧ (α → β → β)∧ (β → B)

Γ0 ⊢ abstype st is ⟨[],hd, tail,cons,null⟩ : ∀α.∃β .β ∧ (β → α)∧ (β → β)∧ (α → β → β)∧ (β → B)

Here, hd, tail, cons, and null are the operations which return the head and the rest of the list, append
a new element to the front (: in Haskell) and check wether the list is empty. This abstract datatype is
parametrically polymorph (it has type ∀α.∃β .σ , so σ contains both α and β . When we open the datatype,
we have to instantiate the type variable α , so we get stacks of a certain type. (We may instantiate α with
another type variable at point of usage, but the point is that a stack has one specific type for each usage.)

The second implementation of stacks is as a tuple of arrays and stack pointer. We derive the same type as
before. We give (via let) names to the operations now — we did not do so above — but that is more of a

— 39 —

Lüth: Programmiersprachen

convenience:

Γ0 ⊢ let empty = let x = alloc(array α,1000) in ⟨x,0⟩
top = λ ⟨a, p⟩.a[p−1]
pop = λ ⟨a, p⟩.⟨a, p−1⟩

push = λb⟨a, p⟩.⟨a[p] := b, p+1⟩
is_empty = λ ⟨a, p⟩. p = 0

in ⟨empty, top,pop,push, is_empty⟩ :
(array α ∧ int)∧ ((array α ∧ int)→ α)∧ ((array α ∧ int)→ (array α ∧ int))∧
(α → (array α)∧ (int)→ (array α ∧ int))∧ ((array α ∧ int))→ B
≡ (β ∧ (β → α)∧ (β → β)∧ (α → β → β)∧ (β → B))[array α ∧ int/β]

Γ0 ⊢ abstype st is let . . . in . . . : ∃β .β ∧ (β → α)∧ (β → β)∧ (α → β → β)∧ (β → B)
Γ0 ⊢ abstype st is let . . . in . . . : ∀α.∃β .β ∧ (β → α)∧ (β → β)∧ (α → β → β)∧ (β → B)

Let us call the stacks above S1 and S2. The reader is invited to show how stacks can be used, e.g. to type
the expression top(push(7,push(5,empty))), which is more exactly written as

?
Γ0 ⊢ open S1 in top(push(7,push(5,empty))) :?

— 40 —

Lüth: Programmiersprachen

References

[1] Luca Cardelli. Basic polymorphic typechecking. Science of Computer Programming, 8(2):147–172,
April 1987.

[2] Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and polymorphism. ACM
Computing Surveys, 17(4):471–523, December 1985.

[3] Luis Damas and Robin Milner. Principal type-schemes for functional programs. In Proceedings of
the 9th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’82,
pages 207–212, New York, NY, USA, January 1982. Association for Computing Machinery.

[4] John C. Mitchell and Gordon D. Plotkin. Abstract types have existential type. ACM Transactions on
Programming Languages and Systems, 10(3):470–502, July 1988.

— 41 —

	Preliminaries
	Partial Maps

	Expressions
	Abstract Syntax
	Evaluation
	Linear Notation
	Simple Type Systems

	A Simple Imperative Language: L0
	Abstract Syntax
	Evaluation
	Typing
	Expressions with Side Effects
	Abstract Syntax
	Evaluation

	Names
	Abstract Syntax
	Evaluation

	Variables and Memory Models
	Abstract Syntax
	Typing
	Evaluation
	Dynamic Memory Management

	Aggregate Types
	Abstract Language
	Operational Semantics
	Reference Types

	Errors and Exceptions
	Runtime Errors
	Exceptions
	Extending the Language
	Typing Rules
	Operational Semantics

	More Non-Linear Control Flow

	Procedures and Functions
	Syntax: Definition
	Semantics
	Returning Values
	Extending the Languge
	Implementation Considerations

	Type Inference
	A Very Simple Language
	Expressions
	Types and Type Schemes
	Substitutions
	Type Inference Rules
	Type Unification
	Type Inference

	Data Abstraction
	Preliminaries
	Rules
	Example Deriviations
	Points
	Stacks

