
Title: Hoare Logic
Lecturer: Mike Gordon

Class: CST Part II

Duration: 8 lectures

The Part II course Hoare Logic has evolved from earlier Part II courses (some

with different names). The web page for the current (i.e. 2014-2015) course

is http://www.cl.cam.ac.uk/~mjcg/HoareLogic/. On this page there is a link to

a PDF document called “background reading” that provides material that

may help deepen your understanding of the topics covered in the lectures.

The next page of this handout reproduces the first page of the background

reading document.1

Some of the slides in this handout are edited versions of ones used in past

courses and some are new this year. There is a fair chance that notational

inconsistencies, omissions and errors are present. If you discover such defects

please send details to Mike.Gordon@cl.cam.ac.uk. I will correct errors in

the online version of the slides, so the printed copies in this handout might

differ from what you see in the lectures.

I do not plan to present all the slides in this handout during the lectures.

The reason for including many more slides than will be used is because the

extra ones may provide a learning aid for reviewing the course.

The slides presented in the lectures are indicated by a tick ✓ to the right

of the title; slides with content that goes beyond what is covered in the

2014/15 course are indicated by a cross ✗. The ticks and crosses in the slides

will only become accurate after the lecture is given. I plan to update the

online handout and slides on the course web page after each lecture. For

lectures not yet given the ticks and crosses are from last year’s course. I may

present a different subset of the material in this year’s course, thus the ticks

and crosses may well change. The examination questions will be based

on the material presented in the lectures.

Acknowledgements.

Many people have helped create these slides and provided feedback on them.

Particular thanks to Paul Curzon and John Wickerson.

MJCG February 2, 2016

1Some parts of the background reading consist of revised and updated extracts from
the book Programming Language Theory and its Implementation, Michael J. C. Gordon,
Prentice-Hall International Series in Computer Science (edited by Professor C.A.R Hoare),
1988. Although this book is long out of print, Google reveals that it is available online
(e.g. http://bit.ly/1uOm7HA).

Background reading on Hoare Logic
Mike Gordon

Learning Guide for the CST Part II course. This document aims to

provide background reading to support the lectures – think of it as a free

downloadable textbook. Chapters 1–5 introduce classical ideas of specifica-

tion and proof of programs due to Floyd and Hoare.1 Although much of

the material is old – see the dates on some of the cited references – it is

still a foundation for current research. Chapter 6 is a very brief introduction

to program refinement; this provides rules to ‘calculate’ an implementation

from a Hoare-style specification. Chapter 7 is an introduction to the ideas

of separation logic, an extension of Hoare logic for specifying and verifying

programs that manipulate pointers. Separation logic builds on early ideas of

Burstall, but its modern form is due to O’Hearn and Reynolds.

Note that there may be topics presented in the lectures that are not cov-

ered in this document and there may be material in this document that is

not related to the topics covered in the lectures. For example, the topics

of program refinement and separation logic may only be described very su-

perficially, if at all. The examination questions will be based on the

material presented in the lectures.

The Part II course Hoare Logic has evolved from an earlier Part II course,

whose web page can be found on my home page (www.cl.cam.ac.uk/~mjcg).

Some exam questions from that course might be good exercises (but note that

some are based on material not covered in this course). A separate document

containing exercises for the current course is available from the web page.

Warning. The material here consists of reorganized extracts from lecture

notes for past courses, together with new material. There is a fair chance that

notational inconsistencies, omissions and errors are present. If you discover

such defects please send details to Mike.Gordon@cl.cam.ac.uk.

Acknowledgements. Thanks to Martin Vechev and John Wickerson for

finding many errors (some serious) in a previous draft of these notes and also

for suggestions for improving the text.

MJCG February 2, 2016

1Hoare Logic is sometimes called Floyd-Hoare Logic, due to the important contributions
of Floyd to the underlying ideas.

Topics and corresponding slides

Topic Slides
Introduction 1 - 5
Hoare’s notation 7 - 11
Formal proofs 12 - 16
Partial and total correctness 17 - 19
Example specification 20 - 25
Review of predicate calculus 26 - 34
Floyd-Hoare Logic 35 - 59
How does one find an invariant 60 - 62
Additional and derived rules 63 - 72
Forwards and backwards proof 73 - 79
Annotations 80 - 82, 92 - 93
Mechanizing verification 83 - 86
Verification conditions 87 - 112
Weakest preconditions 113 121
Strongest postconditions 122 - 133
Total correctness 134 - 154
Soundness and completeness 155 - 179
Overview of additional topics 180 - 181
Arrays 182 - 190
Blocks and local variables 191 - 194
FOR-commands 196 - 213
Axiomatic semantics and Clarke’s theorem 214 - 215
Refinement 216 - 251
Separation logic 252 - 293
Conclusion 294

-1

1

1

Hoare Logic

http://www.cl.cam.ac.uk/~mjcg/HoareLogic.html

① Program specification using Hoare notation

① Axioms and rules of Hoare Logic

① Soundness and completeness

① Mechanised program verification

① Pointers, the frame problem and separation logic

0

2

Program Specification and Verification

① This course is about formal ways of specifying and validating software

① This contrasts with informal methods:

✉ natural language specifications

✉ testing

① Formal methods are not a panacea

✉ formally verified designs may still not work

✉ can give a false sense of security

① Assurance versus debugging

✉ formal verification (FV) can reveal hard-to-find bugs

✉ can also be used for assurance e.g. “proof of correctness”

✉ Microsoft use FV for debugging, NSA use FV for assurance

① Goals of course:
✉ enable you to understand and criticise formal methods

✉ provide a stepping stone to current research

1

3

Testing

① Testing can quickly find obvious bugs

✉ only trivial programs can be tested exhaustively

✉ the cases you do not test can still hide bugs

✉ coverage tools can help

① How do you know what the correct test results should be?

① Many industries’ standards specify maximum failure rates

✉ e.g. fewer than 10−6 failures per second

✉ assurance that such rates have been achieved cannot be obtained by testing

2

4

Formal Methods

① Formal Specification - using mathematical notation to give a precise
description of what a program should do

① Formal Verification - using precise rules to mathematically prove that
a program satisfies a formal specification

① Formal Development (Refinement) - developing programs in a way that
ensures mathematically they meet their formal specifications

① Formal Methods should be used in conjunction with testing, not as
a replacement

3

2

5

Should we always use formal methods?

① They can be expensive
✉ though can be applied in varying degrees of effort

① There is a trade-off between expense and the need for correctness

① It may be better to have something that works most of the time
than nothing at all

① For some applications, correctness is especially important
✉ nuclear reactor controllers

✉ car braking systems

✉ fly-by-wire aircraft

✉ software controlled medical equipment

✉ voting machines

✉ cryptographic code

① Formal proof of correctness provides a way of establishing the ab-
sence of bugs when exhaustive testing is impossible

4

6

Floyd-Hoare Logic

① This course is concerned with Floyd-Hoare Logic

✉ also known just as Hoare Logic

① Floyd-Hoare Logic is a method of reasoning mathematically about
imperative programs

① It is the basis of mechanized program verification systems

✉ the architecture of these will be described later

① Industrial program development methods like SPARK use ideas
from Floyd-Hoare Logic to obtain high assurance

① Developments to the logic still under active development

✉ e.g. separation logic (reasoning about pointers)

✉ 2/3 of 2010 BCS Distinguished Dissertation awards concerned separation logic

5

7

A Little Programming Language

Expressions:

E::= N | V | E1 + E2 | E1 − E2 | E1 × E2 | . . .

Boolean expressions:

B::= T | F | E1=E2 | E1 ≤ E2 | . . .

Commands:

C::= V := E

| C1 ; C2

| IF B THEN C1 ELSE C2

| WHILE B DO C

6

8

Some Notation

① Programs are built out of commands like assignments, conditionals,
while-loops etc

① The terms ‘program’ and ‘command’ are synonymous

✉ the former generally used for commands representing complete algorithms

① The term ‘statement’ is used for conditions on program variables
that occur in correctness specifications

✉ potential for confusion: some people use this word for commands

7

3

9

Specification of Imperative Programs

Acceptable
Initial State

Acceptable
Final State

“X is
greater than

zero”

“Y is the
square root

of X”

✲

Action
of the

Program

8

10

Hoare’s notation

① C.A.R. Hoare introduced the following notation called a
partial correctness specification for specifying what a program does:

{P} C {Q}
where:

✉ C is a command

✉ P and Q are conditions on the program variables used in C

① Conditions on program variables will be written using standard
mathematical notations together with logical operators like:

✉ ∧ (‘and’), ∨ (‘or’), ¬ (‘not’), ⇒ (‘implies’)

① Hoare’s original notation was P {C} Q not {P} C {Q}, but the latter
form is now more widely used

9

11

Meaning of Hoare’s Notation

① {P} C {Q} is true if

✉ whenever C is executed in a state satisfying P

✉ and if the execution of C terminates

✉ then the state in which C terminates satisfies Q

① Example: {X = 1} X:=X+1 {X = 2}
✉ P is the condition that the value of X is 1

✉ Q is the condition that the value of X is 2

✉ C is the assignment command X:=X+1

✉ i.e. ‘X becomes X+1’

① {X = 1} X:=X+1 {X = 2} is true

① {X = 1} X:=X+1 {X = 3} is false

10

12

Formal versus Informal Proof

① Mathematics text books give informal proofs

① English arguments are used

✉ proof of (X+ 1)2 = X2 + 2× X + 1

“follows by the definition of squaring and distributivity laws”

① Formal verification uses formal proof
✉ the rules used are described and followed very precisely

✉ formal proof has been used to discover errors in published informal ones

① Here is an example formal proof

1. (X+ 1)2 = (X+ 1)× (X+ 1) Definition of ()2.
2. (X+ 1)× (X+ 1) = (X+ 1)× X+ (X+ 1)× 1 Left distributive law of × over +.

3. (X+ 1)2 = (X+ 1)× X+ (X+ 1)× 1 Substituting line 2 into line 1.
4. (X+ 1)× 1 = X+ 1 Identity law for 1.

5. (X+ 1)× X = X× X+ 1× X Right distributive law of × over +.

6. (X+ 1)2 = X× X+ 1× X+ X+ 1 Substituting lines 4 and 5 into line 3.
7. 1× X = X Identity law for 1.

8. (X+ 1)2 = X× X+ X+ X+ 1 Substituting line 7 into line 6.
9. X× X = X2 Definition of ()2.

10. X+ X = 2× X 2=1+1, distributive law.

11. (X+ 1)2 = X2 + 2× X+ 1 Substituting lines 9 and 10 into line 8.

11

4

13

The Structure of Proofs

① A proof consists of a sequence of lines

① Each line is an instance of an axiom

✉ like the definition of ()2

① or follows from previous lines by a rule of inference

✉ like the substitution of equals for equals

① The statement occurring on the last line of a proof is the statement
proved by it

✉ thus (X + 1)2 = X2 + 2× X + 1 is proved by the proof on the previous slide

① These are ‘Hilbert style’ formal proofs

✉ can use a tree structure rather than a linear one

✉ choice is a matter of convenience

12

14

Formal proof is syntactic ‘symbol pushing’

① Formal Systems reduce verification and proof to symbol pushing

① The rules say...
✉ if you have a string of characters of this form
✉ you can obtain a new string of characters of this other form

① Even if you don’t know what the strings are intended to mean, pro-
vided the rules are designed properly and you apply them correctly,
you will get correct results

✉ though not necessarily the desired result

① Thus computers can do formal verification

① Formal verification by hand generally not feasible
✉ maybe hand verify high-level design, but not code

① Famous paper that’s worth reading:
✉ “Social processes and the proofs of theorems and programs”.

R. A. DeMillo, R. J. Lipton, and A. J. Perlis. CACM, May 1979

① Also see the book “Mechanizing Proof” by Donald MacKenzie

13

15

Hoare’s Verification Grand Challenge

① Bill Gates, keynote address at WinHec 2002

‘‘... software verification ... has been the Holy Grail of computer
science for many decades but now in some very key areas, for example,
driver verification we are building tools that can do actual proof
about the software and how it works in order to guarantee the reliability.’’

① Hoare has posed a challenge

The verification challenge is to achieve a significant body of
verified programs that have precise external specifications,
complete internal specifications, machine-checked proofs of
correctness with respect to a sound theory of programming.

The Deliverables

A comprehensive theory of programming that covers the
features needed to build practical and reliable programs.

A coherent toolset that automates the theory and scales up
to the analysis of large codes.

A collection of verified programs that replace existing
unverified ones, and continue to evolve in a verified state.

① “You can’t say anymore it can’t be done! Here, we have done it.”

14

16

Hoare Logic and Verification Conditions

① Hoare Logic is a deductive proof system for Hoare triples {P} C {Q}

① Can use Hoare Logic directly to verify programs

✉ original proposal by Hoare

✉ tedious and error prone

✉ impractical for large programs

① Can ‘compile’ proving {P} C {Q} to verification conditions

✉ more natural

✉ basis for computer assisted verification

① Proof of verification conditions equivalent to proof with Hoare Logic

✉ Hoare Logic can be used to explain verification conditions

15

5

17

Partial Correctness Specification

① An expression {P} C {Q} is called a partial correctness specification

✉ P is called its precondition

✉ Q its postcondition

① {P} C {Q} is true if

✉ whenever C is executed in a state satisfying P

✉ and if the execution of C terminates

✉ then the state in which C’s execution terminates satisfies Q

① These specifications are ‘partial’ because for {P} C {Q} to be true
it is not necessary for the execution of C to terminate when started
in a state satisfying P

① It is only required that if the execution terminates, then Q holds

① {X = 1} WHILE T DO X:=X {Y = 2} – this specification is true!

16

18

Total Correctness Specification

① A stronger kind of specification is a total correctness specification

✉ there is no standard notation for such specifications

✉ we shall use [P] C [Q]

① A total correctness specification [P] C [Q] is true if and only if

✉ whenever C is executed in a state satisfying P the execution of C terminates

✉ after C terminates Q holds

① [X = 1] Y:=X; WHILE T DO X:=X [Y = 1]

✉ this says that the execution of Y:=X;WHILE T DO X:=X terminates when started

in a state satisfying X = 1

✉ after which Y = 1 will hold

✉ this is clearly false

17

19

Total Correctness

① Informally:

Total correctness = Termination + Partial correctness

① Total correctness is the ultimate goal

✉ usually easier to show partial correctness and termination separately

① Termination is usually straightforward to show, but there are ex-
amples where it is not: no one knows whether the program below
terminates for all values of X

WHILE X>1 DO

IF ODD(X) THEN X := (3×X)+1 ELSE X := X DIV 2

✉ X DIV 2 evaluates to the result of rounding down X/2 to a whole number

✉ the Collatz conjecture is that this terminates with X=1

① Microsoft’s T2 tool proves systems code terminates

18

20

Auxiliary Variables

① {X=x ∧ Y=y} R:=X; X:=Y; Y:=R {X=y ∧ Y=x}
✉ this says that if the execution of

R:=X; X:=Y; Y:=R

terminates (which it does)

✉ then the values of X and Y are exchanged

① The variables x and y, which don’t occur in the command and are
used to name the initial values of program variables X and Y

① They are called auxiliary variables or ghost variables

① Informal convention:

✉ program variable are upper case

✉ auxiliary variable are lower case

19

6

21

More simple examples

① {X=x ∧ Y=y} X:=Y; Y:=X {X=y ∧ Y=x}
✉ this says that X:=Y; Y:=X exchanges the values of X and Y

✉ this is not true

① {T} C {Q}
✉ this says that whenever C halts, Q holds

① {P} C {T}
✉ this specification is true for every condition P and every command C

✉ because T is always true

① [P] C [T]

✉ this says that C terminates if initially P holds

✉ it says nothing about the final state

① [T] C [P]

✉ this says that C always terminates and ends in a state where P holds

20

22

A More Complicated Example

① {T}
R:=X;

Q:=0;

WHILE Y≤R DO

(R:=R-Y; Q:=Q+1)





C

{R < Y ∧ X = R + (Y× Q)}

① This is {T} C {R < Y ∧ X = R + (Y× Q)}
✉ where C is the command indicated by the braces above

✉ the specification is true if whenever the execution of C halts, then Q is quotient

and R is the remainder resulting from dividing Y into X

✉ it is true (even if X is initially negative!)

✉ in this example Q is a program variable

✉ don’t confuse Q with the metavariable Q used in previous examples to range

over postconditions (Sorry: my bad notation!)

21

23

Some Easy Exercises

① When is [T] C [T] true?

① Write a partial correctness specification which is true if and only if
the command C has the effect of multiplying the values of X and Y

and storing the result in X

① Write a specification which is true if the execution of C always halts
when execution is started in a state satisfying P

22

24

Specification can be Tricky

① “The program must set Y to the maximum of X and Y”

✉ [T] C [Y = max(X,Y)]

① A suitable program:

✉ IF X >= Y THEN Y := X ELSE X := X

① Another?

✉ IF X >= Y THEN X := Y ELSE X := X

① Or even?

✉ Y := X

① Later you will be able to prove that these programs are “correct”

① The postcondition “Y=max(X,Y)” says “Y is the maximum of X and Y

in the final state”

0

7

25

Specification can be Tricky (ii)

① The intended specification was probably not properly captured by

⊢ {T} C {Y=max(X,Y)}

① The correct formalisation of what was intended is probably

⊢ {X=x ∧ Y=y} C {Y=max(x,y)}

① The lesson

✉ it is easy to write the wrong specification!

✉ a proof system will not help since the incorrect programs could have been

proved “correct”

✉ testing would have helped!

1

26

Review of Predicate Calculus

① Program states are specified with first-order logic (FOL)

① Knowledge of this is assumed (brief review given now)

① In first-order logic there are two separate syntactic classes

✉ Terms (or expressions): these denote values (e.g. numbers)

✉ Statements (or formulae): these are either true or false

2

27

Terms (Expressions)

① Statements are built out of terms which denote values such as num-
bers, strings and arrays

① Terms, like 1 and 4 + 5, denote a fixed value, and are called ground

① Other terms contain variables like x, X, y, X, z, Z etc

① We use conventional notation, e.g. here are some terms:

X, y, Z,

1, 2, 325,

-X, -(X+1), (x×y)+Z,√
(1+x2), X!, sin(x), rem(X,Y)

① Convention:
✉ program variables are uppercase

✉ auxiliary (i.e. logical) variables are lowercase

3

28

Atomic Statements

① Examples of atomic statements are

T, F, X = 1, R < Y, X = R+(Y×Q)

① T and F are atomic statements that are always true and false

① Other atomic statements are built from terms using predicates, e.g.

ODD(X), PRIME(3), X = 1, (X+1)2 ≥ x2

① ODD and PRIME are examples of predicates

① = and ≥ are examples of infixed predicates

① X, 1, 3, X+1, (X+1)2, x2 are terms in above atomic statements

4

8

29

Compound statements

① Compound statements are built up from atomic statements using:

¬ (not)
∧ (and)
∨ (or)
⇒ (implies)
⇔ (if and only if)

✉ The single arrow → is commonly used for implication instead of ⇒

① Suppose P and Q are statements, then

✉ ¬P is true if P is false, and false if P is true

✉ P ∧Q is true whenever both P and Q are true

✉ P ∨Q is true if either P or Q (or both) are true

✉ P ⇒ Q is true if whenever P is true, then Q is true

✉ P ⇔ Q is true if P and Q are either both true or both false

5

30

More on Implication

① By convention we regard P ⇒ Q as being true if P is false

① In fact, it is common to regard P ⇒ Q as equivalent to ¬P ∨Q

① Some philosophers disagree with this treatment of implication

✉ since any implication A ⇒ B is true if A is false

✉ e.g. (1 < 0) ⇒ (2 + 2 = 3)

✉ search web for “paradoxes of implication”

① P ⇔ Q is equivalent to (P ⇒ Q) ∧ (Q ⇒ P)

① Sometimes write P = Q or P ≡ Q for P ⇔ Q

6

31

Precedence

① To reduce the need for brackets it is assumed that

✉ ¬ is more binding than ∧ and ∨

✉ ∧ and ∨ are more binding than ⇒ and ⇔

① For example

¬P ∧Q is equivalent to (¬P) ∧Q
P ∧Q ⇒ R is equivalent to (P ∧Q) ⇒ R
P ∧Q ⇔ ¬R ∨ S is equivalent to (P ∧Q) ⇔ ((¬R) ∨ S)

7

32

Universal quantification

① If S is a statement and x a variable

① Then ∀x. S means:

‘for all values of x, the statement S is true’

① The statement
∀x1 x2 . . . xn. S

abbreviates
∀x1. ∀x2. . . . ∀xn. S

① It is usual to adopt the convention that any unbound (i.e. free) vari-
ables in a statement are to be regarded as implicitly universally
quantified

① For example, if n is a variable then the statement n+0 = n is regarded
as meaning the same as ∀n. n + 0 = n

8

9

33

Existential quantification

① If S is a statement and x a variable

① Then ∃x. S means

‘for some value of x, the statement S is true’

① The statement
∃x1 x2 . . . xn. S

abbreviates
∃x1. ∃x2. . . . ∃xn. S

9

34

Summary

① Predicate calculus forms the basis for program specification

① It is used to describe the acceptable initial states, and intended final
states of programs

① We will next look at how to prove programs meet their specifications

① Proof of theorems within predicate calculus assumed known!

10

35

Floyd-Hoare Logic

① To construct formal proofs of partial correctness specifications,
axioms and rules of inference are needed

① This is what Floyd-Hoare logic provides

✉ the formulation of the deductive system is due to Hoare

✉ some of the underlying ideas originated with Floyd

① A proof in Floyd-Hoare logic is a sequence of lines, each of which is
either an axiom of the logic or follows from earlier lines by a rule of
inference of the logic

✉ proofs can also be trees, if you prefer

① A formal proof makes explicit what axioms and rules of inference
are used to arrive at a conclusion

11

36

Notation for Axioms and Rules

① If S is a statement, ⊢ S means S has a proof

✉ statements that have proofs are called theorems

① The axioms of Floyd-Hoare logic are specified by schemas

✉ these can be instantiated to get particular partial correctness specifications

① The inference rules of Floyd-Hoare logic will be specified with a
notation of the form

⊢ S1, . . . , ⊢ Sn

⊢ S

✉ this means the conclusion ⊢ S may be deduced

from the hypotheses ⊢ S1, . . . , ⊢ Sn

✉ the hypotheses can either all be theorems of Floyd-Hoare logic

✉ or a mixture of theorems of Floyd-Hoare logic and theorems of mathematics

12

10

37

An example rule

The sequencing rule

⊢ {P} C1 {Q}, ⊢ {Q} C2 {R}
⊢ {P} C1;C2 {R}

① If a proof has lines matching ⊢ {P} C1 {Q} and ⊢ {Q} C2 {R}
① One may deduce a new line ⊢ {P} C1;C2 {R}
① For example if one has deduced:

⊢ {X=1} X:=X+1 {X=2}
⊢ {X=2} X:=X+1 {X=3}

① One may then deduce:

⊢ {X=1} X:=X+1; X:=X+1 {X=3}
① Method of verification conditions (VCs) generates proof obligation

⊢ X=1 ⇒ X+(X+1)=3

✉ VCs are handed to a theorem prover✉ “Extended Static Checking” (ESC) is an industrial example

13

38

Reminder of our little programming language

① The proof rules that follow constitute an axiomatic semantics of our
programming language

Expressions

E ::= N | V | E1 + E2 | E1 − E2 | E1 × E2 | . . .

Boolean expressions

B ::= T | F | E1=E2 | E1 ≤ E2 | . . .

Commands

C ::= V := E Assignments

| C1 ; C2 Sequences

| IF B THEN C1 ELSE C2 Conditionals

| WHILE B DO C WHILE-commands

14

39

Judgements

① Three kinds of things that could be true or false:

✉ statements of mathematics, e.g. (X + 1)2 = X2 + 2× X + 1

✉ partial correctness specifications {P} C {Q}
✉ total correctness specifications [P] C [Q]

① These three kinds of things are examples of judgements

✉ a logical system gives rules for proving judgements

✉ Floyd-Hoare logic provides rules for proving partial correctness specifications

✉ the laws of arithmetic provide ways of proving statements about integers

① ⊢ S means statement S can be proved

✉ how to prove predicate calculus statements assumed known

✉ this course covers axioms and rules for proving

program correctness statements

15

40

Syntactic Conventions

① Symbols V , V1, . . . , Vn stand for arbitrary variables

✉ examples of particular variables are X, R, Q etc

① Symbols E, E1, . . . , En stand for arbitrary expressions (or terms)

✉ these are things like X + 1,
√
2 etc. which denote values (usually numbers)

① Symbols S, S1, . . . , Sn stand for arbitrary statements

✉ these are conditions like X < Y, X2 = 1 etc. which are either true or false

✉ will also use P , Q, R to range over pre and postconditions

① Symbols C, C1, . . . , Cn stand for arbitrary commands

16

11

41

Substitution Notation

① Q[E/V] is the result of replacing all occurrences of V in Q by E

✉ read Q[E/V] as ‘Q with E for V ’

✉ for example: (X+1 > X)[Y+Z/X] = ((Y+Z)+1 > Y+Z)

✉ ignoring issues with bound variables for now (e.g. variable capture)

① Same notation for substituting into terms, e.g. E1[E2/V]

① Think of this notation as the ‘cancellation law’

V [E/V] = E

which is analogous to the cancellation property of fractions

v × (e/v) = e

① Note that Q[x/V] doesn’t contain V (if V 6= x)

17

42

The Assignment Axiom (Hoare)

① Syntax: V := E

① Semantics: value of V in final state is value of E in initial state

① Example: X:=X+1 (adds one to the value of the variable X)

The Assignment Axiom

⊢ {Q[E/V]} V :=E {Q}
Where V is any variable, E is any expression, Q is any statement.

① Instances of the assignment axiom are

✉ ⊢ {E = x} V := E {V = x}
✉ ⊢ {Y = 2} X := 2 {Y = X}
✉ ⊢ {X + 1 = n + 1} X := X + 1 {X = n + 1}
✉ ⊢ {E = E} X := E {X = E} (if X does not occur in E)

18

43

The Backwards Fallacy

① Many people feel the assignment axiom is ‘backwards’

① One common erroneous intuition is that it should be

⊢ {P} V :=E {P[V/E]}

✉ where P[V/E] denotes the result of substituting V for E in P

✉ this has the false consequence ⊢ {X=0} X:=1 {X=0}
(since (X=0)[X/1] is equal to (X=0) as 1 doesn’t occur in (X=0))

① Another erroneous intuition is that it should be

⊢ {P} V :=E {P[E/V]}

✉ this has the false consequence ⊢ {X=0} X:=1 {1=0}
(which follows by taking P to be X=0, V to be X and E to be 1)

19

44

A Forwards Assignment Axiom (Floyd)

① This is the original semantics of assignment due to Floyd

⊢ {P} V :=E {∃v. V = E[v/V] ∧ P[v/V]}
✉ where v is a new variable (i.e. doesn’t equal V or occur in P or E)

① Example instance

⊢ {X=1} X:=X+1 {∃v. X = X+1[v/X] ∧ X=1[v/X]}

① Simplifying the postcondition

⊢ {X=1} X:=X+1 {∃v. X = X+1[v/X] ∧ X=1[v/X]}
⊢ {X=1} X:=X+1 {∃v. X = v + 1 ∧ v = 1}
⊢ {X=1} X:=X+1 {∃v. X = 1 + 1 ∧ v = 1}
⊢ {X=1} X:=X+1 {X = 1 + 1 ∧ ∃v. v = 1}
⊢ {X=1} X:=X+1 {X = 2 ∧ T}
⊢ {X=1} X:=X+1 {X = 2}

① Forwards Axiom equivalent to standard one but harder to use

20

12

45

Precondition Strengthening

① Recall that

⊢ S1, . . . , ⊢ Sn

⊢ S

means ⊢ S can be deduced from ⊢ S1, . . . , ⊢ Sn

① Using this notation, the rule of precondition strengthening is

Precondition strengthening

⊢ P ⇒ P ′, ⊢ {P ′} C {Q}
⊢ {P} C {Q}

① Note the two hypotheses are different kinds of judgements

21

46

Example

① From

✉ ⊢ X=n ⇒ X+1=n+1

✉ trivial arithmetical fact

✉ ⊢ {X + 1 = n + 1} X := X + 1 {X = n + 1}

✉ from earlier slide

① It follows by precondition strengthening that

⊢ {X = n} X := X + 1 {X = n + 1}

① Note that n is an auxiliary (or ghost) variable

22

47

Postcondition weakening

① Just as the previous rule allows the precondition of a partial cor-
rectness specification to be strengthened, the following one allows
us to weaken the postcondition

Postcondition weakening

⊢ {P} C {Q′}, ⊢ Q′ ⇒ Q

⊢ {P} C {Q}

23

48

Validity

① Important to establish the validity of axioms and rules

① Later will give a formal semantics of our little programming language

✉ then prove axioms and rules of inference of Floyd-Hoare logic are sound

✉ this will only increase our confidence in the axioms and rules to the extent

that we believe the correctness of the formal semantics!

① The Assignment Axiom is not valid for ‘real’ programming languages

✉ In an early PhD on Hoare Logic G. Ligler showed that the assignment axiom

can fail to hold in six different ways for the language Algol 60

24

13

49

Expressions with Side-effects

① The validity of the assignment axiom depends on expressions not
having side effects

① Suppose that our language were extended so that it contained the
‘block expression’

BEGIN Y:=1; 2 END

✉ this expression has value 2, but its evaluation also ‘side effects’ the variable Y

by storing 1 in it

① If the assignment axiom applied to block expressions, then it could
be used to deduce

⊢ {Y=0} X:=BEGIN Y:=1; 2 END {Y=0}
✉ since (Y=0)[E/X] = (Y=0) (because X does not occur in (Y=0))

✉ this is clearly false; after the assignment Y will have the value 1

25

50

An Example Formal Proof

① Here is a little formal proof

1. ⊢ {R=X ∧ 0=0} Q:=0 {R=X ∧ Q=0} By the assignment axiom

2. ⊢ R=X ⇒ R=X ∧ 0=0 By pure logic

3. ⊢ {R=X} Q:=0 {R=X ∧ Q=0} By precondition strengthening

4. ⊢ R=X ∧ Q=0 ⇒ R=X+(Y× Q) By laws of arithmetic

5. ⊢ {R=X} Q:=0 {R=X+(Y× Q)} By postcondition weakening

① The rules precondition strengthening and postcondition weakening
are sometimes called the rules of consequence

26

51

The sequencing rule

① Syntax: C1; · · · ;Cn

① Semantics: the commands C1, · · · , Cn are executed in that order

① Example: R:=X; X:=Y; Y:=R

✉ the values of X and Y are swapped using R as a temporary variable

✉ note side effect : value of R changed to the old value of X

The sequencing rule

⊢ {P} C1 {Q}, ⊢ {Q} C2 {R}
⊢ {P} C1;C2 {R}

27

52

Example Proof

Example: By the assignment axiom:

(i) ⊢ {X=x∧Y=y} R:=X {R=x∧Y=y}
(ii) ⊢ {R=x∧Y=y} X:=Y {R=x∧X=y}
(iii) ⊢ {R=x∧X=y} Y:=R {Y=x∧X=y}

Hence by (i), (ii) and the sequencing rule

(iv) ⊢ {X=x∧Y=y} R:=X; X:=Y {R=x∧X=y}

Hence by (iv) and (iii) and the sequencing rule

(v) ⊢ {X=x∧Y=y} R:=X; X:=Y; Y:=R {Y=x∧X=y}

28

14

53

Conditionals

① Syntax: IF S THEN C1 ELSE C2

① Semantics:

✉ if the statement S is true in the current state, then C1 is executed

✉ if S is false, then C2 is executed

① Example: IF X<Y THEN MAX:=Y ELSE MAX:=X

✉ the value of the variable MAX it set to the maximum of the values of X and Y

0

54

The Conditional Rule

The conditional rule

⊢ {P ∧ S} C1 {Q}, ⊢ {P ∧ ¬S} C2 {Q}
⊢ {P} IF S THEN C1 ELSE C2 {Q}

① From Assignment Axiom + Precondition Strengthening and

⊢ (X≥Y ⇒ X = max(X,Y)) ∧ (¬(X≥Y) ⇒ Y = max(X,Y))

it follows that

⊢ {T ∧ X≥Y} MAX:=X {MAX=max(X,Y)}
and

⊢ {T ∧ ¬(X≥Y)} MAX:=Y {MAX=max(X,Y)}
① Then by the conditional rule it follows that

⊢ {T} IF X≥Y THEN MAX:=X ELSE MAX:=Y {MAX=max(X,Y)}

1

55

WHILE-commands

① Syntax: WHILE S DO C

① Semantics:

✉ if the statement S is true in the current state, then C is executed and
the WHILE-command is repeated

✉ if S is false, then nothing is done

✉ thus C is repeatedly executed until the value of S becomes false

✉ if S never becomes false, then the execution of the command never terminates

① Example: WHILE ¬(X=0) DO X:= X-2

✉ if the value of X is non-zero, then its value is decreased by 2
and then the process is repeated

① This WHILE-command will terminate (with X having value 0) if the
value of X is an even non-negative number

✉ in all other states it will not terminate

2

56

Invariants

① Suppose ⊢ {P ∧ S} C {P}

① P is said to be an invariant of C whenever S holds

① The WHILE-rule says that

✉ if P is an invariant of the body of a WHILE-command
whenever the test condition holds

✉ then P is an invariant of the whole WHILE-command

① In other words

✉ if executing C once preserves the truth of P

✉ then executing C any number of times also preserves the truth of P

① The WHILE-rule also expresses the fact that after a WHILE-command
has terminated, the test must be false

✉ otherwise, it wouldn’t have terminated

3

15

57

The WHILE-Rule

The WHILE-rule

⊢ {P ∧ S} C {P}
⊢ {P} WHILE S DO C {P ∧ ¬S}

① It is easy to show

⊢ {X=R+(Y×Q)∧Y≤R} R:=R-Y; Q:=Q+1 {X=R+(Y×Q)}

① Hence by the WHILE-rule with P = ‘X=R+(Y×Q)’ and S = ‘Y≤R’

⊢ {X=R+(Y×Q)}
WHILE Y≤R DO

(R:=R-Y; Q:=Q+1)

{X=R+(Y×Q) ∧ ¬(Y≤R)}

4

58

Example

① From the previous slide

⊢ {X=R+(Y×Q)}
WHILE Y≤R DO

(R:=R-Y; Q:=Q+1)

{X=R+(Y×Q) ∧ ¬(Y≤R)}

① It is easy to deduce that

⊢ {T} R:=X; Q:=0 {X=R+(Y×Q)}

① Hence by the sequencing rule and postcondition weakening

⊢ {T}
R:=X;

Q:=0;

WHILE Y≤R DO

(R:=R-Y; Q:=Q+1)

{R<Y ∧ X=R+(Y×Q)}

5

59

Summary

① We have given:

✉ a notation for specifying what a program does

✉ a way of proving that it meets its specification

① Now we look at ways of finding proofs and organising them:

✉ finding invariants

✉ derived rules

✉ backwards proofs

✉ annotating programs prior to proof

① Then we see how to automate program verification

✉ the automation mechanises some of these ideas

6

60

How does one find an invariant?

The WHILE-rule

⊢ {P ∧ S} C {P}
⊢ {P} WHILE S DO C {P ∧ ¬S}

① Look at the facts:

✉ invariant P must hold initially

✉ with the negated test ¬S the invariant P must establish the result

✉ when the test S holds, the body must leave the invariant P unchanged

① Think about how the loop works – the invariant should say that:

✉ what has been done so far together with what remains to be done

✉ holds at each iteration of the loop

✉ and gives the desired result when the loop terminates

7

16

61

Example

① Consider a factorial program

{X=n ∧ Y=1}
WHILE X 6=0 DO

(Y:=Y×X; X:=X-1)

{X=0 ∧ Y=n!}
① Look at the facts

✉ initially X=n and Y=1

✉ finally X=0 and Y=n!

✉ on each loop Y is increased and, X is decreased

① Think how the loop works

✉ Y holds the result so far

✉ X! is what remains to be computed

✉ n! is the desired result

① The invariant is X!×Y = n!

✉ ‘stuff to be done’ × ‘result so far’ = ‘desired result’

✉ decrease in X combines with increase in Y to make invariant

8

62

Related example

{X=0 ∧ Y=1}
WHILE X<N DO (X:=X+1; Y:=Y×X)
{Y=N!}

① Look at the Facts

✉ initially X=0 and Y=1

✉ finally X=N and Y=N!

✉ on each iteration both X an Y increase: X by 1 and Y by X

① An invariant is Y = X!

① At end need Y = N!, but WHILE-rule only gives ¬(X<N)

① Ah Ha! Invariant needed: Y = X! ∧ X≤N

① At end X ≤ N ∧¬(X<N) ⇒ X=N

① Often need to strenthen invariants to get them to work

✉ typical to add stuff to ‘carry along’ like X≤N

9

63

Conjunction and Disjunction

Specification conjunction

⊢ {P1} C {Q1}, ⊢ {P2} C {Q2}
⊢ {P1 ∧ P2} C {Q1 ∧Q2}

Specification disjunction

⊢ {P1} C {Q1}, ⊢ {P2} C {Q2}
⊢ {P1 ∨ P2} C {Q1 ∨Q2}

① These rules are useful for splitting a proof into independent bits

✉ they enable ⊢ {P} C {Q1 ∧ Q2} to be proved by proving separately that both

⊢ {P} C {Q1} and also that ⊢ {P} C {Q2}

① Any proof with these rules could be done without using them

✉ i.e. they are theoretically redundant (proof omitted)

✉ however, useful in practice

10

64

Combining Multiple Steps

① Proofs involve lots of tedious fiddly small steps

✉ similar sequences are used over and over again

① It is tempting to take short cuts and apply several rules at once

✉ this increases the chance of making mistakes

① Example:

✉ by assignment axiom & precondition strengthening

✉ ⊢ {T} R := X {R = X}

① Rather than:

✉ by the assignment axiom

✉ ⊢ {X = X} R := X {R = X}

✉ by precondition strengthening with ⊢ T ⇒ X=X

✉ ⊢ {T} R := X {R = X}

11

17

65

Derived rules for finding proofs

① Suppose the goal is to prove {Precondition} Command {Postcondition}

① If there were a rule of the form

⊢ H1, · · · , ⊢ Hn

⊢ {P} C {Q}

then we could instantiate

P 7→ Precondition, C 7→ Command , Q 7→ Postcondition

to get instances of H1, · · · , Hn as subgoals

① Some of the rules are already in this form e.g. the sequencing rule

① We will derive rules of this form for all commands

① Then we use these derived rules for mechanising Hoare Logic proofs

12

66

Derived Rules

① We will establish derived rules for all commands

· · ·
⊢ {P} V :=E {Q}

· · ·
⊢ {P} C1;C2 {Q}

· · ·
⊢ {P} IF S THEN C1 ELSE C2 {Q}

· · ·
⊢ {P} WHILE S DO C {Q}

① These support ‘backwards proof’ starting from a goal {P} C {Q}

13

67

The Derived Assignment Rule

① An example proof

1. ⊢ {R=X ∧ 0=0} Q:=0 {R=X ∧ Q=0} By the assignment axiom.

2. ⊢ R=X ⇒ R=X ∧ 0=0 By pure logic.

3. ⊢ {R=X} Q:=0 {R=X ∧ Q=0} By precondition strengthening.

① Can generalise this proof to a proof schema:

1. ⊢ {Q[E/V]} V :=E {Q} By the assignment axiom.

2. ⊢ P ⇒ Q[E/V] By assumption.

3. ⊢ {P} V :=E {Q} By precondition strengthening.

① This proof schema justifies:

Derived Assignment Rule

⊢ P ⇒ Q[E/V]

⊢ {P} V :=E {Q}

① Note: Q[E/V] is the weakest liberal precondition wlp(V :=E,Q)

① Example proof above can now be done in one less step

1. ⊢ R=X ⇒ R=X ∧ 0=0 By pure logic.

2. ⊢ {R=X} Q:=0 {R=X ∧ Q=0} By derived assignment.

14

68

Derived Sequenced Assignment Rule

① The following rule will be useful later

Derived Sequenced Assignment Rule

⊢ {P} C {Q[E/V]}
⊢ {P} C;V :=E {Q}

① Intuitively work backwards:

✉ push Q ‘through’ V :=E, changing it to Q[E/V]

① Example: By the assignment axiom:

⊢ {X=x∧Y=y} R:=X {R=x∧Y=y}
① Hence by the sequenced assignment rule

⊢ {X=x∧Y=y} R:=X; X:=Y {R=x∧X=y}

15

18

69

Backward Hoare & forward Floyd assignment axioms

① Recall Hoare (backward) and Floyd (forward) assignment axioms

Hoare axiom: ⊢ {P[E/V]} V :=E {P}

Floyd axiom: ⊢ {P} V :=E {∃v. V = E[v/V] ∧ P[v/V]}

① Exercise 1 (easy): derive forward axiom from Hoare axiom

✉ hint: P ⇒ ∃v. E = E[v/V] ∧ P[v/V]

① Exercise 2 (a bit harder): derive Hoare axiom from forward axiom

✉ hint: if v is a new variable then P[E/V][v/V] = P[E[v/V]/V]

① Exercise 3: devise and justify a derived assignment rule based on
the Floyd assignment axiom

16

70

The Derived While Rule

Derived While Rule

⊢ P ⇒ R ⊢ {R ∧ S} C {R} ⊢ R ∧ ¬S ⇒ Q

⊢ {P} WHILE S DO C {Q}

① This follows from the While Rule and the rules of consequence

① Example: it is easy to show

⊢ R=X ∧ Q=0 ⇒ X=R+(Y×Q)

⊢ {X=R+(Y×Q)∧Y≤R} R:=R-Y; Q:=Q+1 {X=R+(Y×Q)}

⊢ X=R+(Y×Q)∧¬(Y≤R) ⇒ X=R+(Y×Q)∧¬(Y≤R)

① Then, by the derived While rule

⊢ {R=X ∧ Q=0}
WHILE Y≤R DO

(R:=R-Y; Q:=Q+1)

{X=R+(Y×Q) ∧ ¬(Y≤R)}

17

71

The Derived Sequencing Rule

① The rule below follows from the sequencing and consequence rules

The Derived Sequencing Rule

⊢ P ⇒ P1

⊢ {P1} C1 {Q1} ⊢ Q1 ⇒ P2

⊢ {P2} C2 {Q2} ⊢ Q2 ⇒ P3

. .

. .

. .
⊢ {Pn} Cn {Qn} ⊢ Qn ⇒ Q

⊢ {P} C1; . . . ; Cn {Q}

① Exercise: why no derived conditional rule?

18

72

Example

① By the assignment axiom

(i) ⊢ {X=x∧Y=y} R:=X {R=x∧Y=y}
(ii) ⊢ {R=x∧Y=y} X:=Y {R=x∧X=y}
(iii) ⊢ {R=x∧X=y} Y:=R {Y=x∧X=y}

① Using the derived sequencing rule, it can be deduced in one step from
(i), (ii), (iii) and the fact that for any P : ⊢ P ⇒ P

⊢ {X=x ∧ Y=y} R:=X; X:=Y; Y:=R {Y=x ∧ X=y}

19

19

73

Forwards and backwards proof

① Previously it was shown how to prove {P}C{Q} by

✉ proving properties of the components of C

✉ and then putting these together, with the appropriate proof rule,

to get the desired property of C

① For example, to prove ⊢ {P}C1;C2{Q}

① First prove ⊢ {P}C1{R} and ⊢ {R}C2{Q}

① then deduce ⊢ {P}C1;C2{Q} by sequencing rule

① This method is called forward proof

✉ move forward from axioms via rules to conclusion

① The problem with forwards proof is that it is not always easy to see
what you need to prove to get where you want to be

① It is more natural to work backwards

✉ starting from the goal of showing {P}C{Q}
✉ generate subgoals until problem solved

20

74

Example

① Suppose one wants to show

{X=x ∧ Y=y} R:=X; X:=Y; Y:=R {Y=x ∧ X=y}

① By the assignment axiom and derived sequenced assignment rule it
is sufficient to show the subgoal

{X=x ∧ Y=y} R:=X; X:=Y {R=x ∧ X=y}

① Similarly this subgoal can be reduced to

{X=x ∧ Y=y} R:=X {R=x ∧ Y=y}

① This clearly follows from the assignment axiom

21

75

Backwards versus Forwards Proof

① Backwards proof just involves using the rules backwards

① Given the rule

⊢ S1 . . . ⊢ Sn

⊢ S

① Forwards proof says:

✉ if we have proved ⊢ S1 . . . ⊢ Sn we can deduce ⊢ S

① Backwards proof says:

✉ to prove ⊢ S it is sufficient to prove ⊢ S1 . . . ⊢ Sn

① Having proved a theorem by backwards proof, it is simple to extract
a forwards proof

22

76

Example Backwards Proof

① To prove

⊢ {T}
R:=X;

Q:=0;

WHILE Y≤R DO

(R:=R-Y; Q:=Q+1)

{X=R+(Y×Q) ∧ R<Y}

① By the sequencing rule, it is sufficient to prove

(i) ⊢ {T} R:=X; Q:=0 {R=X ∧ Q=0}
(ii) ⊢ {R=X ∧ Q=0}

WHILE Y≤R DO

(R:=R-Y; Q:=Q+1)

{X=R+(Y×Q) ∧ R<Y}

① Where does {R=X ∧ Q=0} come from? (Answer later)

23

20

77

Example Continued (1)

① From previous slide:

(i) ⊢ {T} R:=X; Q:=0 {R=X ∧ Q=0}

① To prove (i), by the sequenced assignment axiom, we must prove:

(iii) ⊢ {T} R:=X {R=X ∧ 0=0}

① To prove (iii), by the derived assignment rule, we must prove:

⊢ T ⇒ X=X ∧ 0=0

① This is true by pure logic

24

78

Example continued (2)

① From an earlier slide:

(ii) ⊢ {R=X ∧ Q=0}
WHILE Y≤R DO

(R:=R-Y; Q:=Q+1)

{X=R+(Y×Q) ∧ R<Y}

① To prove (ii), by the derived while rule, we must prove:

(iv) R=X ∧ Q=0 ⇒ (X = R+(Y×Q))
(v) X = R+Y×Q ∧ ¬(Y≤R) ⇒ (X = R+(Y×Q) ∧ R<Y)

and

(vi)
{X = R+(Y×Q) ∧ (Y≤R)}
(R:=R-Y; Q:=Q+1)

{X=R+(Y×Q)}

① (iv) and (v) are proved by pure arithmetic

25

79

Example Continued (3)

① To prove (vi), we must prove

(vii)
{X = R+(Y×Q) ∧ (Y≤R)}
(R:=R-Y; Q:=Q+1)

{X=R+(Y×Q)}
① To prove (vii), by the sequenced assignment rule, we must prove

(viii)
{X=R+(Y×Q) ∧ (Y≤R)}
R:=R-Y

{X=R+(Y×(Q+1))}
① To prove (viii), by the derived assignment rule, we must prove

(ix) X=R+(Y×Q) ∧ Y≤R ⇒ (X = (R-Y)+(Y×(Q+1)))
① This is true by arithmetic

① Exercise: Construct the forwards proof that corresponds
to this backwards proof

26

80

Annotations

① The sequencing rule introduces a new statement R

⊢ {P} C1 {R} ⊢ {R} C2 {Q}
⊢ {P} C1;C2 {Q}

① To apply this backwards, one needs to find a suitable statement R

① If C2 is V :=E then sequenced assignment gives Q[E/V] for R

① If C2 isn’t an assignment then need some other way to choose R

① Similarly, to use the derived While rule, must invent an invariant

27

21

81

Annotate First

① It is helpful to think up these statements before you start the proof
and then annotate the program with them

✉ the information is then available when you need it in the proof

✉ this can help avoid you being bogged down in details

✉ the annotation should be true whenever control reaches that point

① Example, the following program could be annotated at the points
P1 and P2 indicated by the arrows

{T}
R:=X;

Q:=0; {R=X ∧ Q=0} ←−P1
WHILE Y≤R DO {X = R+Y×Q} ←−P2

(R:=R-Y; Q:=Q+1)

{X = R+Y×Q ∧ R<Y}

28

82

Summary

① We have looked at three ways of organizing proofs that make it
easier for humans to apply them:

✉ deriving “bigger step” rules

✉ backwards proof

✉ annotating programs

① Next we see how these techniques can be used to mechanize program
verification

29

83

NEW TOPIC: Mechanizing Program Verification

① The architecture of a simple program verifier will be described

① Justified with respect to the rules of Floyd-Hoare logic

① It is clear that

✉ proofs are long and boring, even if the program being verified is quite simple

✉ lots of fiddly little details to get right, many of which are trivial, e.g.

⊢ (R=X ∧ Q=0) ⇒ (X = R + Y×Q)

0

84

Mechanization

① Goal: automate the routine bits of proofs in Floyd-Hoare logic

① Unfortunately, logicians have shown that it is impossible in principle
to design a decision procedure to decide automatically the truth or
falsehood of an arbitrary mathematical statement

① This does not mean that one cannot have procedures that will prove
many useful theorems

✉ the non-existence of a general decision procedure merely shows that one can-

not hope to prove everything automatically

✉ in practice, it is quite possible to build a system that will mechanize the

boring and routine aspects of verification

① The standard approach to this will be described in the course

✉ ideas very old (JC King’s 1969 CMU PhD, Stanford verifier in 1970s)

✉ used by program verifiers (e.g. Gypsy and SPARK verifier)

✉ provides a verification front end to different provers (see Why system)

1

22

85

Architecture of a Verifier

Specification to be proved

❄

• human expert

Annotated specification

❄

• VC generator

Set of logic statements (VCs)

❄

• theorem prover

Simplified set of

verification conditions

❄

• human expert

End of proof

2

86

Commentary

① Input: a Hoare triple annotated with mathematical statements

✉ these annotations describe relationships between variables

① The system generates a set of purely mathematical statements called
verification conditions (or VCs)

① If the verification conditions are provable, then the original specifi-
cation can be deduced from the axioms and rules of Hoare logic

① The verification conditions are passed to a theorem prover program
which attempts to prove them automatically

✉ if it fails, advice is sought from the user

3

87

Verification conditions

① The three steps in proving {P}C{Q} with a verifier

① 1 The program C is annotated by inserting statements (assertions)
expressing conditions that are meant to hold at intermediate points

✉ tricky: needs intelligence and good understanding of how the program works

✉ automating it is an artificial intelligence problem

① 2 A set of logic statements called verification conditions (VCs) is then
generated from the annotated specification

✉ this is purely mechanical and easily done by a program

① 3 The verification conditions are proved

✉ needs automated theorem proving (i.e. more artificial intelligence)

① To improve automated verification one can try to

✉ reduce the number and complexity of the annotations required

✉ increase the power of the theorem prover

✉ still a research area

4

88

Validity of Verification Conditions

① It will be shown that

✉ if one can prove all the verification conditions generated from {P}C{Q}

✉ then ⊢ {P}C{Q}

① Step 2 converts a verification problem into a conventional mathe-
matical problem

① The process will be illustrated with:

{T}
R:=X;

Q:=0;

WHILE Y≤R DO

(R:=R-Y; Q:=Q+1)

{X = R+Y×Q ∧ R<Y}

5

23

89

Example

① Step 1 is to insert annotations P1 and P2

{T}
R:=X;

Q:=0; {R=X ∧ Q=0} ←−P1
WHILE Y≤R DO {X = R+Y×Q} ←−P2

(R:=R-Y; Q:=Q+1)

{X = R+Y×Q ∧ R<Y}

① The annotations P1 and P2 state conditions which are intended to
hold whenever control reaches them

6

90

Example Continued

{T}
R:=X;

Q:=0; {R=X ∧ Q=0} ←−P1
WHILE Y≤R DO {X = R+Y×Q} ←−P2

(R:=R-Y; Q:=Q+1)

{X = R+Y×Q ∧ R<Y}

① Control only reaches the point at which P1 is placed once

① It reaches P2 each time the WHILE body is executed

✉ whenever this happens X=R+Y×Q holds, even though the values of R and Q vary

✉ P2 is an invariant of the WHILE-command

7

91

Generating and Proving Verification Conditions

① Step 2 will generate the following four verification conditions

(i) T ⇒ (X=X ∧ 0=0)

(ii) (R=X ∧ Q=0) ⇒ (X = R+(Y×Q))
(iii) (X = R+(Y×Q)) ∧ Y≤R) ⇒ (X = (R-Y)+(Y×(Q+1)))
(iv) (X = R+(Y×Q)) ∧ ¬(Y≤R) ⇒ (X = R+(Y×Q) ∧ R<Y)

① Notice that these are statements of arithmetic

✉ the constructs of our programming language have been ‘compiled away’

① Step 3 consists in proving the four verification conditions

✉ easy with modern automatic theorem provers

8

92

Annotation of Commands

① An annotated command is a command with statements (assertions)
embedded within it

① A command is properly annotated if statements have been inserted at
the following places

(i) before C2 in C1;C2 if C2 is not an assignment command

(ii) after the word DO in WHILE commands

① The inserted assertions should express the conditions one expects to
hold whenever control reaches the point at which the assertion occurs

① Can reduce number of annotations using weakest preconditions
(see later)

9

24

93

Annotation of Specifications

① A properly annotated specification is a specification {P}C{Q} where
C is a properly annotated command

① Example: To be properly annotated, assertions should be at points
1© and 2© of the specification below

{X=n}
Y:=1; ←− 1©
WHILE X 6=0 DO ←− 2©

(Y:=Y×X; X:=X-1)

{X=0 ∧ Y=n!}

① Suitable statements would be

at 1©: {Y = 1 ∧ X = n}
at 2©: {Y×X! = n!}

10

94

Verification Condition Generation

① The VCs generated from an annotated specification {P}C{Q} are
obtained by considering the various possibilities for C

① We will describe it command by command using rules of the form:

① The VCs for C(C1, C2) are

✉ vc1, ... , vcn

✉ together with the VCs for C1 and those for C2

① Each VC rule corresponds to either a primitive or derived rule

11

95

A VC Generation Program

① The algorithm for generating verification conditions is recursive on
the structure of commands

① The rule just given corresponds to the recursive program clause:

VC (C(C1, C2)) = [vc1, ... ,vcn]@ (VC C1) @ (VC C2)

① The rules are chosen so that only one VC rule applies in each case

✉ applying them is then purely mechanical

✉ the choice is based on the syntax

✉ only one rule applies in each case so VC generation is deterministic

12

96

Justification of VCs

① This process will be justified by showing that ⊢ {P}C{Q} if all the
verification conditions can be proved

① We will prove that for any C

✉ assuming the VCs of {P}C{Q} are provable

✉ then ⊢ {P}C{Q} is a theorem of the logic

13

25

97

Justification of Verification Conditions

① The argument that the verification conditions are sufficient will be
by induction on the structure of C

① Such inductive arguments have two parts

✉ show the result holds for atomic commands, i.e. assignments

✉ show that when C is not an atomic command, then if the result holds for

the constituent commands of C (this is called the induction hypothesis), then it

holds also for C

① The first of these parts is called the basis of the induction

① The second is called the step

① The basis and step entail that the result holds for all commands

14

98

VC for Assignments

Assignment commands

The single verification condition generated by

{P} V :=E {Q}
is

P ⇒ Q[E/V]

① Example: The verification condition for

{X=0} X:=X+1 {X=1}
is

X=0 ⇒ (X+1)=1

(which is clearly true)

① Note: Q[E/V] = wlp("V :=E", Q)

15

99

Justification of Assignment VC

① We must show that if the VCs of {P} V := E {Q} are provable
then ⊢ {P} V := E {Q}

① Proof:

✉ Assume ⊢ P ⇒ Q[E/V] as it is the VC

✉ From derived assignment rule it follows that ⊢ {P} V := E {Q}

16

100

VCs for Conditionals

Conditionals
The verification conditions generated from

{P} IF S THEN C1 ELSE C2 {Q}
are

(i) the verification conditions generated by

{P ∧ S} C1 {Q}
(ii) the verifications generated by

{P ∧ ¬S} C2 {Q}

① Example: The verification conditions for

{T} IF X≥Y THEN MAX:=X ELSE MAX:=Y {MAX=max(X,Y)}
are

(i) the VCs for {T ∧ X≥Y} MAX:=X {MAX=max(X,Y)}
(ii) the VCs for {T ∧ ¬(X≥Y)} MAX:=Y {MAX=max(X,Y)}

17

26

101

Justification for the Conditional VCs (1)

① Must show that if VCs of

{P} IF S THEN C1 ELSE C2 {Q}
are provable, then

⊢ {P} IF S THEN C1 ELSE C2 {Q}

① Proof:

✉ Assume the VCs {P ∧ S} C1 {Q} and {P ∧ ¬S} C2 {Q}

✉ The inductive hypotheses tell us that if these VCs are provable then the

corresponding Hoare Logic theorems are provable

✉ i.e. by induction ⊢ {P ∧ S} C1 {Q} and ⊢ {P ∧ ¬S} C2 {Q}

✉ Hence by the conditional rule ⊢ {P} IF S THEN C1 ELSE C2 {Q}

18

102

Review of Annotated Sequences

① If C1;C2 is properly annotated, then either

Case 1: it is of the form C1;{R}C2 and C2 is not an assignment

Case 2: it is of the form C;V := E

① And C, C1 and C2 are properly annotated

19

103

VCs for Sequences

Sequences

1. The verification conditions generated by

{P} C1 {R} C2 {Q}
(where C2 is not an assignment) are the union of:

(a) the verification conditions generated by {P} C1 {R}
(b) the verifications generated by {R} C2 {Q}

2. The verification conditions generated by

{P} C;V :=E {Q}
are the verification conditions generated by {P} C {Q[E/V]}

20

104

Example

① The verification conditions generated from

{X=x ∧ Y=y} R:=X; X:=Y; Y:=R {X=y ∧ Y=x}

① Are those generated by

{X=x ∧ Y=y} R:=X; X:=Y {(X=y ∧ Y=x)[R/Y]}

① This simplifies to

{X=x ∧ Y=y} R:=X; X:=Y {X=y ∧ R=x}

① The verification conditions generated by this are those generated by

{X=x ∧ Y=y} R:=X {(X=y ∧ R=x)[Y/X]}

① Which simplifies to

{X=x ∧ Y=y} R:=X {Y=y ∧ R=x}

21

27

105

Example Continued

① The only verification condition generated by

{X=x ∧ Y=y} R:=X {Y=y ∧ R=x}

is

X=x ∧ Y=y ⇒ (Y=y ∧ R=x)[X/R]

① Which simplifies to

X=x ∧ Y=y ⇒ Y=y ∧ X=x

① Thus the single verification condition from

{X=x ∧ Y=y} R:=X; X:=Y; Y:=R {X=y ∧ Y=x}

is

X=x ∧ Y=y ⇒ Y=y ∧ X=x

22

106

Justification of VCs for Sequences (1)

① Case 1: If the verification conditions for

{P} C1 ; {R} C2 {Q}
are provable

① Then the verification conditions for

{P} C1 {R}
and

{R} C2 {Q}
must both be provable

① Hence by induction

⊢ {P} C1 {R} and ⊢ {R} C2 {Q}

① Hence by the sequencing rule

⊢ {P} C1;C2 {Q}

23

107

Justification of VCs for Sequences (2)

① Case 2: If the verification conditions for

{P} C;V := E {Q}

are provable, then the verification conditions for

{P} C {Q[E/V }

are also provable

① Hence by induction

⊢ {P} C {Q[E/V]}

① Hence by the derived sequenced assignment rule

⊢ {P} C;V := E {Q}

24

108

VCs for WHILE-Commands

① A correctly annotated specification of a WHILE-command has the form

{P} WHILE S DO {R} C {Q}

① The annotation R is called an invariant

WHILE-commands

The verification conditions generated from

{P} WHILE S DO {R} C {Q}

are

(i) P ⇒ R

(ii) R ∧ ¬S ⇒ Q

(iii) the verification conditions generated by {R ∧ S} C{R}

25

28

109

Example

① The verification conditions for

{R=X ∧ Q=0}
WHILE Y≤R DO {X=R+Y×Q}

(R:=R-Y; Q:=Q+1)

{X = R+(Y×Q) ∧ R<Y}
are:

(i) R=X ∧ Q=0 ⇒ (X = R+(Y×Q))
(ii) X = R+Y×Q ∧ ¬(Y≤R) ⇒ (X = R+(Y×Q) ∧ R<Y)

together with the verification condition for

{X = R+(Y×Q) ∧ (Y≤R)}
(R:=R-Y; Q:=Q+1)

{X=R+(Y×Q)}
which consists of the single condition

(iii) X = R+(Y×Q) ∧ (Y≤R) ⇒ X = (R-Y)+(Y×(Q+1))

26

110

Example Summarised

① By previous transparency

⊢ {R=X ∧ Q=0}
WHILE Y≤R DO

(R:=R-Y; Q:=Q+1)

{X = R+(Y×Q) ∧ R<Y}
if

⊢ R=X ∧ Q=0 ⇒ (X = R+(Y×Q))

and

⊢ X = R+(Y×Q) ∧ ¬(Y≤R)⇒ (X = R+(Y×Q) ∧ R<Y)

and

⊢ X = R+(Y×Q) ∧ (Y≤R) ⇒ X = (R-Y)+(Y×(Q+1))

27

111

Justification of WHILE VCs

① If the verification conditions for

{P} WHILE S DO {R} C {Q}
are provable, then

⊢ P ⇒ R

⊢ (R ∧ ¬S) ⇒ Q

and the verification conditions for

{R ∧ S} C {R}
are provable

① By induction

⊢ {R ∧ S} C {R}
① Hence by the derived WHILE-rule

⊢ {P} WHILE S DO C {Q}

28

112

Summary

① Have outlined the design of an automated program verifier

① Annotated specifications compiled to mathematical statements

✉ if the statements (VCs) can be proved, the program is verified

① Human help is required to give the annotations and prove the VCs

① The algorithm was justified by an inductive proof

✉ it appeals to the derived rules

① All the techniques introduced earlier are used

✉ backwards proof

✉ derived rules

✉ annotation

29

29

113

Dijkstra’s weakest preconditions

① Weakest preconditions is a theory of refinement

✉ idea is to calculate a program to achieve a postcondition

✉ not a theory of post hoc verification

① Non-determinism a key idea in Dijksta’s presentation

✉ start with a non-deterministic high level pseudo-code

✉ refine to deterministic and efficient code

① Weakest preconditions (wp) are for total correctness

① Weakest liberal preconditions (wlp) for partial correctness

① If C is a command and Q a predicate, then informally:

• wlp(C,Q) = ‘The weakest predicate P such that {P} C {Q}’
• wp(C,Q) = ‘The weakest predicate P such that [P] C [Q]’

① If P and Q are predicates then Q ⇒ P means P is ‘weaker’ than Q

30

114

Rules for weakest preconditions

① Relation with Hoare specifications:

{P} C {Q} ⇔ P ⇒ wlp(C,Q)

[P] C [Q] ⇔ P ⇒ wp(C,Q)

① Dijkstra gives rules for computing weakest preconditions:

wp(V :=E,Q) = Q[E/V]

wp(C1;C2, Q) = wp(C1, wp(C2, Q))

wp(IF S THEN C1 ELSE C2, Q) = (S ⇒ wp(C1, Q)) ∧ (¬S ⇒ wp(C2, Q))

for deterministic loop-free code the same equations hold for wlp

① Rule for WHILE-commands doesn’t give a first order result

① Weakest preconditions closely related to verification conditions

① VCs for {P} C {Q} are related to P ⇒ wlp(C,Q)

✉ VCs use annotations to ensure first order formulas can be generated

31

115

Sequencing example

① Swapping variables:

wlp(R:=X; X:=Y; Y:=R, (Y = x ∧ X = y))

= wlp(R:=X, wlp(X:=Y, wlp(Y:=R, (Y = x ∧ X = y)))

= wlp(R:=X, wlp(X:=Y, (Y = x ∧ X = y)[R/Y]))

= wlp(R:=X, wlp(X:=Y, (R = x ∧ X = y)))

= wlp(R:=X, (R = x ∧ Y = y))

= (X = x ∧ Y = y)

① So since {P} C {Q} ⇔ P ⇒ wlp(C,Q)

to prove

{X = x ∧ Y = y} R:=X; X:=Y; Y:=R {Y = x ∧ X = y}
just need to prove:

(X = x ∧ Y = y)⇒ (X = x ∧ Y = y)

which is clearly true (instance of S ⇒ S)

32

116

Conditional example

① Compute wlp of the maximum program:

wlp(IF X<Y THEN MAX:=Y ELSE MAX:=X, (MAX = max(x, y))

= (X<Y ⇒ wlp(MAX:=Y, (MAX = max(x, y))))
∧
(¬(X<Y) ⇒ wlp(MAX:=X, (MAX = max(x, y))))

= (X<Y ⇒ Y = max(x, y)) ∧ (¬(X<Y) ⇒ X = max(x, y))

= if X<Y then Y = max(x, y) else X = max(x, y)

① So to prove

{X = x ∧ Y = y} IF X<Y THEN MAX:=X ELSE MAX:=Y {MAX = max(x, y)}
just prove:

(X = x ∧ Y = y)⇒ (X<Y ⇒ Y = max(x, y)) ∧ (¬(X<Y) ⇒ X = max(x, y))

which follows from the defining property of max

⊢ ∀x y. (x ≥ y ⇒ x = max(x, y)) ∧ (¬(x ≥ y)⇒ y = max(x, y))

33

30

117

Using wlp to improve verification condition method

① If C is loop-free then VC for {P} C {Q} is P ⇒ wlp(C,Q)

✉ no annotations needed in sequences!

① Cannot in general compute a finite formula for wlp(WHILE S DO C, Q)

① The following holds

wlp(WHILE S DO C, Q) = if S then wlp(C, wlp(WHILE S DO C, Q)) else Q

① Above doesn’t define wlp(C,Q) as a finite statement

① Could use a hybrid VC and wlp method

34

118

wlp-based verification condition method

① We define awp(C,Q) and wvc(C,Q)

✉ awp(C,Q) is a statement sort of approximating wlp(C,Q)

✉ wvc(C,Q) is a set of verification conditions

① If C is loop-free then

✉ awp(C,Q) = wlp(C,Q)

✉ wvc(C,Q) = {}

① Denote by
∧S the conjunction of all the statements in S

✉ ∧{} = T

✉ ∧
(S1 ∪ S2) = (

∧S1) ∧ (
∧S2)

① It will follow that
∧
wvc(C,Q) ⇒ {awp(C,Q)} C {Q}

① Hence to prove {P}C{Q} it is sufficient to prove
all the statements in wvc(C,Q) and P ⇒ awp(C,Q)

0

119

Definition of awp

① Assume all WHILE-commands are annotated: WHILE S DO {R} C

① Define awp recursively by:

awp(V := E, Q) = Q[E/V]

awp(C1 ; C2, Q) = awp(C1, awp(C2, Q))

awp(IF S THEN C1 ELSE C2, Q) = (S ∧ awp(C1, Q)) ∨ (¬S ∧ awp(C2, Q))

awp(WHILE S DO {R} C, Q) = R

① Note:
(S ∧awp(C1, Q))∨(¬S∧awp(C2, Q) = if S then awp(C1, Q) else awp(C2, Q)

1

120

Definition of wvc

① Assume all WHILE-commands are annotated: WHILE S DO {R} C

① Define wvc recursively by:

wvc(V := E, Q) = {}
wvc(C1 ; C2, Q) = wvc(C1, awp(C2, Q)) ∪ wvc(C2, Q)

wvc(IF S THEN C1 ELSE C2, Q) = wvc(C1, Q) ∪ wvc(C2, Q)

wvc(WHILE S DO {R} C, Q) = {R ∧ ¬S ⇒ Q, R ∧ S ⇒ awp(C,R)}
∪ wvc(C,R)

2

31

121

Correctness of wlp-based verification conditions
① Theorem:

∧
wvc(C,Q) ⇒ {awp(C,Q)} C {Q}. Proof by Induction on C

✉ ∧
wvc(V :=E,Q) ⇒ {awp(C,Q)} C {Q} is T ⇒ {Q[E/V]} V := E {Q}

✉ ∧
wvc(C1;C2, Q) ⇒ {awp(C1;C2, Q)} C1;C2 {Q} is∧
(wvc(C1, awp(C2, Q)) ∪ wvc(C2, Q)) ⇒ {awp(C1, awp(C2, Q))} C1;C2 {Q}.

By induction
∧
wvc(C2, Q) ⇒ {awp(C2, Q)} C1 {Q}

and
∧
wvc(C1, awp(C2, Q)) ⇒ {awp(C1, awp(C2, Q))} C2 {awp(C2, Q)},

hence result by the Sequencing Rule.

✉ ∧
wvc(IF S THEN C1 ELSE C2, Q)

⇒ {awp(IF S THEN C1 ELSE C2, Q)} IF S THEN C1 ELSE C2 {Q}
is

∧
(wvc(C1, Q) ∪ wvc(C2, Q))

⇒ {(S ∧ awp(C1, Q)) ∨ (¬S ∧ awp(C2, Q)} IF S THEN C1 ELSE C2 {Q}.
By induction

∧
wvc(C1, Q) ⇒ {awp(C1, Q)} C1 {Q}

and
∧
wvc(C2, Q) ⇒ {awp(C2, Q)} C2 {Q}. Strengthening preconditions

gives
∧
wvc(C1, Q) ⇒ {awp(C1, Q) ∧ S} C1 {Q}

and
∧
wvc(C2, Q) ⇒ {awp(C2, Q) ∧ ¬S} C2 {Q}, hence∧

wvc(C1, Q) ⇒ {((S ∧ awp(C1, Q)) ∨ (¬S ∧ awp(C2, Q))) ∧ S} C1 {Q}
and

∧
wvc(C2, Q) ⇒ {((S ∧ awp(C1, Q)) ∨ (¬S ∧ awp(C2, Q))) ∧ ¬S} C2 {Q},

hence result by the Conditional Rule.

✉ ∧
wvc(WHILE S DO {R} C,Q) ⇒ {awp(WHILE S DO {R} C,Q)} WHILE S DO {R} C {Q}

is
∧
({R ∧ ¬S ⇒ Q, R ∧ S ⇒ awp(C,R)} ∪ wvc(C,R)) ⇒ {R} WHILE S DO {R} C {Q}.

By induction
∧
wvc(C,R) ⇒ {awp(C,R)} C {R}, hence result by WHILE-Rule.

3

122

Strongest postconditions

① Define sp(C, P) to be ‘strongest’ Q such that {P} C {Q}
✉ partial correctness: {P} C {sp(C,P)}

✉ strongest means if {P} C {Q} then sp(C,P) ⇒ Q

① Note that wlp goes ‘backwards’, but sp goes ‘forwards’

✉ verification condition for {P} C {Q} is: sp(C,P) ⇒ Q

① By ‘strongest’ and Hoare logic postcondition weakening

✉ {P} C {Q} if and only if sp(C,P) ⇒ Q

4

123

Strongest postconditions for loop-free code

① Only consider loop-free code

① sp(V := E, P) = ∃v. V = E[v/V] ∧ P[v/V]

① sp(C1 ; C2, P) = sp(C2, sp(C1, P))

① sp(IF S THEN C1 ELSE C2, P) = sp(C1, P ∧ S) ∨ sp(C2, P ∧ ¬S)

① sp(V :=E, P) corresponds to Floyd assignment axiom

① Can dynamically prune conditionals because sp(C, F) = F

① Computer strongest postconditions is symbolic execution

5

124

Sequencing example

① sp(R:=X; X:=Y; Y:=R, X = x ∧ Y = y)
= sp(Y:=R, sp(X:=Y, sp(R:=X, X = x ∧ Y = y)))
= sp(Y:=R, sp(X:=Y, (∃v. R = X[v/R] ∧ (X = x ∧ Y = y)[v/R])))
= sp(Y:=R, sp(X:=Y, (∃v. R = X ∧ (X = x ∧ Y = y))))
= sp(Y:=R, sp(X:=Y, (R = X ∧ X = x ∧ Y = y)))
= sp(Y:=R, (∃v. X = Y[v/X] ∧ (R = X ∧ X = x ∧ Y = y)[v/X]))
= sp(Y:=R, (∃v. X = Y ∧ (R = v ∧ v = x ∧ Y = y)))
= sp(Y:=R, (∃v. X = Y ∧ (R = x ∧ v = x ∧ Y = y)))
= sp(Y:=R, (X = Y ∧ (R = x ∧ (∃v. v = x) ∧ Y = y)))
= sp(Y:=R, (X = Y ∧ (R = x ∧ T ∧ Y = y)))
= sp(Y:=R, (X = Y ∧ R = x ∧ Y = y))
= ∃v. Y = R[v/Y] ∧ (X = Y ∧ R = x ∧ Y = y)[v/Y]
= ∃v. Y = R ∧ (X = v ∧ R = x ∧ v = y)
= ∃v. Y = R ∧ (X = y ∧ R = x ∧ v = y)
= Y = R ∧ (X = y ∧ R = x ∧ (∃v. v = y))
= Y = R ∧ (X = y ∧ R = x ∧ T)
= Y = R ∧ X = y ∧ R = x
= Y = x ∧ X = y ∧ R = x

① So to prove {X = x ∧ Y = y} R:=X; X:=Y; Y:=R {Y = x ∧ X = y}
just prove: (Y = x ∧ X = y ∧ R = x) ⇒ Y = x ∧ X = y

6

32

125

Conditional example

① Compute sp of the maximum program:

sp(IF X<Y THEN MAX:=Y ELSE MAX:=X, (X = x ∧ Y = y))

= sp(MAX:=Y, ((X = x ∧ Y = y) ∧ X < Y))
∨
sp(MAX:=X, ((X = x ∧ Y = y) ∧ ¬(X < Y)))

= ∃v. MAX = Y[v/MAX] ∧ ((X = x ∧ Y = y) ∧ X < Y)[v/MAX]
∨
∃v. MAX = X[v/MAX] ∧ ((X = x ∧ Y = y) ∧ ¬(X < Y))[v/MAX]

= ∃v. MAX = Y ∧ ((X = x ∧ Y = y) ∧ X < Y)
∨
∃v. MAX = X ∧ X = x ∧ Y = y ∧ ¬(X < Y))

= (MAX = Y ∧ X = x ∧ Y = y ∧ X < Y) ∨ (MAX = X ∧ X = x ∧ Y = y ∧ ¬(X < Y)

= (MAX = y ∧ X = x ∧ Y = y ∧ x < y) ∨ (MAX = x ∧ X = x ∧ Y = y ∧ ¬(x < y)

= if x < y then (MAX = y ∧ X = x ∧ Y = y) else (MAX = x ∧ X = x ∧ Y = y)

= MAX = (if x < y then y else x) ∧ X = x ∧ Y = y

= MAX = max(x, y) ∧ X = x ∧ Y = y

7

126

Computing sp versus wlp

① Computing sp is like execution

✉ can simplify as one goes along with the ‘current state’

✉ may be able to resolve branches, so can avoid executing them

✉ Floyd assignment rule complicated in general

✉ sp used for symbolically exploring ‘reachable states’

(related to model checking)

① Computing wlp is like backwards proof

✉ don’t have ‘current state’, so can’t simplify using it

✉ can’t determine conditional tests, so get big if-then-else trees

✉ Hoare assignment rule simpler for arbitrary formulae

✉ wlp used for improved verification conditions

8

127

Exercises

① Compute

sp(R := 0;

K := 0;

IF I < J THEN K := K + 1 ELSE K := K;

IF K = 1 ∧ ¬(I = J) THEN R := J− I ELSE R := I− J,

(I = i ∧ J = j ∧ j ≤ i))

① Hence show
{(I = i ∧ J = j ∧ j ≤ i}

R := 0;

K := 0;

IF I < J THEN K := K + 1 ELSE K := K;

IF K = 1 ∧ ¬(I = J) THEN R := J− I ELSE R := I− J)

{R = i−j}

① Do same example use wlp

9

128

Using sp to generate verification conditions

① If C is loop-free then VC for {P} C {Q} is sp(C, P) ⇒ Q

① Cannot in general compute a finite formula for sp(WHILE S DO C, P)

① The following holds

sp(WHILE S DO C, P) = sp(WHILE S DO C, sp(C, (P ∧ S))) ∨ (P ∧ ¬S)

① Above doesn’t define sp(C, P) to be a finite statement

① As with wlp, can use a hybrid VC and sp method

10

33

129

sp-based verification conditions

① Define asp(C, P) to be an approximate strongest postcondition

① Define svc(C, P) to be a set of verification conditions

① Idea is that if
∧
svc(C, P) ⇒ {P} C {asp(C, P)}

① If C is loop-free then

✉ asp(C, P) = sp(C, P)

✉ svc(C, P) = {}

11

130

Definition of asp

① Define asp recursively by:

asp(P, V := E) = ∃v. V = E[v/V] ∧ P[v/V]

asp(P, C1 ; C2) = asp(asp(P,C1), C2)

asp(P, IF S THEN C1 ELSE C2) = asp(P ∧ S, C1) ∨ asp(P ∧ ¬S, C2)

asp(P, WHILE S DO {R} C) = R ∧ ¬S

12

131

Definition of svc

① Define svc recursively by:

svc(P, V := E) = {}
svc(P, C1 ; C2) = svc(P,C1) ∪ svc(svc1(P,C1), C2)

svc(P, IF S THEN C1 ELSE C2) = svc(P ∧ S, C1) ∪ svc(P ∧ ¬S, C2)

svc(P, WHILE S DO {R} C) = {P ⇒ R, asp(R ∧ S, C) ⇒ R}
∪ svc(R ∧ S, C)

① Theorem:
∧
svc(P,C) ⇒ {P} C {asp(P,C)}

① Proof by induction on C (exercise)

13

132

Summary

① Annotate then generate VCs is the classical method

✉ practical tools: Gypsy (1970s), SPARK (current)

✉ weakest preconditions are alternative explanation of VCs

✉ wlp needs fewer annotations than VC method described earlier

✉ wlp also used for refinement

① VCs and wlp go backwards, sp goes forward

✉ sp provides verification method based on symbolic simulation

✉ widely used for loop-free code

✉ current research potential for forwards full proof of correctness

✉ probably need mixture of forwards and backwards methods (Hoare’s view)

14

34

133

Range of methods for proving {P}C{Q}

• Bounded model checking (BMC)

– unwind loops a finite number of times

– then symbolically execute

– check states reached satisfy decidable properties

• Full proof of correctness

– add invariants to loops

– generate verification conditions

– prove verification conditions with a theorem prover

• Research goal: unifying framework for a spectrum of methods

decidable checking proof of correctness

15

134

Total Correctness Specification

① So far our discussion has been concerned with partial correctness

✉ what about termination

① A total correctness specification [P] C [Q] is true if and only if

✉ whenever C is executed in a state satisfying P ,

then the execution of C terminates

✉ after C terminates Q holds

① Except for the WHILE-rule, all the axioms and rules described so far
are sound for total correctness as well as partial correctness

16

135

Termination of WHILE-Commands

① WHILE-commands are the only commands that might not terminate

① Consider now the following proof

1. ⊢ {T} X := X {T} (assignment axiom)

2. ⊢ {T ∧ T} X := X {T} (precondition strengthening)

3. ⊢ {T} WHILE T DO X := X {T ∧ ¬T} (2 and the WHILE-rule)

① If the WHILE-rule worked for total correctness, then this would show:

⊢ [T] WHILE T DO X := X [T ∧ ¬T]

① Thus the WHILE-rule is unsound for total correctness

17

136

Rules for Non-Looping Commands

① Replace { and } by [and], respectively, in:

✉ Assignment axiom (see next slide for discussion)

✉ Consequence rules

✉ Conditional rule

✉ Sequencing rule

① The following is a valid derived rule

⊢ {P} C {Q}
⊢ [P] C [Q]

if C contains no WHILE-commands

18

35

137

Total Correctness Assignment Axiom

① Assignment axiom for total correctness

⊢ [P[E/V]] V :=E [P]

① Note that the assignment axiom for total correctness states that
assignment commands always terminate

① So all function applications in expressions must terminate

① This might not be the case if functions could be defined recursively

① Consider X := fact(−1), where fact(n) is defined recursively:

fact(n) = if n = 0 then 1 else n× fact(n−1)

19

138

Error Termination

① We assume erroneous expressions like 1/0 don’t cause problems

① Most programming languages will raise an error on division by zero

① In our logic it follows that

⊢ [T] X := 1/0 [X = 1/0]

① The assignment X := 1/0 halts in a state in which X = 1/0 holds

① This assumes that 1/0 denotes some value that X can have

20

139

Two Possibilities

① There are two possibilities

(i) 1/0 denotes some number;

(ii) 1/0 denotes some kind of ‘error value’.

① It seems at first sight that adopting (ii) is the most natural choice

✉ this makes it tricky to see what arithmetical laws should hold

✉ is (1/0)× 0 equal to 0 or to some ‘error value’?

✉ if the latter, then it is no longer the case that ∀n. n× 0 = 0 is valid

① It is possible to make everything work with undefined and/or error
values, but the resultant theory is a bit messy

21

140

Example

① We assume that arithmetic expressions always denote numbers

① In some cases exactly what the number is will be not fully specified

✉ for example, we will assume that m/n denotes a number for any m and n

✉ only assume: ¬(n = 0) ⇒ (m/n)× n = m

✉ it is not possible to deduce anything about m/0 from this

✉ in particular it is not possible to deduce that (m/0)× 0 = 0

✉ but (m/0)× 0 = 0 does follow from ∀n. n× 0 = 0

① People still argue about this – e.g. advocate “three-valued” logics

22

36

141

WHILE-rule for Total Correctness (i)

① WHILE-commands are the only commands in our little language that
can cause non-termination

✉ they are thus the only kind of command with a non-trivial termination rule

① The idea behind the WHILE-rule for total correctness is

✉ to prove WHILE S DO C terminates

✉ show that some non-negative quantity decreases on each iteration of C

✉ this decreasing quantity is called a variant

23

142

WHILE-Rule for Total Correctness (ii)

① In the rule below, the variant is E, and the fact that it decreases is
specified with an auxiliary variable n

① The hypothesis ⊢ P ∧S ⇒ E ≥ 0 ensures the variant is non-negative

WHILE-rule for total correctness

⊢ [P ∧ S ∧ (E = n)] C [P ∧ (E < n)], ⊢ P ∧ S ⇒ E ≥ 0

⊢ [P] WHILE S DO C [P ∧ ¬S]

where E is an integer-valued expression

and n is an identifier not occurring in P , C, S or E.

24

143

Example

① We show

⊢ [Y > 0] WHILE Y≤R DO (R:=R-Y; Q:=Q+1) [T]

① Take

P = Y > 0

S = Y ≤ R

E = R

C = (R:=R-Y; Q:=Q+1)

① We want to show ⊢ [P] WHILE S DO C [T]

① By the WHILE-rule for total correctness it is sufficient to show

(i) ⊢ [P ∧ S ∧ (E = n)] C [P ∧ (E < n)]

(ii) ⊢ P ∧ S ⇒ E ≥ 0

25

144

Example Continued (1)

① From previous slide:

P = Y > 0

S = Y ≤ R

E = R

C = (R:=R-Y; Q:=Q+1)

① We want to show

(i) ⊢ [P ∧ S ∧ (E = n)] C [P ∧ (E < n)]

(ii) ⊢ P ∧ S ⇒ E ≥ 0

① The first of these, (i), can be proved by establishing

⊢ {P ∧ S ∧ (E = n)} C {P ∧ (E < n)}

① Then using the total correctness rule for non-looping commands

26

37

145

Example Continued (2)

① From previous slide:

P = Y > 0

S = Y ≤ R

E = R

C = R:=R-Y; Q:=Q+1)

① The verification condition for {P ∧ S ∧ (E = n)} C {P ∧ (E < n)} is:

Y > 0 ∧ Y ≤ R ∧ R = n ⇒
(Y > 0 ∧ R < n)[Q+1/Q][R−Y/R]

i.e. Y > 0 ∧ Y ≤ R ∧ R = n ⇒ Y > 0 ∧ R−Y < n

which follows from the laws of arithmetic

① The second subgoal, (ii), is just ⊢ Y > 0 ∧ Y ≤ R ⇒ R ≥ 0

27

146

Termination Specifications

① The relation between partial and total correctness is informally
given by the equation

Total correctness = Termination + Partial correctness

① This informal equation can be represented by the following two rules
of inferences

⊢ {P} C {Q} ⊢ [P] C [T]

⊢ [P] C [Q]

⊢ [P] C [Q]

⊢ {P} C {Q} ⊢ [P] C [T]

28

147

Derived Rules

① Multiple step rules for total correctness can be derived in the same
way as for partial correctness

✉ the rules are the same up to the brackets used

✉ same derivations with total correctness rules replacing partial correctness ones

29

148

The Derived While Rule

① Derived WHILE-rule needs to handle the variant

Derived WHILE-rule for total correctness

⊢ P ⇒ R

⊢ R ∧ S ⇒ E ≥ 0

⊢ R ∧ ¬S ⇒ Q

⊢ [R ∧ S ∧ (E = n)] C [R ∧ (E < n)]

⊢ [P] WHILE S DO C [Q]

30

38

149

VCs for Termination

① Verification conditions are easily extended to total correctness

① To generate total correctness verification conditions for WHILE-
commands, it is necessary to add a variant as an annotation in ad-
dition to an invariant

① Variant added directly after the invariant, in square brackets

① No other extra annotations are needed for total correctness

① VCs for WHILE-free code same as for partial correctness

31

150

WHILE Annotation

① A correctly annotated total correctness specification of a WHILE-
command thus has the form

[P] WHILE S DO {R}[E] C [Q]

where R is the invariant and E the variant

① Note that the variant is intended to be a non-negative expression
that decreases each time around the WHILE loop

① The other annotations, which are enclosed in curly brackets, are
meant to be conditions that are true whenever control reaches them
(as before)

32

151

WHILE VCs

① A correctly annotated specification of a WHILE-command has the form

[P] WHILE S DO {R}[E] C [Q]

WHILE-commands

The verification conditions generated from

[P] WHILE S DO {R}[E] C [Q]

are

(i) P ⇒ R

(ii) R ∧ ¬S ⇒ Q

(iii) R ∧ S ⇒ E ≥ 0

(iv) the verification conditions generated by

[R ∧ S ∧ (E = n)] C[R ∧ (E < n)]

where n is a variable not occurring in
P , R, E, C, S or Q.

33

152

Example

① The verification conditions for

[R=X ∧ Q=0]
WHILE Y≤R DO {X=R+Y×Q}[R]

(R:=R-Y; Q=Q+1)

[X = R+(Y×Q) ∧ R<Y]

are:

(i) R=X ∧ Q=0 ⇒ (X = R+(Y×Q))

(ii) X = R+Y×Q ∧ ¬(Y≤R) ⇒ (X = R+(Y×Q) ∧ R<Y)

(iii) X = R+Y×Q ∧ Y≤R ⇒ R≥0

together with the verification condition for

[X = R+(Y×Q) ∧ (Y≤R) ∧ (R=n)]
(R:=R-Y; Q:=Q+1)

[X=R+(Y×Q) ∧ (R<n)]

34

39

153

Example Continued

① The single verification condition for

[X = R+(Y×Q) ∧ (Y≤R) ∧ (R=n)]
(R:=R-Y; Q:=Q+1)

[X=R+(Y×Q) ∧ (R<n)]

is

(iv) X = R+(Y×Q) ∧ (Y≤R) ∧ (R=n) ⇒
X = (R-Y)+(Y×(Q+1)) ∧ ((R-Y)<n)

① But this isn’t true

✉ take Y=0

① To prove R-Y<n we need to know Y>0

① Exercise: Explain why one would not expect to be able to prove the
verification conditions of this last example

① Hint: Consider the original specification

35

154

Summary

① We have given rules for total correctness

① They are similar to those for partial correctness

① The main difference is in the WHILE-rule

✉ because WHILE commands are the only ones that can fail to terminate

① Must prove a non-negative expression is decreased by the loop body

① Derived rules and VC generation rules for partial correctness easily
extended to total correctness

① Interesting stuff on the web

✉ http://www.crunchgear.com/2008/12/31/zune-bug-explained-in-detail

✉ http://research.microsoft.com/en-us/projects/t2/

36

155

Soundness and completeness of Hoare logic

① Review of first-order logic

✉ syntax: languages, function symbols, predicate symbols, terms, formulae

✉ semantics: interpretations, valuations

✉ soundness and completeness

① Formal semantics of Hoare triples

✉ preconditions and postconditions as terms

✉ semantics of commands

✉ soundness of Hoare axioms and rules

✉ completeness and relative completeness

0

156

Terminology

① First-order logic, as described in logic books, has terms and formulae

① For consistency with earlier stuff we use expressions and statements

① Will define sets Exp of expressions and Sta of statements

① Sets Exp and Sta depend on a language L (see next slide)

✉ will write ExpL and StaL to make this clear

✉ if language is clear from context may omit language subscript

① Assume an infinite set Var of variables

✉ doesn’t depend on a language

1

40

157

First-order languages

① A first-order language L contains

✉ zero or more predicate symbols, p1, p2, . . . each with an arity ≥ 0

✉ zero or more function symbols, f1, f2, . . . each with an arity ≥ 0

✉ L = ({p1, p2, . . .}, {f1, f2, . . .})

① ExpL is the smallest set such that:

✉ Var ⊆ ExpL

✉ f a function symbols of L of arity 0, then f ∈ ExpL
✉ f a function symbols of L of arity n > 0 and Ei ∈ ExpL, then f(E1, . . . , En) ∈ ExpL

① StaL is the smallest set such that:

✉ p a predicate symbols of L of arity 0, then p ∈ StaL
✉ p a predicate symbols of L of arity n > 0 and Ei ∈ ExpL, then p(E1, . . . , En) ∈ StaL

✉ S, S1, S2 in StaL, then ¬S, S1 ∧ S2, S1 ∨ S2, S1 ⇒ S2 are in StaL

✉ v ∈ Var and S in StaL, then ∀v. S and ∃v. S are in StaL

2

158

Semantics: interpretations

① An interpretation I of language L provides:

✉ domain D of values, also called a universe

✉ meaning I [p] for predicate symbols p and I [f] for function symbols f

① Sets, functions and relations

✉ Bool = {true, false}
✉ if n > 0, then An = {(a1, . . . , an) | ai ∈ A}
✉ A → B = {u | u : A → B} (alternative notation: BA)

① If I = (D, I) then:

✉ if p is a predicate symbol of arity 0, then I [p] ∈ Bool

✉ if p is a predicate symbol of arity n > 0, then I [p] ∈ Dn → Bool

✉ if f is a function symbol of arity 0, then I [f] ∈ D

✉ if f is a function symbol of arity n > 0, then I [f] ∈ Dn → D

3

159

Semantics: valuations

① Interpretation provide meaning for predicate and function symbols

① A valuation s for I = (D, I) determines the values of variables in D

✉ s ∈ Var → D

① Often ‘V ’ not ‘s’ used for valuations – reasons for using ‘s’ here are:

✉ valuations are states in the semantics of Hoare triples

✉ avoid confusion with earlier use of ‘V ’ to range over variables

① Define s[a/x] to be identical to s except that x is mapped to a:

(s[a/x])(y) = if y = x then a else s(y)

① Also use [· · · / · · ·] notation for syntactic substitution

✉ e.g. in assignment axiom {Q[E/V]}V :=E{Q}
✉ will relate syntactic and semantic uses of [· · · / · · ·] soon

4

160

Semantics: terms and formulae

① Assume: language L, interpretation I = (D, I), valuation s ∈ Var → D

① Define Esem E s ∈ D by:
✉ if E ∈ Var then Esem E s = s(E)

✉ if E = f , where f a function symbol of arity 0, then Esem E s = I [f]

✉ if E = f(E1, . . . , En), then Esem E s = I [f](Esem E1 s, . . . , Esem En s)

① Define Ssem S s ∈ Bool by:
✉ if S = p, where p a predicate symbol of arity 0, then Ssem S s = I [p]

✉ if S = p(E1, . . . , En), then Ssem S s = I [p](Esem E1 s, . . . , Esem En s)

✉ Ssem (¬S) s = ¬(Ssem S s)

Ssem (S1 ∧ S2) s = (Ssem S1 s) ∧ (Ssem S2 s)

Ssem (S1 ∨ S2) s = (Ssem S1 s) ∨ (Ssem S2 s)

Ssem (S1 ⇒ S2) s = (Ssem S1 s) ⇒ (Ssem S2 s)

✉ Ssem (∀v. S) s = if (for all d ∈ D : Ssem S (s[d/v]) = true) then true else false

Ssem (∃v. S) s = if (for some d ∈ D : Ssem S (s[d/v]) = true) then true else false

① Note: will just say “Ssem S s” to mean that “Ssem S s = true”

5

41

161

Satisfiability, validity and completeness

① Recall that a language L specifies predicate and function symbols

① S is satisfiable iff for some interpretation of L and s: Ssem S s = true

① S is valid iff for all interpretations of L and all s: Ssem S s = true

① Notation: |= S means S is valid

① Deductive system for first-order logic specifies ⊢ S – i.e. S is provable

① Soundness: if ⊢ S then |= S (easy induction on length of proof)

① Completeness: if |= S then ⊢ S (Gödel 1929)

6

162

Sentences, Theories

① A sentence is a statement with no free variables

✉ truth or falsity of sentences solely determined by interpretation

✉ if S is a sentence then Ssem S s1 = Ssem S s2 for all s1, s2

① A theory is a set of sentences

✉ Γ will range over sets of sentences

① Γ ⊢ S means S can be deduced from Γ using first-order logic

① Γ is consistent iff there is no S such that Γ ⊢ S and Γ ⊢ ¬S

① Γ |=I S means S true if I makes all of Γ true

① Γ |= S means Γ |=I S true for all I

① Soundness and Completeness: Γ |= S iff Γ ⊢ S

7

163

Gödel’s incompleteness theorem

① LPA is the language of Peano Arithmetic

① IPA is the standard interpretation of arithmetic

① |=IPA S means S is true in IPA

① PA is the first-order theory of Peano Arithmetic

① There exists a sentence G of LPA and neither PA ⊢ G nor PA ⊢ ¬G
✉ Gödel’s first incompleteness theorem (1930)

✉ as G is a sentence either |=IPA G or |=IPA ¬G

✉ so there is a sentences, GT say, true in IPA but can’t be proved from PA

✉ i.e. |=IPA GT but not PA ⊢ GT

8

164

Semantics of Hoare triples

① Recall that {P} C {Q} is true if
✉ whenever C is executed in a state satisfying P

✉ and if the execution of C terminates

✉ then C terminates in a state satisfying Q

① P and Q are first-order statements

① Will formalise semantics of {P} C {Q} to express:
✉ whenever C is executed in a state s1 such that Ssem P s1✉ and if the execution of C starting in s1 terminates

✉ then C terminates in a state s2 such that Ssem Q s2 = true

① Need to define “C starts in s1 and terminates in s2”✉ this is the semantics of commands

✉ will define Csem C s1 s2 to mean if C starts in s1 then it can terminate in s2

① Semantics of {P} C {Q} is Hsem P C Q where:

Hsem P C Q = ∀s1 s2. Ssem P s1 ∧ Csem C s1 s2 ⇒ Ssem Q s2

① Sometimes write |= {P} C {Q} to mean Hsem P C Q

9

42

165

Semantics of commands

① Assignments

Csem (V :=E) s1 s2 = (s2 = s1[(Esem E s1)/V])

① Sequences

Csem (C1;C2) s1 s2 = ∃s. Csem C1 s1 s ∧ Csem C2 s s2

① Conditional
Csem (IFS THENC1 ELSEC2) s1 s2
= (Ssem S s1 ∧ Csem C1 s1 s2) ∨ (¬Ssem S s1 ∧ Csem C2 s1 s2)
= if Ssem S s1 then Csem C1 s1 s2 else Csem C2 s1 s2

① While-commands

Csem (WHILES DOC) s1 s2 = ∃n. Iter n (Ssem S) (Csem C) s1 s2

where the function Iter is defined by recursion on n as follows:

Iter 0 p c s1 s2 = ¬(p s1) ∧ (s1=s2)
Iter (n+1) p c s1 s2 = p s1 ∧ ∃s. c s1 s ∧ Iter n p c s s2

✉ argument n of Iter is the number of iterations
✉ argument p is a predicate on states (e.g. Ssem S)

✉ argument c is a semantic function (e.g. Csem C)

✉ arguments s1 and s2 are the initial and final states, respectively

10

166

Soundness of Hoare Logic

① Semantics of {P} C {Q}:
∀s1 s2. Ssem P s1 ∧ Csem C s1 s2 ⇒ Ssem Q s2

① Assignment axiom:

⊢ {Q[E/V]} V :=E {Q}
① Must show:

∀s1 s2. Ssem (Q[E/V]) s1 ∧ Csem (V :=E) s1 s2 ⇒ Ssem Q s2

① Unfolding the definition of Csem converts this to:

∀s1 s2. Ssem (Q[E/V]) s1 ∧ (s2 = s1[(Esem E s1)/V]) ⇒ Ssem Q s2

① This simplifies to:

∀s1. Ssem (Q[E/V]) s1 ⇒ Ssem Q (s1[(Esem E s1)/V])

✉ [· · · / · · ·] has different meanings in antecedent and consequent

✉ in antecedent Q[E/V] is substituting E for V in Q

✉ in consequent s1[(Esem E s1)/V] is updating s1 so value of V is value of E in s1

① Will prove for all S that: Ssem (S[E/V]) s = Ssem S (s[(Esem E s)/V])

11

167

Substitution lemma for expressions: variables

① Assume: language L, interpretation I = (D, I), valuation s ∈ Var → D

① ∀s. Esem (E[E′/V]) s = Esem E (s[(Esem E′ s)/V]) by induction on E

① If E = V then must show

Esem (V [E/V]) s = Esem V (s[(Esem E s)/V])

Esem E s = (s[(Esem E s)/V])(V)

Esem E s = Esem E s

① If E = V ′, where V 6= V ′, then must show

Esem (V ′[E/V]) s = Esem V ′ (s[(Esem E s)/V])

Esem V ′ s = (s[(Esem E s)/V])(V ′)

s(V ′) = s(V ′)

12

168

Substitution lemma for expressions: applications

① Assume: language L, interpretation I = (D, I), valuation s ∈ Var → D

① ∀s. Esem (E[E′/V]) s = Esem E (s[(Esem E′ s)/V]) by induction on E

① Assume Esem (Ei[E
′/V]) s = Esem Ei (s[(Esem E′ s)/V]) for 1 ≤ i ≤ n

① If E = f , where f has arity 0, then must show

Esem (f[E′/V]) s = Esem f (s[(Esem E′ s)/V])

I [f] = I [f]

① If E = f (E1, . . . , En) then must show

Esem (f (E1, . . . , En)[E
′/V]) s = Esem (f (E1, . . . , En)) (s[(Esem E′ s)/V])

Esem (f (E1[E
′/V], . . . , En[E

′/V])) s =
I [f](Esem E1 (s[(Esem E′ s)/V]), . . . , Esem En (s[(Esem E′ s)/V]))

I [f](Esem (E1[E
′/V]) s, . . . , Esem (En[E

′/V]) s) =
I [f](Esem E1 (s[(Esem E′ s)/V]), . . . , Esem En (s[(Esem E′ s)/V]))

Equation true by induction

13

43

169

Substitution lemma for statements

① Assume: language L, interpretation I = (D, I), valuation s ∈ Var → D

① ∀s. Ssem (S[E/V]) s = Ssem S (s[(Esem E s)/V]) by induction on S

① Proof similar to expressions except care needed with bound variables

① Assume bound variables renamed to avoid clashes, then:

(∀v. S)[E/V] = ∀v. S[E/V]

(∃v. S)[E/V] = ∃v. S[E/V]

① Need lemma for expressions when S is p(E1, . . . , En)

Ssem (p(E1, . . . , En)[E/V]) s = Ssem (p(E1, . . . , En)) (s[(Esem E s)/V])

Ssem (p(E1[E/V], . . . , En[E/V])) s =
I [p](Esem E1 (s[(Esem E s)/V]), . . . , Esem En (s[(Esem E s)/V]))

I [p](Esem (E1[E/V]) s, . . . , Esem (En[E/V]) s) =
I [p](Esem E1 (s[(Esem E s)/V]), . . . , Esem En (s[(Esem E s)/V]))

Equation true by induction and lemma for expressions

14

170

Soundness of Assignment Axiom

① Semantics of {P} C {Q}:
∀s1 s2. Ssem P s1 ∧ Csem C s1 s2 ⇒ Ssem Q s2

① Assignment axiom:

⊢ {Q[E/V]} V :=E {Q}
① Must show:

∀s1 s2. Ssem (Q[E/V]) s1 ∧ Csem (V :=E) s1 s2 ⇒ Ssem Q s2

① Showed earlier that this simplifies to:

∀s1. Ssem (Q[E/V]) s1 ⇒ Ssem Q (s1[(Esem E s1)/V])

① Follows from substitution lemma for statements

15

171

Soundness of Precondition Strengthening

① Precondition strengthening:

⊢ P⇒P ′, ⊢ {P ′} C {Q}
⊢ {P} C {Q}

① Sound if for all P , P ′, C and Q:

(∀s. Ssem P s ⇒ Ssem P ′ s) ∧ Hsem P ′ C Q ⇒ Hsem P C Q

① After expanding the definition of Hsem:

(∀s. Ssem P s ⇒ Ssem P ′ s) ∧
(∀s1 s2. Ssem P ′ s1 ∧ Csem C s1 s2 ⇒ Ssem Q s2)
⇒
∀s1 s2. Ssem P s1 ∧ Csem C s1 s2 ⇒ Ssem Q s2

① An instance of the clearly true:

(∀s. p s ⇒ p′ s) ∧ (∀s1 s2. p
′ s1 ∧ c s1 s2 ⇒ q s2)

⇒
∀s1 s2. p s1 ∧ c s1 s2 ⇒ q s2

① Soundness of postcondition weakening similar

16

172

Soundness of Sequencing Rule

① Conditional rule:

⊢ {P} C1 {Q}, ⊢ {Q} C2 {R}
⊢ {P} C1;C2 {R}

① Sound if:

Hsem P C1 Q ∧ Hsem Q C2 R ⇒ Hsem P (C1;C2) R

① After expanding the definition of Hsem:

(∀s1 s2. Ssem P s1 ∧ Csem C s1 s2 ⇒ Ssem Q s2) ∧
(∀s1 s2. Ssem Q s1 ∧ Csem C s1 s2 ⇒ Ssem R s2)
⇒
∀s1 s2. Ssem P s1 ∧ Csem (C1;C2) s1 s2 ⇒ Ssem R s2

① An instance of the clearly true:

(∀s1 s2. p s1 ∧ c1 s1 s2 ⇒ q s2) ∧ (∀s1 s2. q s1 ∧ c2 s1 s2 ⇒ r s2)
⇒
∀s1 s2. p s1 ∧ (∃s. c1 s1 s ∧ c2 s s2) ⇒ r s2

① Soundness of conditional rule similar

17

44

173

Soundness of WHILE Rule

① WHILE-Rule:

⊢ {P∧S} C {P}
⊢ {P} WHILE S DO C {P∧¬S}

① Sound if:

Hsem (P ∧ S) C P ⇒ Hsem P (WHILES DOC) (P ∧ ¬S))
① Expands to:

(∀s1 s2. Ssem (P ∧ S) s1 ∧ Csem C s1 s2 ⇒ Ssem P s2)
⇒ ∀s1 s2. Ssem P s1 ∧ Csem (WHILES DOC) s1 s2 ⇒ Ssem (P ∧ ¬S) s2

① Expanding the definition of Hsem (WHILES DOC) and simplifying:

(∀s1 s2. Ssem P s1 ∧ Ssem S s1 ∧ Csem C s1 s2 ⇒ Ssem P s1
⇒ ∀s1 s2. Ssem P s1 ∧ (∃n. Iter n (Ssem S) (Csem C) s1 s2)

⇒ Ssem P s2 ∧ ¬(Ssem S s2)

① An instance of:

(∀s1 s2. p s1 ∧ b s1 ∧ c s1 s2 ⇒ p s1)
⇒ ∀s1 s2. p s1 ∧ (∃n. Iter n b c s1 s2) ⇒ p s2 ∧ ¬(b s2)

18

174

Soundness of WHILE Rule (continued)

① From last slide need to prove:

(∀s1 s2. p s1 ∧ b s1 ∧ c s1 s2 ⇒ p s1)
⇒ ∀s1 s2. p s1 ∧ (∃n. Iter n b c s1 s2) ⇒ p s2 ∧ ¬(b s2)

① This is equivalent to:

(∀s1 s2. p s1 ∧ b s1 ∧ c s1 s2 ⇒ p s1)
⇒
∀n s1 s2. p s1 ∧ Iter n b c s1 s2 ⇒ p s2 ∧ ¬(b s2)

① Assume ∀s1 s2. p s1 ∧ b s1 ∧ c s1 s2 ⇒ p s1, then prove:

∀n s1 s2. p s1 ∧ Iter n b c s1 s2 ⇒ p s2 ∧ ¬(b s2)

by mathematical induction of n

① Routine using definition of Iter:

Iter 0 p c s1 s2 = ¬(p s1) ∧ (s1=s2)
Iter (n+1) p c s1 s2 = p s1 ∧ ∃s. c s1 s ∧ Iter n p c s s2

details in background reading

19

175

Soundness of Hoare Logic: summary
① Assignment axiom:

∀s1 s2. Ssem (Q[E/V]) s1 ∧ Csem (V :=E) s1 s2 ⇒ Ssem Q s2
|= {Q[E/V]}V :=E{Q}

① Precondition strengthening:
(∀s. Ssem P s ⇒ Ssem P ′ s) ∧ Hsem P ′ C Q ⇒ Hsem P C Q

(|= P ⇒ P ′) ∧ |= {P ′}C{Q} ⇒ |= {P}C{Q}
① Postcondition weakening:
Hsem P C Q′ ∧ (∀s. Ssem Q′ s ⇒ Ssem Q s) ⇒ Hsem P C Q

|= {P}C{Q′} ∧ (|= Q′ ⇒ Q) ⇒ |= {P}C{Q}
① Sequencing rule:
Hsem P C1 Q ∧ Hsem Q C2 R ⇒ Hsem P (C1;C2) R

|= {P}C1{Q} ∧ |= {Q}C2{R} ⇒ |= {P}C1;C2{R}
① Conditional rule:
Hsem (P∧S) C1 Q∧Hsem (P∧¬Q) C2 Q ⇒ Hsem P (IF S THEN C1 ELSE C2) Q

|= {P∧S}C1{Q} ∧ |= {P∧¬S}C2{Q} ⇒ |= {P}IF S THEN C1 ELSE C2 {Q}
① WHILE rule:
Hsem (P ∧ S) C P ⇒ Hsem P (WHILE S DO C) (P ∧ ¬S))
|= {P ∧ S}C{P} ⇒ |= {P}WHILE S DO C

20

176

Completeness and decidability of Hoare Logic

① Soundness: ⊢ {P}C{Q} ⇒ |= {P}C{Q}

① Decidability: {T}C{F} ⇔ C doesn’t halt

✉ the Halting Problem is undecidable

① Completeness: really want |=IPA {P}C{Q} ⇒ PA ⊢ {P}C{Q}
✉ to show this not possible, first observe that for any P

✉ |=IPA {T}X:=X{P} if and only if |=IPA P

✉ PA ⊢ {T}X:=X{P} if and only if PA ⊢ P

① If Hoare logic were complete, then taking P above to be GT :

|=IPA GT ⇒ |=IPA {T}X:=X{GT} ⇒ PA ⊢ {T}X:=X{GT} ⇒ PA ⊢ GT

contradicting Gödel’s theorem

① Must separate completeness of programming and specification logics

21

45

177

Relative completeness (Cook 1978) – basic idea

① |=IPA {P}C{Q} entails ΓPA ⊢ {P}C{Q}, where ΓPA = {S | |=IPA S}

① Proof outline:

✉ define wlp(C,Q) in LPA

✉ straight line code easy - see earlier slides

✉ wlp((WHILES DOC), Q) needs tricky encoding using Gödel’s β function

(see Winskel’s book The formal semantics of programming languages: an introduction)

✉ |=IPA {P}C{Q} implies |=IPA P ⇒ wlp(C,Q) by induction on C and semantics

✉ ΓPA ⊢ {wlp(C,Q)}C{Q} by induction on C and Hoare logic

✉ hence |=IPA {P}C{Q} implies ΓPA ⊢ {P}C{Q} by precondition strengthening

① Cook’s theorem is for any expressive assertion language

✉ i.e. any language in which wlp(C,Q) is definable

22

178

Discussion of proof of relative completeness

① Expressing wlp(C,Q) easy for assignments, sequences, conditionals

wlp(V := E, Q) = Q[E/V]

wlp(C1 ; C2, Q) = wlp(C1, wlp(C2, Q))

wlp(IF S THEN C1 ELSE C2, Q) = (S ∧ wlp(C1, Q)) ∨ (¬S ∧ wlp(C2, Q))

① Expressing wlp((WHILES DOC), Q) is harder
✉ tricky encoding in first-order arithmetic using Gödel’s β function

(see Winskel’s book The formal semantics of programming languages: an introduction)

① In the background reading

✉ wlp(WHILES DOC,Q) defined using infinite conjunctions (expressibility)

✉ |=IPA {P}C{Q} implies |=IPA P ⇒ wlp(C,Q) by induction on C and semantics

✉ {S | |=IPA S} ⊢ {wlp(C,Q)}C{Q} by induction on C and Hoare logic

✉ hence |=IPA {P}C{Q} implies {S | |=IPA S} ⊢ {P}C{Q}

23

179

Summary: soundness, decidability, completeness

① Hoare logic is sound

① Hoare logic is undecidable

✉ deciding {T}C{F} is halting problem

① Hoare logic for our simple language is complete relative to an oracle

✉ oracle must be able to prove P ⇒ wlp(C,Q)

✉ relative completeness

✉ requires expressibility: wlp(C,Q) expressible in assertion language

The incompleteness of the proof system for simple Hoare logic stems
from the weakness of the proof system of the assertion language logic,
not any weakness of the Hoare logic proof system.

① Clarke showed relative completeness fails for complex languages

24

180

Additional topics

Note: only a fragment of these additional topics will be covered!

① Blocks and local variables

① FOR-commands

① Arrays

① Correct-by-Construction (program refinement)

① Separation Logic

0

46

181

Overview

① All the axioms and rules given so far were quite straightforward

✉ may have given a false sense of simplicity

① Hard to give rules for anything other than very simple constructs

✉ an incentive for using simple languages

① We already saw with the assignment axiom that intuition over how
to formulate a rule might be wrong

✉ the assignment axiom can seem ‘backwards’

① We now add some new commands to our little language

✉ array assignments

✉ blocks

✉ FOR-commands

1

182

Array assignments

① Syntax: V (E1):=E2

① Semantics: the state is changed by assigning the value of the term
E2 to the E1-th component of the array variable V

① Example: A(X+1) := A(X)+2

✉ if the the value of X is x

✉ and the value of the x-th component of A is n

✉ then the value stored in the (x+1)-th component of A becomes n+2

2

183

Naive Array Assignment Axiom Fails

① The axiom

⊢ {P[E2/A(E1)]} A(E1):=E2 {P}
doesn’t work

① Take P ≡ ‘X=Y ∧ A(Y)=0’, E1 ≡ ‘X’, E2 ≡ ‘1’

✉ since A(X) does not occur in P

✉ it follows that P[1/A(X)] = P

✉ hence the axiom yields: ⊢ {X=Y ∧ A(Y)=0} A(X):=1 {X=Y ∧ A(Y)=0}

① Must take into account possibility that changes to A(X)

may change A(Y), A(Z) etc

✉ since X might equal Y, Z etc (i.e. aliasing)

① Related to the Frame Problem in AI

3

184

Reasoning About Arrays

① The naive array assignment axiom

⊢ {P[E2/A(E1)]} A(E1):=E2 {P}
does not work: changes to A(X) may also change A(Y), A(Z), . . .

① The solution, due to Hoare, is to treat an array assignment

A(E1):=E2

as an ordinary assignment

A := A{E1←E2}

where the term A{E1←E2} denotes an array identical to A, except
that the E1-th component is changed to have the value E2

4

47

185

Array Assignment axiom

① Array assignment is a special case of ordinary assignment

A:=A{E1←E2}

① Array assignment axiom just ordinary assignment axiom

⊢ {P[A{E1←E2}/A]} A:=A{E1←E2} {P}

① Thus:

The array assignment axiom

⊢ {P[A{E1←E2}/A]} A(E1):=E2 {P}

Where A is an array variable, E1 is an integer valued expression, P is
any statement and the notation A{E1←E2} denotes the array identical
to A, except that A(E1) = E2.

5

186

Array Axioms

① In order to reason about arrays, the following axioms, which define
the meaning of the notation A{E1←E2}, are needed

The array axioms

⊢ A{E1←E2}(E1) = E2

⊢ E1 6= E3 ⇒ A{E1←E2}(E3) = A(E3)

① Second of these is a Frame Axiom

✉ don’t confuse with Frame Rule of Separation Logic (later)

✉ “frame” is a rather overloaded word!

6

187

For more rigour define a first order theory ARRAY

① LARRAY = {{isarray}, {lookup, update}}
✉ isarray has arity 1, lookup has arity 2, update has arity 3

① IARRAY✉ domain is V ∪ {φ | φ : N→ V} for some set of values V
✉ IARRAY[isarray](a) is true iff a is a function φ

✉ IARRAY[lookup](a, i) = if a is a function φ then φ(i) else 0

✉ IARRAY[update](a, i, v) = if a is a function φ then φ[v/i] else a

① ARRAY contains the following axioms
✉ ∀a i v. isarray(a)⇒ (lookup(update(a, i, v), i) = v)

✉ ∀a i j v. isarray(a) ∧ ¬(i = j)⇒ (lookup(update(a, i, v), j) = lookup(a, j))

✉ ∀a1 a2. isarray(a1) ∧ isarray(a2) ∧ (∀i. lookup(a1, i) = lookup(a2, i))⇒ (a1 = a2)

① “a(i)” means “lookup(a, i)” and “a{i←v}” means “update(a, i, v)”

① Assuming a is an array (isarray(a) is true) then from array axioms:
✉ a{i←v}(i) = v

✉ ¬(i = j)⇒ (a{i←v}(j) = a(j))

7

188

Example

① We show

⊢ {A(X)=x ∧ A(Y)=y}
R := A(X);

A(X) := A(Y);

A(Y) := R

{A(X)=y ∧ A(Y)=x}

① Working backwards using the array assignment axiom

⊢ {(A{Y←R})(X)=y ∧ (A{Y←R})(Y)=x}
A(Y) := R

{A(X)=y ∧ A(Y)=x}

① Array assignments are variable assignments of array values, so:

⊢ {(A{Y←R})(X)=y ∧ (A{Y←R})(Y)=x}
A := A{Y←R}
{A(X)=y ∧ A(Y)=x}

8

48

189

Example Continued (1)

① Using

⊢ A{Y←R}(Y) = R

① It follows that

⊢ {(A{Y←R})(X)=y ∧ R=x}
A(Y) := R

{A(X)=y ∧ A(Y)=x}

① Continuing backwards

⊢ {((A{X←A(Y)}){Y←R})(X)=y ∧ R=x}
A(X) := A(Y)

{(A{Y←R})(X)=y ∧ R=x}

① Maybe more intuitive if the assignment is rewritten

⊢ {((A{X←A(Y)}){Y←R})(X)=y ∧ R=x}
A := A{X←A(Y)}
{(A{Y←R})(X)=y ∧ R=x}

9

190

Example Continued (2)

① Continuing backwards

⊢ {((A{X←A(Y)}){Y←A(X)})(X)=y ∧ A(X)=x}
R := A(X)

{((A{X←A(Y)}){Y←R})(X)=y ∧ R=x}

① Hence by the derived sequencing rule

⊢ {((A{X←A(Y)}){Y←A(X)})(X)=y ∧ A(X)=x}
R := A(X); A(X) := A(Y); A(Y) := R

{A(X)=y ∧ A(Y)=x}

① By the array axioms (considering the cases X=Y and X 6=Y separately):

⊢ ((A{X←A(Y)}){Y←A(X)})(X) = A(Y)

① Hence (as desired)

⊢ {A(Y)=y ∧ A(X)=x}
R := A(X); A(X) := A(Y); A(Y) := R

{A(X)=y ∧ A(Y)=x}

10

191

Blocks and local variables

① Syntax: BEGIN VAR V1; · · · VAR Vn; C END

① Semantics: command C is executed, then the values of V1, · · · , Vn are
restored to the values they had before the block was entered

✉ the initial values of V1, · · · , Vn inside the block are unspecified

① Example: BEGIN VAR R; R:=X; X:=Y; Y:=R END

✉ the values of X and Y are swapped using R as a temporary variable

✉ this command does not have a side effect on the variable R

11

192

The Block Rule

① The block rule takes care of local variables

The block rule

⊢ {P} C {Q}
⊢ {P} BEGIN VAR V1; . . . ; VAR Vn; C END {Q}

where none of the variables V1, . . . , Vn occur in P or Q.

① Note that the block rule is regarded as including the case when there
are no local variables (the ‘n = 0’ case)

12

49

193

The Side Condition

① The syntactic condition that none of the variables V1, . . . , Vn occur in
P or Q is an example of a side condition

① From

⊢ {X=x ∧ Y=y} R:=X; X:=Y; Y:=R {Y=x ∧ X=y}
it follows by the block rule that

⊢ {X=x ∧ Y=y} BEGIN VAR R; R:=X; X:=Y; Y:=R END {Y=x ∧ X=y}
since R does not occur in X=x ∧ Y=y or X=y ∧ Y=x

① However from

⊢ {X=x ∧ Y=y} R:=X; X:=Y {R=x ∧ X=y}
one cannot deduce

⊢ {X=x ∧ Y=y} BEGIN VAR R; R:=X; X:=Y END {R=x ∧ X=y}
since R occurs in R=x ∧ X=y

13

194

Exercises

① Consider the specification

{X=x} BEGIN VAR X; X:=1 END {X=x}
Can this be deduced from the rules given so far?

(i) if so, give a proof of it

(ii) if not, explain why not and suggest additional rules
and/or axioms to enable it to be deduced

① Is the following true?

⊢ {X=x ∧ Y=y} X:=X+Y; Y:=X-Y; X:=X-Y {Y=x ∧ X=y}
✉ if so prove it

✉ if not, give the circumstances when it fails

① Show

⊢ {X=R+(Y×Q)} BEGIN R:=R-Y; Q:=Q+1 END {X=R+(Y×Q)}

14

195

FOR-commands

① Syntax: FOR V :=E1 UNTIL E2 DO C

✉ restriction: V must not occur in E1 or E2,

or be the left hand side of an assignment in C

(explained later)

① Semantics:

✉ if the values of terms E1 and E2 are positive numbers e1 and e2

✉ and if e1 ≤ e2

✉ then C is executed (e2−e1)+1 times with the variable V taking on the sequence

of values e1, e1+1, . . . , e2 in succession

✉ for any other values, the FOR-command has no effect

① Example: FOR N:=1 UNTIL M DO X:=X+N

✉ if the value of the variable M is m and m ≥ 1, then the command X:=X+N is

repeatedly executed with N taking the sequence of values 1, . . . , m

✉ if m < 1 then the FOR-command does nothing

15

196

Subtleties of FOR-commands

① There are many subtly different versions of FOR-commands

① For example

✉ the expressions E1 and E2 could be evaluated at each iteration

✉ and the controlled variable V could be treated as global rather than local

① Early languages like Algol 60 failed to notice such subtleties

① Note that with the semantics presented here
FOR-commands cannot generate non termination

16

50

197

More on the semantics of FOR-commands

① The semantics of

FOR V :=E1 UNTIL E2 DO C

is as follows

(i) E1 and E2 are evaluated once to get values e1 and e2, respectively.

(ii) If either e1 or e2 is not a number, or if e1 > e2, then nothing is done.

(iii) If e1 ≤ e2 the FOR-command is equivalent to:

BEGIN VAR V ; V :=e1; C; V :=e1+1; C ; . . . ; V :=e2; C END

i.e. C is executed (e2−e1)+1 times with V taking on the sequence of
values e1, e1+1, . . . , e2

① If C doesn’t modify V then FOR-command equivalent to:

BEGIN VAR V ; V :=e1; . . . C ; V :=V +1︸ ︷︷ ︸
repeated

; . . . V :=e2; C END

17

198

The Rule of Constancy(Derived Frame Rule)

① The following derived rule is used on the next slide

The rule of constancy

⊢ {P} C {Q}
⊢ {P ∧R} C {Q ∧R}

where no variable assigned to in C occurs in R

① Outline of derivation
✉ prove {R} C {R} by induction on C✉ then use Specification Conjunction

① Assume C doesn’t modify V and ⊢ {P} C {P[V +1/V]} then:

⊢ {P ∧ V =v} C {P[V +1/V] ∧ V =v} (assumption + constancy rule)

⊢ {P[V +1/V] ∧ V =v} V :=V +1 {P ∧ V =v+1}(assign. ax + pre. streng.)

⊢ {P ∧ V =v} C; V :=V +1 {P ∧ V =v+1} (sequencing)

① So C; V :=V +1 has P as an invariant and increments V

18

199

Towards the FOR-Rule

① If e1 ≤ e2 the FOR-command is equivalent to:

BEGIN VAR V ; V :=e1; . . . C ; V :=V +1; . . . V :=e2; C END

① Assume C doesn’t modify V and ⊢ {P} C {P[V +1/V]}
① Hence:

⊢ {P[e1/V]} V :=e1 {P ∧ V =e1} (assign. ax + pre. streng.)
...
⊢ {P ∧ V =v} C; V :=V +1 {P ∧ V =v+1} (last slide; V = e1, e1+1, . . . , e2−1)
...
⊢ {P ∧ V =v} C; V :=V +1 {P ∧ V =e2+1}
⊢ {P ∧ V =e2} C {P[V +1/V] ∧ V =e2} (assign. ax + assumption + constancy)

⊢ {P ∧ V =e2} C {P[e2+1/V]} (post. weak.)

① Hence by the sequencing and block rules

⊢ {P}C{P[V +1/V]}
⊢ {P[e1/V]}BEGIN VAR V ;V :=e1; . . . C;V :=V +1; . . . V :=e2;C END{P[e2+1/V]}

19

200

Problems with the FOR-rule (i)

① Previous derivation suggests a rule

⊢ {P} C {P[V +1/V]}
⊢ {P[E1/V]} FOR V :=E1 UNTIL E2 DO C {P[E2+1/V]}

① This is a good start, but needs debugging

① Consider:

⊢ {X=Y} X:=Y+1 {X=Y+1}

① Taking P as ‘X=Y’ this is:

⊢ {P} X:=Y+1 {P[Y+1/Y]}

① By the FOR-rule above, with V = Y, E1 = 3 and E2 = 1

⊢ { X=3︸︷︷︸
P[3/Y]

} FOR Y:=3 UNTIL 1 DO X:=Y+1 { X=2︸︷︷︸
P[1+1/Y]

}

20

51

201

Problems with the FOR-rule (ii)

① The conclusion below is clearly undesirable

⊢ { X=3︸︷︷︸
P[3/Y]

} FOR Y:=3 UNTIL 1 DO X:=Y+1 { X=2︸︷︷︸
P[1+1/Y]

}

① It was specified that

✉ if the value of E1 were greater than the value of E2

✉ then the FOR-command should have no effect

✉ in this example it changes the value of X from 3 to 2

① To avoid this, the FOR-rule can be modified to

⊢ {P} C {P[V +1/V]}
⊢ {P[E1/V] ∧ E1 ≤ E2} FOR V :=E1 UNTIL E2 DO C {P[E2+1/V]}

21

202

Problems with the FOR-rule (iii)

① FOR-rule so far

⊢ {P} C {P[V +1/V]}
⊢ {P[E1/V] ∧ E1 ≤ E2} FOR V :=E1 UNTIL E2 DO C {P[E2+1/V]}

① On the example just considered this rule results in

⊢ {X=3 ∧ 3 ≤ 1︸ ︷︷ ︸
never true!

} FOR Y:=3 UNTIL 1 DO X:=Y+1 {X=2}

① This conclusion is harmless

✉ only asserts X changed if FOR-command executed in impossible starting state

22

203

Problems with the FOR-rule (iv)

① Unfortunately, there is still a bug in

⊢ {P} C {P[V +1/V]}
⊢ {P[E1/V] ∧ E1 ≤ E2} FOR V :=E1 UNTIL E2 DO C {P[E2+1/V]}

① Take P to be ‘Y=1’ and note that

⊢ {Y=1︸︷︷︸
P

} Y:=Y-1 { Y+1=1︸ ︷︷ ︸
P[Y+1/Y]

}

① So by this FOR-rule

⊢ { 1=1︸︷︷︸
P[1/Y]

∧ 1 ≤ 1} FOR Y:=1 UNTIL 1 DO Y:=Y-1 { 2=1︸︷︷︸
P[1+1/Y]

}

23

204

Problems with the FOR-rule (v)

① Whatever the command does, it doesn’t lead to a state in which 2=1

① The problem is that the body of the FOR-command modifies the
controlled variable

① This is why it was explicitly assumed that the body didn’t modify
the controlled variable

24

52

205

Problems with the FOR-rule (vi)

① Problem may also arise if variables in expressions E1 or E2 modified

① For example, taking P to be Z=Y, then

⊢ {Z=Y︸︷︷︸
P

} Z:=Z+1 { Z=Y+1︸ ︷︷ ︸
P[Y+1/Y]

}

① Thus the following can be derived

⊢ { Z=1︸︷︷︸
P[1/Y]

∧ 1 ≤ Z} FOR Y:=1 UNTIL Z DO Z:=Z+1 { Z=Z+1︸ ︷︷ ︸
P[Z+1/Y]

}

① This is clearly wrong

✉ one can never have Z=Z+1

① Not a problem because the FOR-command doesn’t terminate?

✉ in some languages this might be the case

✉ semantics of our language defined so that FOR-commands always terminate

25

206

The FOR-Rule

① To rule out the problems that arise when the controlled variable or
variables in the bounds expressions, are changed by the body, we
simply impose a side condition on the rule that stipulates that it
cannot be used in these situations

The FOR-rule

⊢ {P ∧ (E1 ≤ V) ∧ (V ≤ E2)} C {P[V +1/V]}
⊢ {P[E1/V]∧(E1≤E2)} FOR V :=E1 UNTIL E2 DO C {P[E2+1/V]}

where neither V , nor any variable occurring in E1 or E2, is assigned
to in the command C.

① Note (E1 ≤ V) ∧ (V ≤ E2) in precondition of rule hypothesis

✉ added to strengthen rule to allow proofs to use facts about V ’s range of values

① Can be tricky to think up P

26

207

Comment on the FOR-Rule

① The FOR-rule does not enable anything to be deduced about FOR-
commands whose body assigns to variables in the bounds expres-
sions

① This precludes such assignments being used if commands are to be
reasoned about

① Only defining rules of inference for non-tricky uses of constructs
motivates writing programs in a perspicuous manner

① It is possible to devise a rule that does cope with assignments to
variables in bounds expressions

① Consider the rule below (e1, e2 are fresh auxiliary variables):

⊢ {P ∧ (e1 ≤ V) ∧ (V ≤ e2)} C {P[V +1/V]}
⊢ {P[E1/V]∧(E1≤E2)∧(E1=e1)∧(E2=e2)} FOR V :=E1 UNTIL E2 DO C {P[e2+1/V]}

27

208

The FOR-axiom

① To cover the case when E2 < E1, we need the FOR-axiom below

The FOR-axiom

⊢ {P ∧ (E2 < E1)} FOR V :=E1 UNTIL E2 DO C {P}

① This says that when E2 is less than E1 the FOR-command has no effect

28

53

209

Exercise: understand the example on this slide

① By the assignment axiom and precondition strengthening

⊢ {X = ((N-1)×N) DIV 2} X:=X+N {X=(N×(N+1)) DIV 2}

① Strengthening the precondition of this again yields

⊢ {(X = ((N-1)×N) DIV 2)∧(1≤N)∧(N≤M)}
X:=X+N

{X = (N×(N+1)) DIV 2}

① Hence by the FOR-rule

⊢ {(X = ((1-1)×1) DIV 2)∧(1≤M)}
FOR N:=1 UNTIL M DO X:=X+N

{X = (M×(M+1)) DIV 2}

① Hence

⊢ {(X=0)∧(1≤M)}
FOR N:=1 UNTIL M DO X:=X+N

{X = (M×(M+1)) DIV 2}

29

210

Note on using the FOR-Rule

① Note that if any of the following hold

(i) ⊢ {P} C {P[V +1/V]}
(ii) ⊢ {P ∧ (E1 ≤ V)} C {P[V +1/V]}
(iii) ⊢ {P ∧ (V ≤ E2)} C {P[V +1/V]}

① Then by precondition strengthening:

⊢ {P ∧ (E1 ≤ V) ∧ (V ≤ E2)} C {P[V +1/V]}

① So any of (i), (ii) or (iii) above is a sufficient hypothesis for FOR Rule

30

211

Deriving the FOR Rule

① The following is a command equivalent to FOR I:=E1 UNTIL E2 DO C

BEGIN

VAR I;

VAR UpperBound;

I := E1;

UpperBound := E2;

WHILE I≤UpperBound DO (C; I := I+1)

END

✉ UpperBound is assumed to be a ‘new’ variable

✉ and I is not assigned to inside C

① Thus we could derive a rule from the implementation

✉ we must be sure the implementation is correct

① Exercise: try deriving the FOR-rule from the WHILE-rule

31

212

Exercise: think about Wickerson’s FOR-Rule (see below)
The FOR rule as presented in the notes had always seemed quite unsatisfactory to me, because it couldn’t deal with
the case when the lower and upper bounds on the looping variable were the wrong way around
(hence the need for the FOR-axiom).

I have derived a new rule, which removes the need for the FOR-axiom completely. This rule doesn’t suffer from
the problems that the early incarnations of the FOR-rule suffered from in the lecture notes,
and I believe the rule to be equally powerful.

It is derived, very easily, by noting that: FOR V:=E1 UNTIL E2 DO C is equivalent to:

BEGIN VAR V; V:=E1; WHILE V<=E2 DO (C; V:=V+1) END

(where the standard syntactic constraints still apply, i.e. neither V nor any variable in E1 or E2 may be assigned
to in C). Then we simply apply the Floyd-Hoare rules of blocks, sequencing and while-commands to derive the
following rule:

|- P ==> R[E1/V] |- R & V>E2 ==> Q |- {R & V<=E2} C {R[V+1/V]}
--

|- {P} FOR V:=E1 UNTIL E2 DO C {Q}

This rule is similar to, but subtly different from, the FOR-rule derived in the notes. I’ve tried my rule on
various examples in the notes, and I reckon it works fine. I’ll just give one quick example here;
suppose we want to prove:

{X = 2} FOR V := 10 UNTIL 0 DO X:=1 {X=2}

Then we set R = (V=10 & X=2). The three antecedents of the (new) rule are instantiated to

(1) X=2 ==> 10=10 & X=2
(2) V=10 & X=2 & V>0 ==> X=2
(3) |- {V=10 & X=2 & V<=0} X:=1 {V+1=10 & X=2}

Note that (1) and (2) are trivially true, and (3) holds because the precondition is unsatisfiable
(V cannot be both equal to 10 and no greater than 0).

32

54

213

Ensuring Soundness

① It is clear from the discussion of the FOR-rule that it is not always
straightforward to devise correct rules of inference

① It is important that the axioms and rules be sound. There are two
approaches to ensure this

(i) define the language by the axioms and rules of the logic

(ii) prove that the logic is sound for the language

① Approach (i) is called axiomatic semantics

✉ the idea is to define the semantics of the language by requiring that it make

the axioms and rules of inference true

✉ it is then up to implementers to ensure that the logic matches the language

① Approach (ii) is proving soundness of the logic

33

214

Axiomatic Semantics

① One snag with axiomatic semantics is that most existing languages
have already been defined in some other way

✉ usually by informal and ambiguous natural language statements

① The other snag with axiomatic semantics is that by Clarke’s Theo-
rem it is known to be impossible to devise relatively complete Floyd-
Hoare logics for languages with certain constructs

✉ it could be argued that this is not a snag at all but an advantage, because it

forces programming languages to be made logically tractable

① An example of a language defined axiomatically is Euclid

34

215

From Proof rules for the programming language Euclid

35

216

New Topic: Refinement

① So far we have focused on proving programs meet specifications

① An alternative is to ensure a program is correct by construction

① The proof is performed in conjunction with the development

✉ errors are spotted earlier in the design process

✉ the reasons for design decisions are available

① Programming becomes less of a black art
and more like an engineering discipline

① Rigorous development methods such as the B-Method, SPARK and
the Vienna Development Method (VDM) are based on this idea

① The approach here is based on “Programming From Specifications”

✉ a book by Carroll Morgan

✉ simplified and with a more concrete semantics

36

55

217

Refinement Laws

① Laws of Programming refine a specification to a program

① As each law is applied, proof obligations are generated

① The laws are derived from the Hoare logic rules

① Several laws will be applicable at a given time

✉ corresponding to different design decisions

✉ and thus different implementations

① The “Art” of Refinement is in choosing appropriate laws to give an
efficient implementation

① For example, given a specification that an array should be sorted:

✉ one sequence of laws will lead to Bubble Sort

✉ a different sequence will lead to Insertion Sort

✉ see Morgan’s book for an example of this

37

218

Refinement Specifications

① A refinement specification has the form [P, Q]

✉ P is the precondition

✉ Q is the postcondition

① Unlike a partial or total correctness specification,
a refinement specification does not include a command

① Goal: derive a command that satisfies the specification

① P and Q correspond to the pre and post condition of a
total correctness specification

① A command is required which if started in a state satisfying P ,
will terminate in a state satisfying Q

38

219

Example

① [T, X=1]

✉ this specifies that the code provided should terminate in a state where X has

value 1 whatever state it is started in

① [X>0, Y=X2]

✉ from a state where X is greater than zero, the program should terminate with

Y the square of X

39

220

A Little Wide Spectrum Programming Language

① Let P , Q range over statements (predicate calculus formulae)

① Add specifications to commands

E ::= N | V | E1 + E2 | E1 − E2 | E1 × E2 | . . .

B ::= T | F | E1=E2 | E1 ≤ E2 | . . .

C ::= SKIP (does nothing, SKIP-Axiom is ⊢ [P] SKIP [P])

| V := E

| C1 ; C2

| IF B THEN C1 ELSE C2

| BEGIN VAR V 1 ; .. VAR V 1 ; C END

| WHILE B DO C

| [P, Q]

40

56

221

Specifications as Sets of Commands

① Refinement specifications can be mixed with other commands but
are not in general executable

① Example

R:=X;

Q:=0;

[R=X ∧ Y> 0 ∧ Q=0, X=R+Y×Q]

① Think of a specification as defining the set of implementations

[P, Q] = { C | ⊢ [P] C [Q] }

① For example

[T, X=1] = {"X:=1", "IF ¬(X=1) THEN X:=1", "X:=2;X:=X-1", · · · }

① Don’t confuse use of {· · ·} as set brackets and in Hoare triples

41

222

Notation for combining sets of commands

① Wide spectrum language commands are sets of ordinary commands

① Let C, C1, C2 etc. denote sets of commands, then define:

C1; · · · ;Cn = { C | ∃C1 · · · Cn. C = C1; · · · ;Cn ∧
C1 ∈ C1 ∧ · · · ∧ Cn ∈ Cn }

= { C1; · · · ;Cn | C1 ∈ C1 ∧ · · · ∧ Cn ∈ Cn }

BEGIN VAR V1; · · · VAR Vn; C END = { BEGIN VAR V1; · · · VAR Vn; C END | C ∈ C }

IF S THEN C1 ELSE C2 = { IF S THEN C1 ELSE C2 | C1 ∈ C1 ∧ C2 ∈ C2 }

WHILE S DO C = { WHILE S DO C | C ∈ C }

42

223

Refinement based program development

① The client provides a non-executable program (the specification)

① The programmer’s job is to transform it into an executable program

① It will pass through a series of stages in which some parts are
executable, but others are not

① Specifications give lots of freedom about how a result is obtained

✉ executable code has no freedom

✉ mixed programs have some freedom

① We use the notation p1⊇ p2 to mean program p2 is more refined
(i.e. has less freedom) than program p1

① N.B. The standard notation is p1 ⊑ p2

① A program development takes us from the specification, through a
series of mixed programs to (we hope) executable code

spec⊇ mixed1⊇ ...⊇ mixedn⊇code

43

224

Skip Law

The Skip Law

[P, P] ⊇ {SKIP}

① Derivation:

C ∈ {SKIP}
⇔ C = SKIP

⇒ ⊢ [P] C [P] (Skip Axiom)
⇔ C ∈ [P, P] (Definition of [P, P])

① Examples

[X=1, X=1] ⊇ {SKIP}
[T, T] ⊇ {SKIP}

[X=R+Y×Q, X=R+Y×Q] ⊇ {SKIP}

44

57

225

Notational Convention

① Omit { and } around individual commands

① Skip law becomes:
[P, P] ⊇ SKIP

① Examples become:

[X=1, X=1] ⊇ SKIP

[T, T] ⊇ SKIP

[X=R+Y×Q, X=R+Y×Q] ⊇ SKIP

45

226

Assignment Law

The Assignment Law

[P [E/V], P] ⊇ {V := E}

① Derivation

C ∈ {V := E}
⇔ C = V := E
⇒ ⊢ [P[E/V]] C [P] (Assignment Axiom)
⇔ C ∈ [P[E/V], P] (Definition of [P[E/V], P])

① Examples

[Y=1, X=1] ⊇ X:=Y

[X+1=n+1, X=n+1] ⊇ X:=X+1

46

227

Laws of Consequence

Precondition Weakening

[P, Q] ⊇ [R, Q]

provided ⊢ P ⇒ R

Postcondition Strengthening

[P, Q] ⊇ [P, R]

provided ⊢ R ⇒ Q

① We are now “weakening the precondition”
and “strengthening the post condition”

✉ this is the opposite terminology to the Hoare rules

✉ refinement consequence rules are ‘backwards’

47

228

Derivation of Consequence Laws

① Derivation of Precondition Weakening

C ∈ [R, Q]
⇔ ⊢ [R] C [Q] (Definition of [R, Q])
⇒ ⊢ [P] C [Q] (Precondition Strengthening ⊢P⇒R)
⇔ C ∈ [P, Q] (Definition of [P, Q])

① Derivation of Postcondition Strengthening

C ∈ [P, R]
⇔ ⊢ [P] C [R] (Definition of [R, Q])
⇒ ⊢ [P] C [Q] (Postcondition Weakening ⊢R⇒Q)
⇔ C ∈ [P, Q] (Definition of [P, Q])

48

58

229

Examples (illustrates refinement notation)

① A previous example:

[X=1, X=1]

⊇ (Skip)

SKIP

① An alternative refinement:

[Y=1, X=1]

⊇ (Precondition Weakening ⊢ Y=1 ⇒ 1=1)

[1=1, X=1]

⊇ (Assignment)

X := 1

① Another example

[T, R=X]

⊇ (Precondition Weakening ⊢ T ⇒ X=X)

[X=X, R=X]

⊇ (Assignment)

R := X

49

230

Derived Assignment Law

Derived Assignment Law

[P, Q] ⊇ {V :=E}
provided ⊢ P ⇒ Q[E/V]

① Derivation

[P, Q]

⊇ (Precondition Weakening ⊢ P ⇒ Q[E/V])

[Q[E/V], Q]

⊇ (Assignment)

V :=E

① Example

[T, R=X]

⊇ (Derived Assignment ⊢ T ⇒ X=X)

R := X

50

231

One Slide Technical Interlude: Monotonicity

① A command can be refined by separately refining its constituents

① This is because sets of commands are monotonic w.r.t. ⊇
✉ if C⊇C′, C1⊇C′1, . . . , Cn⊇C′n
✉ then:

C1; · · · ;Cn ⊇ C′1; · · · ;C′n

BEGIN VAR V1; · · · VAR Vn; C END ⊇ BEGIN VAR V1; · · · VAR Vn; C′ END

IF S THEN C1 ELSE C2 ⊇ IF S THEN C′1 ELSE C
′
2

WHILE S DO C ⊇ WHILE S DO C′

① Laws of refinement for non-atomic commands now follow

51

232

Sequencing

The Sequencing Law

[P, Q] ⊇ [P, R]; [R, Q]

① Derivation of Sequencing Law

C ∈ [P, R] ; [R, Q]

⇔ C ∈ { C1 ; C2 | C1 ∈ [P, R] ∧ C2 ∈ [R, Q]} (Definition of C1 ; C2)
⇔ C ∈ { C1 ; C2 | ⊢ [P] C1 [R] ∧ ⊢ [R] C2 [Q]} (Definition of [P, R] and [R, Q])

⇒ C ∈ { C1 ; C2 | ⊢ [P] C1 ; C2 [Q]} (Sequencing Rule)

⇒ ⊢ [P] C [Q]

⇔ C ∈ [P, Q] (Definition of [P, Q])

① Example

[T, R=X∧Q=0]
⊇ (Sequencing)
[T, R=X] ; [R=X, R=X∧Q=0]
⊇ (Derived Assignment ⊢ T ⇒ X=X)
R:=X; [R=X, R=X∧Q=0]
⊇ (Derived Assignment ⊢ R=X ⇒ R=X ∧ 0=0)
R:=X; Q:=0

52

59

233

Creating different Programs

① By applying the laws in a different way, we obtain different programs

① Consider previous example: using a different assertion with the se-
quencing law creates a program with the assignments reversed

[T, R=X∧Q=0]
⊇ (Sequencing)

[T, Q=0] ; [Q=0, R=X∧Q=0]
⊇ (Derived Assignment ⊢ T ⇒ 0=0)

Q:=0; [Q=0, R=X∧Q=0]
⊇ (Derived Assignment ⊢ Q=0 ⇒ X=X ∧ Q=0)

Q:=0; R:=X

53

234

Inefficient Programs

① Refinement does not prevent you making silly coding decisions

① It does prevent you from producing incorrect executable code

① Example

[T, R=X∧Q=0]
⊇ (Sequencing)

[T, R=X∧Q=0] ; [R=X∧Q=0 , R=X∧Q=0]
⊇ (as previous example)

Q:=0; R:=X; [R=X∧Q=0, R=X∧Q=0]
⊇ (Skip)

Q:=0; R:=X; SKIP

54

235

Blind Alleys

① The refinement rules give the freedom to wander down blind alleys

① We may end up with an unrefinable step
✉ since it will not be executable, this is safe

✉ we will not get an incorrect executable program

① Example

[X=x∧Y=y, X=y∧Y=x]
⊇ (Sequencing)

[X=x∧Y=y, X=x∧Y=x] ; [X=x∧Y=x, X=y∧Y=x]
⊇ (Derived Assignment ⊢ X=x∧Y=y⇒X=x∧X=x)
Y:=X; [X=x∧Y=x, X=y∧Y=x]
⊇ (Sequencing)

Y:=X;

[X=x∧Y=x, Y=y∧Y=x];
[Y=y∧Y=x, X=y∧Y=x]
⊇ (Assignment)

Y:=X;

[X=x∧Y=x, Y=y∧Y=x]; (no way to refine this!)

X:=Y

55

236

Blocks

The Block Law

[P, Q] ⊇ BEGIN VAR V1; . . . ; VAR Vn; [P, Q] END

where V1, . . . , Vn do not occur in P or Q

① Derivation: exercise

① Example

[X=x∧Y=y, X=y∧Y=x]
⊇ (Block)

BEGIN VAR R; [X=x∧Y=y, X=y∧Y=x] END

⊇ (Sequencing and Derived Assignment)

BEGIN VAR R; R:=X; X:=Y; Y:=R END

56

60

237

Conditional

The Conditional Law

[P, Q] ⊇ IF S THEN [P ∧ S, Q] ELSE [P ∧ ¬S, Q]

① The Conditional Law can be used to refine any specification and any
test can be introduced

① You may not make any progress by applying the law however

✉ you may need the same program on each branch!

57

238

Derivation of the Conditional Law

C ∈ IF S THEN [P∧S, Q] ELSE [P∧¬S, Q]

⇔ C ∈ {IF S THEN C1 ELSE C2 |
C1 ∈ [P∧S, Q] & C2 ∈ [P∧¬S, Q]} (Definition of IF S THEN {· · ·} ELSE {· · ·})

⇔ C ∈ {IF S THEN C1 THEN C2 |
⊢ [P∧S] C1 [Q] & ⊢ [P∧¬S] C2 [Q]} (Definition of [P∧S, Q] & [P∧¬S, Q])

⇒ C ∈ {IF S THEN C1 ELSE C2 |
⊢ [P] IF S THEN C1 ELSE C2 [Q]} (Two-armed Conditional Rule)

⇒ ⊢ [P] C [Q]

⇔ C ∈ [P, Q] (Definition of [P, Q])

58

239

Example

[T, M=max(X,Y)]

⊇ (Conditional)

IF X≥Y
THEN [T∧ X≥Y, M=max(X,Y)]

ELSE [T∧¬(X≥Y), M=max(X,Y)]

⊇ (Derived Assignment ⊢ T∧X≥Y ⇒ X=max(X,Y))

IF X≥Y
THEN M:=X

ELSE [T∧¬X≥Y, M=max(X,Y)]

⊇ (Derived Assignment ⊢ T∧¬X≥Y ⇒ Y=max(X,Y))

IF X≥Y THEN M:=X ELSE M:=Y

59

240

While

The While Law

[R, R ∧ ¬S] ⊇ WHILE S DO [R ∧ S ∧ (E=n), R ∧ (E<n)]

provided ⊢ R ∧ S ⇒ E ≥ 0

and where E is an integer-valued expression and n is an identifier
not occurring in P , S, E or C.

① Example

[X=R+Y×Q ∧ Y>0, X=R+Y×Q ∧ Y>0 ∧ ¬ Y≤R]
⊇ (While ⊢ X=R+Y×Q ∧ Y>0 ∧ Y≤R ⇒ R≥0)
WHILE Y≤R DO

[X=R+Y×Q ∧ Y>0 ∧ Y≤R ∧ R=n,

X=R+Y×Q ∧ Y>0 ∧ R<n]

60

61

241

Derivation of the While Law

C ∈ WHILE S DO [P ∧ S ∧ (E = n), P ∧ (E < n)]

⇔ C ∈ {WHILE S DO C ′ |
C ′ ∈ [P ∧ S ∧ (E = n), P ∧ (E < n)]} (Definition of WHILE S DO {· · ·})

⇔ C ∈ {WHILE S DO C ′ | (Definition of
⊢ [P ∧ S ∧ (E = n)] C ′ [P ∧ (E < n)]} [P ∧ S ∧ (E = n), P ∧ (E < n)])

⇒ C ∈ {WHILE S DO C ′ |
⊢ [P] WHILE S DO C ′ [P ∧ ¬S]} (While Rule & ⊢ P ∧ S ⇒ E ≥ 0)

⇒ ⊢ [P] C [P ∧ ¬S]
⇔ C ∈ [P, P ∧ ¬S] (Definition of [P, P ∧ ¬S])

61

242

Example (i)

[Y>0, X=R+Y×Q ∧ R ≤ Y]

⊇ (Block)

BEGIN [Y>0, X=R+Y×Q ∧ R ≤ Y] END

⊇ (Sequencing)

BEGIN

[Y>0, R=X ∧ Y>0] ;

[R=X ∧ Y>0, X=R+Y×Q ∧ R ≤ Y]

END

⊇ (Derived Assignment ⊢ Y>0 ⇒ X=X ∧ Y>0)

BEGIN

R:=X ;

[R=X ∧ Y>0, X=R+Y×Q ∧ R ≤ Y]

END

62

243

Example (ii)

BEGIN

R:=X ;

[R=X ∧ Y>0, X=R+Y×Q ∧ R ≤ Y]

END ⊇ (Sequencing)

BEGIN

R:=X ;

[R=X ∧ Y>0, R=X ∧ Y>0 ∧ Q=0] ;

[R=X ∧ Y>0 ∧ Q=0, X=R+Y×Q ∧ R ≤ Y]

END

⊇ (Derived Assignment ⊢ R=X ∧ Y>0 ⇒ R=X ∧ Y>0 ∧ 0=0)
BEGIN

R:=X ;

Q:=0 ;

[R=X ∧ Y>0 ∧ Q=0, X=R+Y×Q ∧ R ≤ Y]

END

① Exercise: complete the refinement (see next few slides)

63

244

Example (iii)

⊇
(
Precondition Weakening

⊢ R=X ∧ Y>0 ∧ Q=0 ⇒ X=R+Y×Q ∧ Y>0

)

BEGIN

R:=X; Q:=0;

[X=R+Y×Q ∧ Y>0, X=R+Y×Q ∧ R ≤ Y]

END

⊇




Postcondition Strengthening

⊢ X=R+Y×Q ∧ Y>0 ∧ ¬(Y≤R)
⇒ X=R+Y×Q ∧ R≤Y




BEGIN

R:=X; Q:=0;

[X=R+Y×Q ∧ Y>0, X=R+Y×Q ∧ Y>0 ∧ ¬(Y≤R)]
END

⊇ (While ⊢ X=R+Y×Q ∧ Y>0 ∧ Y≤R ⇒ R≥0)
BEGIN

R:=X; Q:=0;

WHILE Y ≤ R DO

[X=R+Y×Q ∧ Y>0 ∧ Y≤R ∧ R=n,

X=R+Y×Q ∧ Y>0 ∧ R<n]

END

64

62

245

Example (iv)

⊇ (Block)

BEGIN

R:=X; Q:=0;

WHILE Y ≤ R DO

BEGIN

[X=R+Y×Q ∧ Y>0 ∧ Y≤R ∧ R=n,

X=R+Y×Q ∧ Y>0 ∧ R<n]

END

END

⊇ (Sequence)

BEGIN

R:=X; Q:=0;

WHILE Y ≤ R DO

BEGIN

[X=R+Y×Q ∧ Y>0 ∧ Y≤R ∧ R=n,

X=(R-Y)+Y×Q ∧ Y>0 ∧ (R-Y)<n] ;

[X=(R-Y)+Y×Q ∧ Y>0 ∧ (R-Y)<n,

X=R+Y×Q ∧ Y>0 ∧ R<n]

END

END

65

246

Example (v)
⊇ (Assignment)

BEGIN
R:=X; Q:=0;
WHILE Y ≤ R DO
BEGIN
[X=R+Y×Q ∧ Y>0 ∧ Y≤R ∧ R=n,
X=(R-Y)+Y×Q ∧ Y>0 ∧ (R-Y)<n] ;

R := R-Y
END

END

⊇




Derived Assignment
⊢ X=R+Y×Q ∧ Y>0 ∧ Y≤R ∧ R=n ⇒

X=(R-Y)+Y×(Q+1) ∧ Y>0 ∧ (R-Y)<n




BEGIN
R:=X; Q:=0;
WHILE Y ≤ R DO
BEGIN
Q:= Q+1;
R:= R-Y

END
END

66

247

More Notation

① The notation
[P1, P2, P3, · · · , Pn−1, Pn]

is used to abbreviate:

[P1, P2] ; [P2, P3] ; · · · ; [Pn−1, Pn]

① Brackets around specifications {C} omitted

① If C is a set of commands, then

R := X ; C
abbreviates

{R := X} ; C

67

248

Exercise: check the refinement on this slide
① Let I stand for X = R + (Y ×Q), then:

[Y > 0, I ∧ R ≤ Y]

⊇ (Sequencing)

[Y > 0, R = X ∧ Y > 0, I ∧ R ≤ Y]

⊇ (Assignment)

R := X ; [R = X ∧ Y > 0, I ∧ R ≤ Y]

⊇ (Sequencing)

R := X ; [R = X ∧ Y > 0, R = X ∧ Y > 0 ∧ Q = 0, I ∧ R ≤ Y]

⊇ (Assignment)

R := X ; Q := 0 ; [R = X ∧ Y > 0 ∧ Q = 0, I ∧ R ≤ Y]

⊇ (Precondition Weakening)

R := X ; Q := 0 ; [I ∧ Y > 0, I ∧ R ≤ Y]

⊇ (Postcondition Strengthening)

R := X ; Q := 0 ; [I ∧ Y > 0, I ∧ Y > 0 ∧ ¬(Y ≤ R)]

⊇ (While)

R := X ; Q := 0 ;

WHILE Y ≤ R DO [I ∧ Y > 0 ∧ Y ≤ R ∧ R = n,
I ∧ Y > 0 ∧ R < n]

⊇ (Sequencing)

R := X ; Q := 0 ;

WHILE Y ≤ R DO [I ∧ Y > 0 ∧ Y ≤ R ∧ R = n,
X = (R− Y) + (Y ×Q) ∧ Y > 0 ∧ (R− Y) < n,
I ∧ Y > 0 ∧ R < n]

⊇ (Derived Assignment)

R := X ; Q := 0 ;

WHILE Y ≤ R DO [I ∧ Y > 0 ∧ Y ≤ R ∧ R = n,
X = (R− Y) + (Y ×Q) ∧ Y > 0 ∧ (R− Y) < n];
R := R− Y

⊇ (Derived Assignment)

R := X ; Q := 0 ;

WHILE Y ≤ R DO Q := Q + 1 ; R :=R− Y

68

63

249

Derived Laws

① Above development could be shortened by deriving appropriate laws

① For example, a derived WHILE law could be derived

① Exercise: Develop a factorial program from the specification:

[X = n, Y = n!]

① Exercise: devise refinement laws for arrays, one-armed conditionals,
and FOR-commands

69

250

Data Refinement

① So far we have given laws to refine commands

① This is termed Operation Refinement

① It is also useful to be able to refine the representation of data

✉ replacing an abstract data representation by a more concrete one

✉ e.g. replacing numbers by binary representations

① This is termed Data Refinement

① Data Refinement Laws allow us to make refinements of this form

① The details are beyond the scope of this course

✉ they can be found in Morgan’s book

70

251

Summary

① Refinement ‘laws’ based on the Hoare logic can be used to develop
programs formally

① A program is gradually converted from an unexecutable specification
to executable code

① By applying different laws, different programs are obtained

✉ may reach unrefinable specifications (blind alleys)

✉ but will never get incorrect code

① A program developed in this way will meet its formal specification

✉ one approach to ‘Correct by Construction’ (CbC) software engineering

71

252

New Topic: Separation logic

① One of several competing methods for reasoning about pointers

① Details took 30 years to evolve

① Shape predicates due to Rod Burstall in the 1970s

① Separation logic: by O’Hearn, Reynolds and Yang around 2000

① Several partially successful attempts before separation logic

① Very active research area

✉ QMUL, UCL, Cambridge, Harvard, Princeton, Yale

✉ Microsoft

✉ startup Monoidics bought by Facebook

0

64

253

Pointers and the state

① So far the state just determined the values of variables
✉ values assumed to be numbers

✉ preconditions and postconditions are first-order logic statements

✉ state same as a valuation s : Var→ Val

① To model pointers – e.g. as in C – add heap to state
✉ heap maps locations (pointers) to their contents

✉ store maps variables to values (previously called state)

✉ contents of locations can be locations or values

X 7→ l1 7→ l2 7→ v

store heap heap

Heap semantics

Store = V ar → Val (assume Num ⊆ Val, nil ∈ Val and nil /∈ Num)

Heap = Num ⇀fin Val

State = Store× Heap

① Note: store also called stack or environment; heap also called store

1

254

Adding pointer operations to our language

Expressions:

E::= N | V | E1 + E2 | E1 − E2 | E1 × E2 | . . .

Boolean expressions:

B::= T | F | E1=E2 | E1 ≤ E2 | . . .

commands:

C::= V := E value assignments

| V :=[E] fetch assignments

| [E1]:=E2 heap assignments (heap mutation)

| V :=cons(E1, . . . , En) allocation assignments

| dispose(E) pointer disposal

| C1 ; C2 sequences

| IF B THEN C1 ELSE C2 conditionals

| WHILE B DO C while commands

2

255

Pointer manipulation constructs and faulting

① Commands executed in a state (s, h)

① Reading, writing or disposing pointers might fault

① Fetch assignments: V :=[E]

✉ evaluate E to get a location l

✉ fault if l is not in the heap

✉ otherwise assign contents of l in heap to the variable V

① Heap assignments: [E1]:=E2

✉ evaluate E1 to get a location l

✉ fault if the l is not in the heap

✉ otherwise store the value of E2 as the new contents of l in the heap

① Pointer disposal: dispose(E)

✉ evaluate E to get a pointer l (a number)

✉ fault if l is not in the heap

✉ otherwise remove l from the heap

3

256

Allocation assignments

① Allocation assignments: V :=cons(E1, . . . , En)

✉ choose n consecutive locations that are not in the heap, say l, l+1, . . .

✉ extend the heap by adding l, l+1, . . . to it

✉ assign l to the variable V in the store

✉ make the values of E1, E2, . . . be the new contents of l, l+1, . . . in the heap

① Allocation assignments never fault

① Allocation assignments are non-deterministic

✉ any suitable l, l+1, . . . not in the heap can be chosen

✉ always exists because the heap is finite

4

65

257

Example (different from the background reading)

X:=cons(0,1,2); [X]:=Y+1; [X+1]:=Z; Y:=[Y+Z]

① X:=cons(0,1,2) allocates three new pointers, say l, l+1, l+2
✉ l initialised with contents 0, l+1 with 1 and l+2 with 2

✉ variable X is assigned l as its value in store

① [X]:=Y+1 changes the contents of l
✉ l gets value of Y+1 as new contents in heap

① [X+1]:=Z changes the contents of l+1
✉ l+1 gets the value of Z as new contents in heap

① Y:=[Y+Z] changes the value of Y in the store
✉ Y assigned in the store the contents of Y+Z in the heap

✉ faults if the value of Y+Z is not in the heap

5

258

Separating assertions

① Another example: X:=cons(0); Z:=1; Y:=X; [Y]:=Z; Y:=[X]

✉ assigns X to a new pointer, l say, and then updates contents of l to 0✉ assigns Z to 1 and Y to l✉ updates the contents of the value of Y, i.e. l, to be the value of Z, i.e. 1✉ assigns Y to contents of value of X, i.e. contents of l, i.e. 1

① Want to prove: {T} X:=cons(0);Z:=1; Y:=X; [Y]:=Z; Y:=[X] {Y = 1}
✉ need additional axioms for fetch, store and allocation assignments

✉ need assertions in specification language to describe contents of heap

① Intuitively

{T} X:=cons(0) {X=l ∧ H(l)=0} where l is a new location and H is the heap

{X=l ∧ H(l)=0} Z:=1 {X=l ∧ H(l)=0 ∧ Z=1}
{X=l ∧ H(l)=0 ∧ Z=1} Y:=X {X=l ∧ H(l)=0 ∧ Z=1 ∧ Y=l}
{X=l ∧ H(l)=0 ∧ Z=1 ∧ Y=l} [Y]:=Z {X=l ∧ H(l)=1 ∧ Z=1 ∧ Y=l}
{X=l ∧ H(l)=1 ∧ Z=1 ∧ Y=l} Y:=[X] {X=l ∧ H(l)=1 ∧ Z=1 ∧ Y=1}

① How can this be formalised? The tricky bit is the heap mutation:

{X=l ∧ H(l)=0 ∧ Z=1 ∧ Y=l} [Y]:=Z {X=l ∧ H(l)=1 ∧ Z=1 ∧ Y=l}

6

259

Heap assignment (mutation)

① A plausible Floyd-style forward heap assignment axiom:

{E1 = l ∧ E2 = v} [E1]:=E2 {H(l) = v}
① How can we get from this to:

{X=l ∧ H(l)=0 ∧ Z=1 ∧ Y=l} [Y]:=Z {X=l ∧ H(l)=1 ∧ Z=1 ∧ Y=l}
① Appropriate instance of plausible heap assignment axiom:

{Y = l ∧ Z = 1} [Y]:=Z {H(l) = 1}

The rule of constancy (derived rule of Hoare logic)

⊢ {P}C {Q}
⊢ {P ∧R}C {Q ∧R}

where no variable modified by C occurs free in R.

① Hence:

{Y=l ∧ Z=1 ∧ (X=l ∧ H(l)=0)︸ ︷︷ ︸
R

} [Y]:=Z {H(l)=1︸ ︷︷ ︸∧(X=l ∧ H(l)=0︸ ︷︷ ︸)}

Fail!

7

260

Rule of constancy (Reynolds’ name)

The rule of constancy

⊢ {P}C {Q}
⊢ {P ∧R}C {Q ∧R}

where no variable modified by C occurs free in R.

① Derived rule of basic Hoare logic (proof: structural induction on C)✉ useful for strengthening invariants✉ also useful for decomposing proofs – an example use case✉ suppose ⊢ {P1}C1{Q1} and ⊢ {P2}C2{Q2}✉ suppose no variable modified by C1 occurs in P2✉ then by rule of constancy: ⊢ {P1 ∧ P2}C1{Q1 ∧ P2}✉ suppose no variable modified by C2 occurs in Q1✉ then by rule of constancy: ⊢ {P2 ∧Q1}C2{Q2 ∧Q1}✉ hence by commutativity of ∧ and sequencing rule: ⊢ {P1 ∧ P2}C1;C2{Q1 ∧Q2}

① Rule of constancy not valid for heap assignments:
⊢ {T}[X]:=0{H(X) = 0}
but not
⊢ {T ∧ H(Y) = 1}[X]:=0{H(X) = 0 ∧ H(Y) = 1}
because X = Y possible

8

66

261

Reasoning about the heap

① Could explicitly model locations and the heap directly in assertions

✉ can be made to work – indeed still used, e.g. by Rockwell Collins

① Have a distinguished variable, say H, and then translate:

V :=[E] ❀ V :=H(E) (assign value of E in H to V)

[E1]:=E2 ❀ H:=H[E2/E1] (change H at E1 to be E2)

V :=cons(E1, . . . , En) ❀ · · · (not sure about this case)

dispose(E) ❀ H:=H-E (delete E from domain of H)

① If [E1]:=E2 is H:=H[E2/E1] then [E1]:=E2 modifies variable H

✉ rule of constancy now valid, but less useful

✉ adjoined variable R cannot mention H

✉ need stronger notion of separation involving disjoint heaps

9

262

Heap assigment axiom again

① Translating [E1]:=E2 to H:=H[E2/E1] yields by assignment axiom:

{Q[H[E2/E1]/H]}[E1]:=E2{Q}

① An instance is:

{(X=l ∧ H(l)=1 ∧ Z=1 ∧ Y=l︸ ︷︷ ︸
Q

)[H[Z/Y]/H]} [Y]:=Z {X=l ∧ H(l)=1 ∧ Z=1 ∧ Y=l︸ ︷︷ ︸
Q

}

performing the substitution Q[H[Z/Y]/H] gives:

{(X=l ∧ (H[Z/Y])(l)=1 ∧ Z=1 ∧ Y=l)} [Y]:=Z {X=l ∧ H(l)=1 ∧ Z=1 ∧ Y=l}
the conjunct (H[Z/Y])(l)=1 is true, hence:

{(X=l ∧ Z=1 ∧ Y=l)} [Y]:=Z {X=l ∧ H(l)=1 ∧ Z=1 ∧ Y=l}
then by precondition strengthening:

{X=l ∧ H(l)=0 ∧ Z=1 ∧ Y=l} [Y]:=Z {X=l ∧ H(l)=1 ∧ Z=1 ∧ Y=l}
as wanted!

10

263

Rule of constancy again

① If [E1]:=E2 is translated to H:=H[E2/E1]

then any command C containing a heap assignment will modify H

① If C1, C2 both contain heap assignments
and either Q1 or P2 contains H, then can’t do:

✉ suppose ⊢ {P1}C1{Q1} and ⊢ {P2}C2{Q2}✉ suppose no variable modified by C1 occurs in P2✉ then by rule of constancy: ⊢ {P1 ∧ P2}C1{Q1 ∧ P2}✉ suppose no variable modified by C2 occurs in Q1✉ then by rule of constancy: ⊢ {P2 ∧Q1}C2{Q2 ∧Q1}✉ hence by commutativity of ∧ and sequencing rule: ⊢ {P1 ∧ P2}C1;C2{Q1 ∧Q2}

① Would like:
✉ C1 and C2 modify disjoint parts of the heap and ⊢ {P1}C1{Q1} and ⊢ {P2}C2{Q2}✉ P1 only refers to locationsmodified byC1 and P2 only refers to locationsmodified byC2✉ suppose no variable modified by C1 occurs in P2✉ then by some rule: ⊢ {P1 ∧ P2}C1{Q1 ∧ P2}✉ suppose no variable modified by C2 occurs in Q1✉ then by some rule: ⊢ {P2 ∧Q1}C2{Q2 ∧Q1}✉ hence by commutativity of ∧ and sequencing rule: ⊢ {P1 ∧ P2}C1;C2{Q1 ∧Q2}

11

264

Diagram

Q QP P
C

C
1

21

1

2
2

Q

Q

P

P

C C

1

2

1

1 2

2

;

,

12

67

265

The Frame Problem
① Treating [E1]:=E2 as H:=H{E1←E2} works

✉ forces one to use array frame axiom to prove locations 6= E1 unchanged
✉ clumsy ... but used successfully by some (e.g. ACL2 + Rockwell Collins)
✉ need to always reason about the whole heap

① Analogy from AI

13

266

Sneak preview of the Frame Rule

The frame rule

⊢ {P}C {Q}
⊢ {P ⋆ R}C {Q ⋆ R}

where no variable modified by C occurs free in R.

① Separating conjunction P ⋆ Q

✉ heap can be split into two disjoint components

✉ P is true of one component and Q of the other

✉ ⋆ is commutative and associative

14

267

Local Reasoning and Separation Logic

① Want to just reason about just those locations being modified

✉ assume all other locations unchanged

① Solution: separation logic

✉ small and forward assignment axioms + separating conjunction

✉ small means just applies to fragment of heap (footprint)

✉ forward means Floyd-style forward rules that support symbolic execution

✉ non-faulting semantics of Hoare triples

✉ symbolic execution used by tools like smallfoot

✉ separating conjunction solves frame problem - like rule of constancy for heap

① Need new kinds of assertions to state separation logic axioms

15

268

Notation for separation assertions

① Expressions E evaluated in the store s, just like before
✉ E(s) means E true in s – i.e. Esem E s

① In general an assertion depends of store s and heap h
✉ P (s, h) means P true in state (s, h) (SSsem P (s, h) in background reading)

✉ semantics of first-order logic statement S (doesn’t depend on heap) is Ssem S s

① Notation and terminology for finite functions
✉ dom(f) is domain of finite function f , so if f : A ⇀fin B then dom(f) = A

✉ f[b/a] is same as f except a maps to b, dom(f[b/a]) = dom(f) ∪ {a}
✉ f-a is the result of deleting a from dom(f), so dom(f-a) = dom(f) \ {a}
✉ {l1 7→ v1, . . . , ln 7→ vn} finite function with domain {l1, . . . , ln} and maps li to vi

① Notation and terminology for operations on the heap
✉ l is in heap h means l ∈ dom(h)

✉ dom(h1∪h2) = dom(h1)∪dom(h2) and (h1∪h2)(l) = if l ∈ dom(h1) then h1(l) else h2(l)

✉ h1 ⋆ h2 only defined if dom(h1) ∩ dom(h2) = ∅, then h1 ⋆ h2 = h1 ∪ h2

(there are two operators called “⋆”: joining heaps and separating conjunction)

16

68

269

Separation logic assertions: points-to

① E1 7→ E2 is the points-to relation where E1, E2 are expressions

① E1 7→ E2 means:

✉ heap consists of one location: the value of E1

✉ the contents of the location (the value of E1) is the value of E2

① Semantics of E1 7→ E2 is defined by:

(E1 7→ E2)(s, h) ⇔ dom(h) = {E1(s)} ∧ h(E1(s)) = E2(s)

① Example: (X 7→Y+1)(s, {20 7→ 43}) is true iff s(X) = 20 and s(Y) = 42

① Abbreviation: E 7→ =def ∃X. E 7→X (where X does not occur in E)

① By semantics: (E 7→) (s, h) ⇔ dom(h) = {E(s)}

17

270

Separation logic assertions: separating conjunction

① P1 ⋆ P2 is the separating conjunction of statements P1 and P2

① P1 ⋆ P2 means:

✉ the heap h can be split into two disjoint sub-heaps h1, h2 so that: h = h1 ⋆ h2

(Note: “⋆” in h1 ⋆ h2 is the disjoint union of finite functions)

✉ P1 is true for h1 and P2 is true for h2 (same store used for both P1 and P2)

① The semantics of the separating conjuction P ⋆ Q is defined by:

(P ⋆ Q)(s, h) ⇔ ∃h1 h2. h = h1 ⋆ h2 ∧ P (s, h1) ∧ Q(s, h2)

① Example: (X 7→0 ⋆ X+1 7→0) (s, {20 7→ 0, 21 7→ 0}) is true iff s(X) = 20

① Abbreviation: E 7→E0, . . . , En =def (E 7→E0) ⋆ · · · ⋆ (E+n 7→En)

✉ specifies contents of n+1 contiguous locations starting at E

✉ for 0 ≤ i ≤ n the contents of location E+i is value of Ei

① Example: (X 7→Y, Z)(s, {x 7→ y, x+1 7→ z}) is true iff s(X)=x∧s(Y)=y∧s(Z)=z

18

271

Separation logic assertions: emp

① emp is an atomic statement of separation logic

① emp is true iff the heap is empty

① The semantics of emp is:

emp (s, h) ⇔ h = {} (where {} is the empty heap)

① Abbreviation: E1
.
= E2 =def (E1 = E2) ∧ emp

① From the semantics: (E1
.
= E2) (s, h) ⇔ E1(s) = E2(s) ∧ h = {}

① E1 = E2 is independent of the heap and only depends on the store

① Semantics of E1 = E2 is:

(E1 = E2)(s, h)⇔ E1(s) = E2(s)

no constraint on the heap – any h will do

19

272

Summary of separation logic assertions (there are more)

① Points-to E1 7→ E2

E1 7→ E2 ⇔ dom(h) = {E1(s)} ∧ h(E1(s)) = E2(s)

① Separating conjuction P ⋆ Q

(P ⋆ Q)(s, h) ⇔ ∃h1 h2. h = h1 ⋆ h2 ∧ P (s, h1) ∧ Q(s, h2)

① Empty heap emp

emp (s, h) ⇔ h = {} (where {} is the empty heap)

① Abbreviation: E1
.
= E2 =def (E1 = E2) ∧ emp

① Abbreviation: E 7→ =def ∃X. E 7→X (where X does not occur in E)

① Abbreviation: E 7→F0, . . . , Fn =def (E 7→F0) ⋆ · · · ⋆ (E+n 7→Fn)

20

69

273

Example: reversing a linked list

① Diagram of list [a, b, c] stored in a linked-list data-structure

a b c

l l+1 m m+1 n n+1

nilm n

✉ a is the contents of location l, m is the contents of location l+1

✉ b is the contents of location m, n is the contents of location m+1

✉ c then contents of location n, nil is the contents of location n+1

① Would like to specify

{X points to a linked list holding x}
Y:=nil;

WHILE ¬(X = nil) DO (Z:=[X+1]; [X+1]:=Y; Y:=X; X:=Z)

{Y points to a linked list holding rev(x)}

① Need to formalize “X points to a linked list holding x”

✉ rev([a0, a1, . . . , an−1, an]) = [an, an−1, . . . , a1, a0]

21

274

Diagram illustrating linked list reverse operation

{X points to a linked list holding [a, b, c]}
Y:=nil;

WHILE ¬(X = nil) DO (Z:=[X+1]; [X+1]:=Y; Y:=X; X:=Z)

{Y points to a linked list holding [c, b, a]}

a b c

a c

a b c

Y=l Z=n

l l+1 m m+1 n n+1

nilY=nilX=l

bX=m

Z=?

l l+1 m m+1 n n+1

nil nil

Y=m Z=nilX=n

l l+1 m m+1 n n+1

nil

a b cY=n Z=nilX=nil

l l+1 m m+1 n n+1

nil

22

275

Lists

① Assume nil ∈ Val and [a1, . . . , an] ∈ Val for ai ∈ Val

① Define list x E to mean x is stored as a linked list at location E:

list [] E ⇔ (E
.
= nil)

list ([a0, a1, . . . , an]) E ⇔ ∃E′. (E 7→a0, E
′) ⋆ list [a1, . . . , an] E

′

a
0

1

n

a

a nil

E

E’

list [a ,...,a]1 n E’

① Can then specify:

{list x X}
Y:=nil;

WHILE ¬(X = nil) DO (Z:=[X+1]; [X+1]:=Y; Y:=X; X:=Z)

{list (rev(x)) Y}

23

276

Separation logic: small axioms and faulting

① One might expect a heap assignment axiom to entail:

⊢ {T}[0]:=0{0 7→0}
i.e. after executing [0]:=0 the contents of location 0 in the heap is 0

① Recall the sneak preview of the frame rule:

The frame rule

⊢ {P}C {Q}
⊢ {P ⋆ R}C {Q ⋆ R}

where no variable modified by C occurs free in R.

① Taking R to be the points-to statement 0 7→1 yields:

⊢ {T ⋆ 0 7→1}[0]:=0{0 7→0 ⋆ 0 7→1}
something is wrong with the conclusion!

① Solution: define Hoare triple so ⊢ {T}[0]:=0{0 7→0} is not true

24

70

277

Semantics of commands (i)

① C(s, h)(s′, h′) means executing C in state (s, h) can terminate in (s′, h′)
✉ in the background reading: Csem C (s, h) (s′, h′)

① C(s, h)fault means executing C in state (s, h) can fault
✉ in the background reading: Csem C (s, h) fault

① Sometimes C(s, h)r where r (for “result”) is a state or fault

① Semantics of store assignments (only store changed) :

(V :=E)(s, h)r = (r = (s[(E(s))/V], h))

① Semantics of fetch assignments (only store changed) :

(V :=[E])(s, h)r = (r = if E(s)∈dom(h) then (s[h(E(s))/V], h)else fault)

① Semantics of heap assignments (only heap changed) :

([E1]:=E2)(s, h)r = (r = if E1(s)∈dom(h) then (s, h[E2(s)/E1(s)])else fault)

① Semantics of pointer disposal (only heap changed) :

(dispose(E))(s, h)r = (r = if E(s) ∈ dom(h) then (s, h-(E(s)))else fault)

25

278

Semantics of commands (ii)

① Semantics of allocation assignments (store and heap changed) :

(V :=cons(E1, . . . , En))(s, h)r =
∃l. l /∈ dom(h) ∧ · · · ∧ l+(n−1) /∈ dom(h)
∧
(r = (s[l/V], h[E1(s)/l] · · · [En(s)/l+(n−1)]))

① Non-deterministic:
(V :=cons(E1, . . . , En))(s, h)r is true for any result r
for which the right hand side of the equation above holds.

① As the heap is finite, there will be infinitely many such results

① Never faults

26

279

Semantics of commands (iii)

① Semantics of sequences:

(C1;C2)(s, h)r =

if (∃s′ h′. r = (s′, h′))

then (∃s′ h′. C1(s, h)(s
′, h′) ∧ C2(s

′, h′)r)

else ((C1(s, h)r ∧ (r = fault))

∨
∃s′ h′. C1(s, h)(s

′, h′) ∧ C2(s
′, h′)r ∧ (r = fault))

① As in simple language, but propagate faults

✉ if C1(s, h)fault then (C1;C2)(s, h)fault

① Semantics of conditionals:

(IFS THENC1 ELSEC2)(s, h)r = if Ssem S s then C1(s, h)r else C2(s, h)r

✉ S is a first-order logic statement (doesn’t depend on heap), hence Ssem S s

27

280

Semantics of commands (iv)

① Semantics of while-commands:

(WHILES DOC)(s, h)r = ∃n. Iter n (Ssem S) (Csem C) (s, h) r

where the recursive function Iter is redefined to handle faulting:

Iter 0 p c (s, h) r = ¬(p s) ∧ (r = (s, h))

Iter (n+1) p c (s, h) r =

p s ∧ (if (∃s′ h′. r = (s′h′))

then (∃s′ h′. c(s, h)(s′h′) ∧ Iter n p c (s′, h′) r)

else ((c (s, h) r ∧ (r = fault))

∨
∃s′ h′. c (s, h) (s′, h′) ∧ Iter n p c (s′, h′) r ∧ (r = fault)))

① Looks horrible ... but is just the obvious fault-propagating semantics

✉ Iter : Num→(Store→Bool)→(State→Result→Bool)→State→Result→Bool

28

71

281

Non-faulting interpretation of Hoare triples

① The non-faulting semantics of Hoare triples {P}C {Q} is:

if P holds then
(i) executing C doesn’t fault and
(ii) if C terminates then Q holds

|= {P}C{Q} =
∀s h. P (s, h)⇒ ¬(C(s, h)fault) ∧ ∀s′ h′. C(s, h)(s′, h′)⇒ Q(s′, h′)

① Now ⊢ {T}[0]:=0{0 7→0} is not true as ([0]:=0)(s, {})fault
① Recall the sneak preview of the frame rule:

The frame rule

⊢ {P}C {Q}
⊢ {P ⋆ R}C {Q ⋆ R}

where no variable modified by C occurs free in R.

① So can’t use frame rule to get ⊢ {T ⋆ 0 7→1}[0]:=0{0 7→0 ⋆ 0 7→1}

29

282

Small axioms

① A key idea of separation logic is to make the axioms small

① Precondition of {P}C{Q} specifies smallest heap ensuring no fault

① Effects on bigger heaps derived from frame rule

QP
C

QP

C

R R

30

283

Purely logical rules

① Following rules apply to both Hoare logic and separation logic

Rules of consequence

⊢ P ⇒ P ′, ⊢ {P ′} C {Q}
⊢ {P} C {Q}

⊢ {P} C {Q′}, ⊢ Q′ ⇒ Q

⊢ {P} C {Q}

Exists introduction

⊢ {P} C {Q}
⊢ {∃x. P} C {∃x. Q}

where x does not occur in C

① For separation logic, need to think about faulting

31

284

Store assignment axiom

Store assignment axiom

⊢ {V .
= v}V :=E {V .

= E[v/V]}
where v is an auxiliary variable not occurring in E.

① E1
.
= E2 means value of E1 and E2 equal in the store and heap is empty

① In Hoare logic (no heap) this is equivalent to the assignment axiom

⊢ {V =v}V :=E {V =E[v/V]} store assign. ax.

⊢ {V =v ∧Q[E[v/V]/V]}V :=E {V =E[v/V] ∧Q[E[v/V]/V]} rule of constancy

⊢ {∃v. V =v ∧Q[E[v/V]/V]}V :=E {∃v. V =E[v/V] ∧Q[E[v/V]/V]} exists introduction

⊢ {∃v. V =v ∧Q[E[V /V]/V]}V :=E {∃v. V =E[v/V] ∧Q[V /V]} predicate logic

⊢ {∃v. V =v ∧Q[E/V]}V :=E {∃v. V =E[v/V] ∧Q} [V /V] is identity

⊢ {(∃v. V =v) ∧Q[E/V]}V :=E {(∃v. V =E[v/V]) ∧Q} predicate logic: v not in E

⊢ {T ∧Q[E/V]}V :=E {(∃v. V =E[v/V]) ∧Q} predicate logic

⊢ {Q[E/V]}V :=E {Q} rules of consequence

① Separation logic: exists introduction valid, rule of constancy invalid

32

72

285

Fetch assignment axiom

Fetch assignment axiom

⊢ {(V = v1) ∧ E 7→v2}V :=[E]{(V = v2) ∧ E[v1/V] 7→v2}
where v1, v2 are auxiliary variables not occurring in E.

① Precondition guarantees the assignment doesn’t fault

① V is assigned the contents of E in the heap

① Small axiom: precondition and postcondition specify singleton heap

① If neither V nor v occur in E then the following holds:

⊢ {E 7→ v}V :=[E]{(V = v) ∧ E 7→ v}
(proof: instantiate v1 to V and v2 to v and then simplify)

33

286

Heap assignment axiom

Heap assignment axiom (heap mutation)

⊢ {E 7→ }[E]:=F {E 7→F}

① Precondition guarantees the assignment doesn’t fault

① Contents of E in heap is updated to be value of F

① Small axiom: precondition and postcondition specify singleton heap

34

287

Pointer allocation

Allocation assignment axiom

⊢ {V .
= v}V :=cons(E1, . . . , En){V 7→E1[v/V], . . . , En[v/V]}

where v is an auxiliary variable not equal to V or occurring in E1,. . .,En

① Never faults

① If V doesn’t occur in E1,. . .,En then:

⊢ {V .
= v}V :=cons(E1, . . . , En){V 7→E1[v/V], . . . , En[v/V]} alloc. assign. ax

⊢ {V .
= v}V :=cons(E1, . . . , En){V 7→E1, . . . , En} V not in Ei assump.

⊢ {∃v. V .
= v}V :=cons(E1, . . . , En){∃v. V 7→E1, . . . , En} exists intro.

⊢ {∃v. V =v ∧ emp}V :=cons(E1, . . . , En){∃v. V 7→E1, . . . , En} definition of
.
=

⊢ {emp}V :=cons(E1, . . . , En){V 7→E1, . . . , En} predicate logic

① Which is a derivation of:

Derived allocation assignment axiom

⊢ {emp}V :=cons(E1, . . . , En){V 7→E1, . . . , En}
where V doesn’t occur in E1,. . .,En.

35

288

Pointer deallocation

Dispose axiom

⊢ {E 7→ }dispose(E){emp}

① Attempting to deallocate a pointer not in the heap faults

① Small axiom: singleton precondition heap, empty postcondition heap

① Sanity checking example proof:

⊢ {E1 7→ }dispose(E1){emp} dispose axiom

⊢ {emp}V :=cons(E2){V 7→E2} derived allocation assignment axiom

⊢ {E1 7→ }dispose(E1);V :=cons(E2){V 7→E2} sequencing rule

36

73

289

Summary of pointer manipulating axioms

Store assignment axiom

⊢ {V .
= v}V :=E {V .

= E[v/V]}
where v is an auxiliary variable not occurring in E.

Fetch assignment axiom

⊢ {(V = v1) ∧ E 7→v2}V :=[E]{(V = v2) ∧ E[v1/V] 7→v2}
where v1, v2 are auxiliary variables not occurring in E.

Heap assignment axiom

⊢ {E 7→ }[E]:=F {E 7→F}

Allocation assignment axiom

⊢ {V .
= v}V :=cons(E1, . . . , En){V 7→E1[v/V], . . . , En[v/V]}

where v is an auxiliary variable not equal to V or occurring in E1,. . .,En

Dispose axiom

⊢ {E 7→ }dispose(E){emp}

37

290

Compound command rules

① Following rules apply to both Hoare logic and separation logic

The sequencing rule

⊢ {P} C1 {Q}, ⊢ {Q} C2 {R}
⊢ {P} C1;C2 {R}

The conditional rule

⊢ {P ∧ S} C1 {Q}, ⊢ {P ∧ ¬S} C2 {Q}
⊢ {P}IFS THENC1 ELSEC2 {Q}

The WHILE-rule

⊢ {P ∧ S} C {P}
⊢ {P} WHILE S DO C {P ∧ ¬S}

① For separation logic, need to think about faulting

38

291

The frame rule

The rule of constancy

⊢ {P}C {Q}
⊢ {P ∧R}C {Q ∧R}

where no variable modified by C occurs free in R.

① Rule of constancy is not valid for heap assignments

⊢ {X 7→ }[X]:=0{X 7→0}
but not (c.f. arrays)

{X 7→ ∧ Y 7→1}[X]:=0{X 7→0 ∧ Y 7→1}
as X and Y could initially both be bound to the same location

① Using ⋆ instead of ∧ forces X and Y to point to different locations

The frame rule

⊢ {P}C {Q}
⊢ {P ⋆ R}C {Q ⋆ R}

where no variable modified by C occurs free in R.

① Soundness a little tricky due to faulting

39

292

{contents of pointers X and Y are equal} X:=[X]; Y:=[Y] {X = Y}
① Proof:

⊢ {(X = x) ∧ X 7→v}X:=[X]{(X = v) ∧ x 7→v} fetch assignment axiom

⊢ {(Y = y) ∧ Y 7→v}Y:=[Y]{(Y = v) ∧ y 7→v} fetch assignment axiom

⊢ {((X = x) ∧ X 7→v) ⋆ ((Y = y) ∧ Y 7→v)} frame rule

X:=[X]

{((X = v) ∧ x 7→v) ⋆ (((Y = y) ∧ Y 7→v))}
⊢ {((Y = y) ∧ Y 7→v) ⋆ ((X = v) ∧ x 7→v)} frame rule

Y:=[Y]

{((Y = v) ∧ y 7→v) ⋆ ((X = v) ∧ x 7→v)}
⊢ {((X = x) ∧ X 7→v) ⋆ ((Y = y) ∧ Y 7→v)} sequencing rule and commutativity of ⋆

X:=[X];Y:=[Y]

{((X = v) ∧ x 7→v) ⋆ ((Y = v) ∧ y 7→v)}
⊢ {∃v x y. ((X = x) ∧ X 7→v) ⋆ ((Y = y) ∧ Y 7→v)} exists-introduction (3 times)

X:=[X];Y:=[Y]

{∃v x y. ((X = v) ∧ x 7→v) ⋆ ((Y = v) ∧ y 7→v)}
⊢ {∃v. X 7→v ⋆ Y 7→v} X:=[X]; Y:=[Y] {X = Y} rules of consequence (see next slide)

40

74

293

Logic of separating assertions, soundness, completeness

① To use separation logic various properties of ⋆, 7→ etc. are needed

① For rule of consequence in proof on preceding slide need:

(∃v. X 7→v ⋆ Y 7→v) ⇒ ∃v x y. ((X = x) ∧ X 7→v) ⋆ ((Y = y) ∧ Y 7→v)

(∃v x y. ((X = v) ∧ x 7→v) ⋆ ((Y = v) ∧ y 7→v)) ⇒ (X = Y)

① No complete deductive system exists – not a problem in practice

① Using separation logic like ordinary Hoare logic, but more fiddly

① Proof of linked list example given in John Wickerson’s slides:

{list x X}
Y:=nil;

WHILE ¬(X = nil) DO (Z:=[X+1]; [X+1]:=Y; Y:=X; X:=Z)

{list (rev(x)) Y}
① Separation logic is sound and relatively complete

✉ similar proof using appropriate generalisation of wlp

✉ faulting adds complications

41

294

Current research and the future

① Extending separation logic to cover practical language features
✉ various concurrency idioms

✉ objects

① Building tools to mechanise separation logic
✉ much work on shape analysis, e.g.:

{∃x. list x X}
Y:=nil;

WHILE ¬(X = nil) DO (Z:=[X+1]; [X+1]:=Y; Y:=X; X:=Z)

{∃x. list x Y }
automatically finds memory usage errors

① Finally, something to think about:
should we be verifying code in old fashioned languages (pramatism)
or creating new methods to create correct software (idealism)?

“The tension between idealism and pragmatism is as profound (almost)
as that between good and evil (and just as pervasive).”
[Tony Hoare]

42

